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Abstract

Background: Photoplethysmography is a noninvasive and low-cost method to remotely and continuously track vital signs. The
Oura Ring is a compact photoplethysmography-based smart ring, which has recently drawn attention to remote health monitoring
and wellness applications. The ring is used to acquire nocturnal heart rate (HR) and HR variability (HRV) parameters ubiquitously.
However, these parameters are highly susceptible to motion artifacts and environmental noise. Therefore, a validity assessment
of the parameters is required in everyday settings.

Objective: This study aims to evaluate the accuracy of HR and time domain and frequency domain HRV parameters collected
by the Oura Ring against a medical grade chest electrocardiogram monitor.

Methods: We conducted overnight home-based monitoring using an Oura Ring and a Shimmer3 electrocardiogram device. The
nocturnal HR and HRV parameters of 35 healthy individuals were collected and assessed. We evaluated the parameters within
2 tests, that is, values collected from 5-minute recordings (ie, short-term HRV analysis) and the average values per night sleep.
A linear regression method, the Pearson correlation coefficient, and the Bland–Altman plot were used to compare the measurements
of the 2 devices.

Results: Our findings showed low mean biases of the HR and HRV parameters collected by the Oura Ring in both the 5-minute
and average-per-night tests. In the 5-minute test, the error variances of the parameters were different. The parameters provided
by the Oura Ring dashboard (ie, HR and root mean square of successive differences [RMSSD]) showed relatively low error
variance compared with the HRV parameters extracted from the normal interbeat interval signals. The Pearson correlation
coefficient tests (P<.001) indicated that HR, RMSSD, average of normal heart beat intervals (AVNN), and percentage of successive
normal beat-to-beat intervals that differ by more than 50 ms (pNN50) had high positive correlations with the baseline values; SD
of normal beat-to-beat intervals (SDNN) and high frequency (HF) had moderate positive correlations, and low frequency (LF)
and LF:HF ratio had low positive correlations. The HR, RMSSD, AVNN, and pNN50 had narrow 95% CIs; however, SDNN,
LF, HF, and LF:HF ratio had relatively wider 95% CIs. In contrast, the average-per-night test showed that the HR, RMSSD,
SDNN, AVNN, pNN50, LF, and HF had high positive relationships (P<.001), and the LF:HF ratio had a moderate positive
relationship (P<.001). The average-per-night test also indicated considerably lower error variances than the 5-minute test for the
parameters.
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Conclusions: The Oura Ring could accurately measure nocturnal HR and RMSSD in both the 5-minute and average-per-night
tests. It provided acceptable nocturnal AVNN, pNN50, HF, and SDNN accuracy in the average-per-night test but not in the
5-minute test. In contrast, the LF and LF:HF ratio of the ring had high error rates in both tests.

(J Med Internet Res 2022;24(1):e27487) doi: 10.2196/27487
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Introduction

Background
Wearable devices are widely used for continuous monitoring
of health parameters, by which individuals’ health and
well-being can be assessed [1,2]. Heart rate (HR) and HR
variability (HRV) are essential parameters that can be collected
noninvasively, indicating information about the cardiorespiratory
and autonomic nervous systems. HRV is the variation in the
time interval between adjacent heartbeats, also known as
interbeat interval (IBI) [3]. Using the IBI, various parameters
can be extracted, such as the root mean square of successive
differences (RMSSD), SD of beat-to-beat intervals (SDNN),
and the percentage of successive beat-to-beat intervals that differ
by more than 50 ms (pNN50), each of which reveals various
cardiovascular events and problems [4]. For example, HRV
parameters have been shown to be predictors of mortality after
myocardial infarction [5] and the mode of death in chronic heart
failure [6]. Studies also indicated that HRV parameters are
associated with diabetes [7], cardiovascular autonomic
imbalance [8], and in pregnant women with pre-eclampsia [9],
to mention a few. Moreover, HRV parameters are significantly
correlated with sleep stage [10], sleep quality [11], and stress
levels [12,13].

