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Abstract—We participate in BioCreative VI: Interactive Bio-
ID Assignment (Bio-ID) track by developing systems capable of
named  entity  recognition  and  normalization  of  6  entity  types,
namely  Protein,  Cell,  Organism,  Tissue,  Molecule  and  Cellular.
Our  named  entity  recognition  system  is  based  on  conditional
random  fields. For  named entity normalization, we apply fuzzy
matching  and  rule-based  system  to  disambiguate  and  assign
unique  identifiers  to the  entities.  The  official  evaluation shows
that average F1-scores of all entity types for our recognition and
normalization systems on strict span offsets are 0.720 and 0.668,
respectively.  
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I. INTRODUCTION

The  main  goal  of  BioCreative  VI  (Bio-ID)  track  is  to
annotate text with the entity types and IDs for organism, gene,
protein,  miRNA,  small  molecules,  cellular  components,  cell
types and cell lines, tissues and organs, in order to facilitate the
curation process.  The task principally  consists  of  two major
subtasks:  i)  named  entity  recognition  (NER)  and  ii)  named
entity normalization (NEN).

On one hand, several machine learning-based approaches,
such  as  support  vector  machines  and neural  networks,  have
been applied to NER tasks with varying entities ranging from
genes to diseases,  chemicals and anatomical parts [1,2].  The
most recent successful approaches include conditional random
field  (CRF)  classifiers  and  neural  networks  [1,3,4].  The
approaches for NEN, on the other hand, are largely based on
string  edit  distance  and  TFIDF  weighted  vector  space
representations with a variety of preprocessing approaches to
remove the written variations [5,6]. 

Our system, capable of recognizing all six types of entities
and assigning the corresponding identifiers, is based on CRF
classifiers,  fuzzy  matching  and  a  rule-based  system.  In  the
following sections we describe our system and its performance
based  on  the  official  evaluation  for  both  recognition  and
normalization tasks.

II. METHODS

A. Preprocessing

We  preprocess  the  documents  by  using  the  publicly
available  tool  [77]  converting  the  character  encodings  to
ASCII.  The  characters  with  the  missing  mapping,  such  as
smiley faces and calendar symbols, are thus replaced with '-'
(dash). Subsequently we split the documents into sentences and
further  tokenize  and  part-of-speech  (POS)  tag  them  using

GENIA sentence splitter [8], NERsuite tokenizer and NERsuite
POS tagger modules [9], respectively. 

Some of the documents contain incorrect word boundaries
such as 'mouseliverlysosomes' which should have been written
as 'mouse liver lysosome'. While the result of tokenization is
overall satisfactory, it is incapable of correctly splitting these
words  into  tokens.  We  thus  resolve  this  by  additional
tokenization using the known tokens from the corresponding
full-text document. Specifically, we split the tokens using the
span of the longest matching document tokens.  To reduce the
chance of  mistakenly tokenizing correct  tokens,  we only re-
tokenize the tokens that belong to noun phrases. Finally, we re-
apply POS tagging to complete the data preprocessing.

B. Ontology and controlled vocabularies

We prepare a set of controlled vocabularies and ontologies
to assist named entity recognition and normalization. List  of
concept names and ontologies we used include ChEBI [10] and
PubChem [11] (for  Molecule), Entrez Gene [12] and Uniprot
[13]  (for  Protein),  NCBI  Taxonomy  [14]  (for  Organism),
Uberon [15] (for  Tissue), Cellular Component Ontology [16]
(for  Cellular  component)  and  Cell  Ontology
(http://purl.obolibrary.org/obo/uberon.owl)  and  Cellosaurus
(http://web.expasy.org/cellosaurus)  (for  Cell).  We  preprocess
the  lists  by  removing  non-alphanumeric  characters  and
lowercasing the symbols. 

Specifically for NCBI Taxonomy, we additionally expand
the ontology by adding the commonly used abbreviations for
scientific  names.  For  binomial  nomenclature  of  names  in
species  rank,  we abbreviate  the  genus  while  the  rest  of  the
names such as species epithet, varieties, strains and substrains,
remain  the  same.  For  example,  'Escherichia  coli  O.1197'  is
abbreviated  as  'E.  coli  O.1197',  'E  coli  O.1197',  'Es.  coli
O.1197' and 'Es coli O.1197'. This rule applies to all organisms,
except for scientific names of organisms in Viruses and Viroids
superkingdoms,  since  the  scientific  names  do  not  usually
follow binomial nomenclature but are in the form of [Disease]
virus [17]. Acronyms are often used as abbreviated scientific
names  for  viruses,  for  example  ZYMV  is  the  acronym  of
Zucchini yellow mosaic virus, and thus we also add acronyms
to the ontology. 