HR and HRV monitoring can be performed by leveraging
noninvasive and low-cost methods. Electrocardiography (ECG)
is a conventional method to record the heart’s electrical
activities, using electrodes attached to the chest and limbs [14].
ECG is a gold standard method for collecting heartbeats and
IBI, as the collected electrical signals can clearly indicate
depolarization of the ventricular muscles (ie, R-peak). However,
the ECG method cannot be used for long-term or remote health
monitoring owing to the complicated setup as ECG electrodes
need to be attached to the user’s limbs or chest all the time.
Loose or misplaced electrode connections in the monitoring
also negatively affect signal quality. Photoplethysmography
(PPG) is another technique used to collect HR and HRV [15].
Different studies have focused on monitoring and extraction of
PPG signals [16-18]. As an optical technique, PPG measures
cyclical oscillations in the skin’s blood flow by emitting light
to the skin and absorbing light reflection via a light detector
[19]. The light emitter and detector can be placed on the user’s
wrist or finger for data collection. PPG is easy to implement in
remote health monitoring systems, and it is already available
in various wearable devices in the market, such as smartwatches
and rings.

Several clinical and commercial PPG-based smart wearable
devices have been proposed in the past few years, enabling the
monitoring of vital signs outside conventional clinical settings.

Studies have exploited wearables such as Garmin, Fitbit, and
Apple watches in clinical trials as well as in different
population-based studies [20-22]. The use of wearable devices
is expected to increase even further as they become smaller,
lighter, and more energy-efficient with sufficient battery
capacity and internal data storage. In particular, smart rings
such as the Oura Ring [23] have recently drawn attention for
use in remote health and physical activity monitoring, such as
COVID-19 research at the University of California San
Francisco [24] and players’ health data monitoring in the
National Basketball Association and Women's National
Basketball Association league [25].

Wearable devices require a high level of accuracy and reliability,
particularly if they are used in health monitoring apps. However,
these devices are susceptible to artifacts, resulting in poor data
collection and subsequently invalid health parameters. This
problem is further exacerbated by environmental noise and
motion artifacts in PPG-based monitoring [19,26].
Unfortunately, such artifacts are inevitable in free-living
conditions, as the user might engage in various physical
activities in different environments.

The accuracy of different HRV parameters depends on multiple
factors in the signals. For example, RMSSD shows short-term
variations in the IBI signal, and the accuracy is affected if a
small portion of the signal is distorted [4]. In contrast, SDNN
indicates the long-term signal variation, so the outliers, affecting
the variation of the signal, would negatively impact its accuracy.
Moreover, frequency domain features are significant for
assessing the cardiovascular and nervous systems, for example,
low frequency (LF) and high frequency (HF) are indicators of
stress states, hypertension, and Parkinson disease severity
[27,28]. These features indicate the power of the IBI in specific
frequency bands. Therefore, they are distorted if interference
with the same frequency is added to the signal. Such different
characteristics of HRV parameters necessitate the evaluation
of HRV parameters separately. Consequently, a more extensive
assessment is required to investigate HRV measurements in
remote monitoring.

Various studies in the literature have investigated the validity
of wristbands—such as Apple Watch, Huawei Watch, and
Microsoft Band 2—in terms of the quality of PPG and HRV
measurements [29-32]. However, the validation of smart rings,
which use finger-based PPG, is limited. Mehrabadi et al [33]
assessed the nonstaging sleep parameters collected by the Oura
Ring in comparison with a medically approved actigraphy
device. They showed that the sleep parameters of the ring were
significantly correlated with those obtained from the Actigraph.
Kinnunen et al [34,35] investigated the Oura Ring via overnight
data collection. The study showed good agreement between the
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Oura Ring and the ECG monitoring device. However, the
assessments were restricted to the nocturnal HR and RMSSD
reported by the ring. Other parameters, such as the IBI or
frequency domain HRV parameters, were not considered.