C. Named Entity Recognition

For  the  given  training  data,  we  first  completely  remove
annotations  for  Assay entity  type  and  combine  miRNA and
Gene with  Protein annotations. Hence, the total entity counts
are 58476, 7476, 6312, 11213,  10604 and 7888 for  Protein,
Cellular,  Tissue,  Molecule,  Cell  and  Organism.  We  then
randomly  partition  the  training  data  into  a  training  and  a



development  set,  containing  455  and  115  documents
respectively. 

We train  our  NER system on the  training  set  using  the
NERsuite  (http://nersuite.nlplab.org/)—a  named  entity
recognition toolkit—and optimize it  against our development
set.  We  train  a  single  CRF  model  capable  of  detecting  all
possible entity types and use micro-averaged F1-score as the
optimization metric, derived from the official evaluation script.
To achieve higher performance in NER, we directly provide
NERsuite with dictionaries through dictionary-tagging module
with no further  preprocessing or normalization. We compare
the performance of different dictionaries on development data
using default NERsuite hyperparameters. 

For final prediction of the test set, we merge the training
and the development sets and re-train the CRF on this data
using the best found hyperparameters.

D. Named Entity Normalization and Disambiguation

Our normalization  approach  is  primarily  based  on  fuzzy
string  matching  algorithm  where  both  entity  and  ontology
terms  are  converted  to  vectors  using  character  n-gram
frequencies.  Cosine  similarity  is  then  used  for  calculating
similarity between detected entity and ontology terms. In this
study, we use Simstring [18], a library for approximate string
matching, to retrieve the ontology terms with highest cosine
similarity  with  queried  entity,  regardless  of  the  type  of  the
terms.  

The  tagged  entities  resulting  from  the  NER  system  are
preprocessed using the same approaches we use on dictionaries
and ontologies, by removing the punctuations and lowercasing,
as  described  previously.  We  utilizes  approximate  string
matching approach to all entity types except for Protein, which
we instead apply 'exact string matching' to retrieve matching
identifiers.   

Some of the ontology terms are not uniquely linked to a
single identifier, but multiple ones. For Cell, Cellular, Molecule
and  Tissue, a  random  identifier  is  selected.  The  selected
random  identifier  is  subsequently  applied  throughout  the
document. For Organism and Protein, we develop two separate
rule-based systems to uniquely assign an identifier. 

For  Organism,  we use  taxonomy tree  and  the  following
disambiguation rules to assign a taxon identifier to Organism.
These rules are sequentially applied if the previous rule results
in more than one identifier. 

1. Take  identifier  with  highest  cosine  similarity  score
and its taxonomic rank is under species, which also
includes subspecies, strain, variety and no rank.

2. Take  identifier  of  previous  mentioned  Organism if
abbreviations match.

3. Take  identifier  of  previous  mentioned  Organism if
acronyms match.

4. Take identifier of previous mentioned Organism of the
same genus.

5. Take  identifier  of  a  model  organism  of  the  same
genus.

6. Take  identifier  of  the  most  studied  organism  in
PubMed-Central Open Access section.

7. Take a random identifier.

Protein contain  the  most  ambiguous  names  as  the  same
protein names can be found in multiple organisms if they have
the same function or shared sequence identity [19]. Therefore,
the  information  about  the  Organism is  crucial  for  Protein
normalization.  We  therefore  employ  the  results  of  our
Organism normalization system and use the taxon identifiers to
disambiguate Protein. However, multiple taxon identifiers can
be recognized in a single document, hence we adapt rule-based
system proposed by [1] to generate candidate taxon identifiers
for  the  Protein.  The  list  of  candidate  taxon  identifiers  are
ordered according to the following rules.   

1. Organism mentioned inside Protein text span

2. Organism mentioned before  Protein within the same
sentence 

3. Organism mentioned  after  Protein within  the  same
sentence 

4. Organism mentioned in the previous caption

5. Organism mentioned in the same document

In  addition,  we  perform  query  expansion  to  generate
candidate Protein names to cover potential Uniprot and Entrez
Gene symbol variations by using stripping algorithm [20]. The
algorithm recursively removes common words, such as protein,
gene  and  RNA,  and  Organism from  Protein to  produce  a
canonical form which includes minimal symbols that are gene
symbols  in  the  Entrez  Gene  database.  For  instance,  'p53
protein'  will  result  to  'p53'.  Finally,  the  canonical  forms  are
subsequently lower-cased and punctuation-removed. The list of
candidate Protein names are then ordered by the string length.

For each taxon identifier, we use 'exact string matching' to
retrieve corresponding Protein identifier. The search starts with
the  longest  candidate  Protein name  and  stops  when  the
identifier is found. In case of multiple identifiers, a random one
is selected.

III. RESULT AND DISCUSSION

E. Name Entity Recognition

Incorrect word boundaries can result in multiple types of
entity  annotations  for  a  given  token.  For  example,
'mouseskinfibroblasts'  contains the annotations for  Organism,
Tissue and  Cell. Since we train a single CRF-based model to
recognize all types of entities, having one token representing
multiple  entities  would  have  caused  the  loss  of  training
examples  as  NERsuite  does  not  support  multilabel
classification. As mentioned in Method section, we resolve this
issue by re-tokenizing the tokens using known tokens from the
provided  full-text  document.  The  result  for  recovering  the
training examples is significant as tokenization from NERsuite
alone  yields  about  97%  of  the  annotations,  while  this  step
increases  the  number  of  annotations  by  additional  2pp,
equivalent  to  more  than  2000  annotations.  As  a  result,  we
recover  more  than  99%  of  the  original  annotations  with
Organism with the highest increase in coverage. 

http://nersuite.nlplab.org/


TABLE I. COMPARISON OF ANNOTATION COUNTS BETWEEN
TOKENIZATION APPROACHES

re-
tokeniz
ation

Prot Cellu Tiss Mole Cel Org

without 97.178 99.772 95.951 96.107 97.099 93.691

with 99.187 99.866 99.842 99.424 99.559 98.921

a. The comparison of annotation counts between preprocessing with only NERsuite tokenization module
(without) and with both NERsuite tokenization and additional tokenization (with). The numbers are

percents of annotations compared to the provided data presented for each entity type. 

It has been demonstrated that domain knowledge, such as
controlled vocabularies, is important to attain good performing
NER model  [3,4].  In  this  study,  we use  dictionaries  to  add
features for classifier and compare the model performance on
the development data. As shown in Table II, there is no clear
performance improvement when adding dictionary features in
either  strict  or  overlap  modes  of  evaluation.  In  the  case  of
cellular  component  from  GO,  the  performance  of  NER  is
however,  lower  than  other  models  by  more  than  6pp  in  F-
measure.  As a result,  we train our model without using any
additional dictionary features.

TABLE II. OFFICIAL EVALUATION OF NER SYSTEM ON DEVELOPMENT
DATA

Dictionary/
Ontology

Precision / Recall / F-measure

Strict Overlap

Uberon 0.787 / 0.688 / 0.734 0.882 / 0.771 / 0.823

ChEBI 0.763 / 0.689 / 0.724 0.865 / 0.780 / 0.821

GO 0.652 / 0.687 / 0.669 0.789 / 0.830 / 0.809

Cellosaurus 0.780 / 0.687 / 0.730 0.875 / 0.772 / 0.820

NCBI Taxonomy 0.785 / 0.689 / 0.734 0.880 / 0.772 / 0.823

NCBI Gene 0.770 / 0.688 / 0.727 0.870 / 0.778 / 0.821

Cell ontology 0.788 / 0.687 / 0.734 0.883 / 0.770 / 0.823

No dictionary 0.788 / 0.686 / 0.734 0.882 / 0.769 / 0.822

We finally train NERsuite model on combined training and
development sets. The resulting model is subsequently used for
tagging the entities in the test dataset. The official evaluation
results, shown in Table III, demonstrate that our NER system
performs best on Organism, achieving F-measure of 0.834. The
performance of the system is moderate for  Cell and  Protein
with F-measure of 0.743 and 0.734, respectively. For the other
three entity types,  Tissue, Cellular and  Molecule, our system
shows comparatively lower performances with F-measure of
0.668, 0.642 and 0.579, respectively. Cellular proves to be the
most difficult entity to recognize. Overall, the performance of
model is moderate across all entity types, achieving F-measure
of 0.720 and 0.790 on strict and overlap evaluation criteria. 

TABLE III. OFFICIAL EVALUATION OF NER SYSTEM ON TEST DATA

Entity
Precision / Recall / F-measure

Strict Overlap

Cell 0.783 / 0.708 / 0.743 0.841 / 0.760 / 0.799

Cellular 0.673 / 0.508 / 0.579 0.728 / 0.550 / 0.627

Protein 0.729 / 0.739 / 0.734 0.825 / 0.836 / 0.831

Organism 0.860 / 0.809 / 0.834 0.878 / 0.826 / 0.852

Molecule 0.775 / 0.587 / 0.668 0.796 / 0.603 / 0.686

Tissue 0.727 / 0.575 / 0.642 0.793 / 0.627 / 0.701

All 0.747 / 0.694 / 0.720 0.821 / 0.762 / 0.790

F. Name Entity Normalization and Disambiguation

The  performance  of  normalization  system  is  heavily
depending on the NER system performance since unrecognized
and incorrect spans entities  are automatically classified as false
negative and false positives, respectively. We thus evaluate our
normalization system on the development set based on the gold
standard entity mentions to compare the different approaches
on different entity types.

TABLE IV. OFFICIAL EVALUATION OF NEN SYSTEM ON DEVELOPMENT
DATA

Entity
Precision / Recall / F-measure

Strict Overlap

Cell 0.902 / 0.946 / 0.923 0.935 / 0.980 / 0.957

Cellular 0.974 / 0.929 / 0.951 0.980 / 0.934 / 0.957

Protein 0.878 / 0.591 / 0.706  0.902 / 0.606 / 0.725

Organism 0.977 / 0.887 / 0.930 0.993 / 0.901 / 0.945

Molecule 0.963 / 0.488 / 0.647 0.969 / 0.491 / 0.651

Tissue 0.920 / 0.978 / 0.948 0.930 / 0.988 / 0.958

All 0.914 / 0.700 / 0.793 0.933 / 0.716 / 0.810

Our normalization system performs relatively well on Cell,
Cellular,  Organism and  Tissue,  where  the  F-measure ranges
from  0.923  to  0.951  under  strict  criteria.  However,  the
performance of the system drops dramatically on Molecule  and
Protein, as their recall of both entities are significantly lower
than their precision counterpart. For  Protein, the exact string
matching and a set of taxon identifiers are probably attributing
factors for a low recall as these two criteria are probably too
stringent resulting in almost half of the Protein not being linked
to an associated identifier.  For  Molecule,  the lower recall  is
most likely caused by some other factor since the approximate
pattern matching was used. 

When evaluated against test set, the normalization results
differ  from  gold  standard  development  data  as  the  overall
performance is largely depending on the NER system output.
As shown in Table V, the normalization performance does not
appear  to  drop  drastically  even  when  applied  on  predicted
entities instead of the gold standard mentions.



TABLE V. OFFICIAL EVALUATION OF NEN SYSTEM ON TEST DATA

Entity
Precision / Recall / F-measure

Strict Overlap

Cell 0.774 / 0.699 / 0.735 0.830 / 0.750 / 0.788

Cellular 0.685 / 0.482 / 0.566 0.737 / 0.519 / 0.609

Protein 0.795 / 0.543 / 0.645 0.823 / 0.561 / 0.667

Organism 0.857 / 0.797 / 0.826 0.877 / 0.815 / 0.845

Molecule 0.787 / 0.581 / 0.668 0.803 / 0.593 / 0.682

Tissue 0.604 / 0.542 / 0.572 0.669 / 0.600 / 0.632

All 0.775 / 0.586 / 0.668 0.809 / 0.612 / 0.697

IV. CONCLUSIONS AND FUTURE WORK

We approach BioCreative Bio-ID task by training a single
CRF-based  model  to  recognize  all  entity  types and  we link
them  to  their  corresponding  database  identifiers  using
approximate  pattern  matching  algorithm.  For  Protein and
Organism,  we utilize the ontology structure and surrounding
context  to  disambiguate  the  entities  with  multiple  identifier
candidates. Our systems, evaluated independently, demonstrate
a  moderate  performance  overall.  However,  a  lower
performance  for  most  types  of  entities  is  observed  when
recognition and normalization are evaluated jointly as the F-
score is largely determined by the F-score of the recognition
system.

CRF-based classifiers have been a relatively successful tool
for  entity  recognition  in  biomedical  domain,  demonstrating
state-of-the-art for several entity types. However, it  has been
recently  shown  that  neural  networks  with  only  word
embeddings as features can outperform traditional CRF-based
NER systems  with  manually  crafted  features  [1].  Thus,  our
future work includes developing a neural network-based NER
system capable of recognizing multiple types of entities. 

Our  normalization  system  for  Protein and  Molecule
demonstrate a lagging performance when compared with other
entities.  For  Protein,  applying  relaxed  string  matching  in
addition to improving the organism assignment algorithm can
potentially improve the performance . For Molecule, our future
work  lies  on  identifying  contributing  factors  that  lower  the
recall and adjusting the system accordingly. 

Our  current  normalization  system  is  limited  and  time-
consuming as it applies several manually generated rules which
do  not  generalize  to  normalizing  other  entity  types.  Thus
developing a machine learning system that can be trained on
the annotations of new entity type would be an ideal solution
for  the normalization task.  Since the conventions of  naming
biomedical  entities  vary  among  entity  types,  a  unified
normalization system can be a challenging task.
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