Objectives
In this study, we have comprehensively assessed the validity
of the Oura Ring in terms of HR and multiple HRV parameters
during sleep. The ring was evaluated against a medical grade
chest ECG monitor. The study, approved by the ethical
committee, included overnight home-based monitoring of 35
healthy individuals from whom the HR and IBI values were
collected. We extracted HR, RMSSD, average of all normal
heart beat intervals (AVNN), SDNN, pNN50, LF, HF, and
LF:HF ratio from the ring and ECG monitor. Then, we evaluated
the parameters obtained from the 2 devices in a 5-minute test
and an average-per-night test. The parameters were compared
using a linear regression method, Pearson correlation coefficient,
and Bland–Altman plot. Finally, we have discussed the obtained
results, the validity of monitoring these parameters in everyday
settings, and the limitations of the study. In summary, the main
contributions of this study are as follows:

1. We investigated the validity of the Oura Ring in terms of
nocturnal HR and multiple HRV, compared with a medical
grade chest ECG monitor.

2. We conducted a 1-day study where 35 healthy individuals
were monitored at home.

3. We analyzed the HR and HRV parameters in 5-minute and
average-per-night tests using a linear regression method,
Pearson correlation coefficient, and Bland–Altman plot.

Methods

Study Design
The assessment of HR and HRV measurements collected from
the Oura Ring was performed in an observational study in
free-living conditions with a convenience sample of healthy
individuals. The measurements were evaluated in comparison
with a gold standard ECG monitor. Recruitment took place
during July and August 2019 in southwest Finland.

Participants and Recruitment
A total of 46 healthy volunteer adults—including 23 women
and 23 men—were recruited in this study. The exclusion criteria
were as follows: (1) diagnosed cardiovascular disease, (2)
symptoms of illness during the recruitment time, (3) restriction
in physical activity, and (4) restriction on using wearable
devices. The average age and BMI of the selected participants

were 32.3 (SD 6.4) years and 24.9 (SD 4.5) kg/m2, respectively.
In this setup, we focused on healthy people to evaluate the
accuracy of the ring, as diseases (arrhythmias) alter the shape
of the PPG signal [36] and affect the regular accuracy of the
ring.

In face-to-face meetings, the participants were informed about
the study’s detailed information, including the purpose of the
study and use of wearable devices. The participants were asked
to wear an Oura Ring and a Shimmer3 ECG monitor for 1 day.
Measurements were conducted during normal life. A total of

11 participants were excluded from the data analysis owing to
technical and practical issues, for example, the ECG electrodes
were not adequately attached to the skin during sleep.
Consequently, data from 35 participants (women: 19/35, 54%;
men: 16/35, 46%) were included in the analysis.

Data Collection
The home-based data collection was performed using 2 wearable
devices, that is, the Oura Ring [23] and Shimmer device [37].
The participants were asked to wear 1 Oura Ring on 1 finger of
the nondominant hand. The Shimmer unit was placed on the
chest of each participant using a chest strap. A total of 4
electrodes were attached to collect 3 bipolar limb leads during
the monitoring. More details of the setup can be found in the
study by Burns et al [38]. Moreover, the participants were asked
to complete a short background questionnaire before starting
the monitoring. They were also asked to report events during
the study, for example, if the devices were removed from the
finger or chest. In addition to the verbal instructions, the
participants received written guidelines for using the devices.

Oura Ring is a commercial wearable device, collecting PPG,
acceleration, and body temperature data to measure HR,
respiratory rate, HRV, sleep parameters, and intensity of
physical activity. The ring is small (2.55 mm thickness), light
(4-6 g), and easy to use for continuous monitoring [35]. Its
battery can support 5-7 consecutive days of monitoring with
one battery charge. The ring uses Bluetooth to send data to the
Oura Android or iOS operating system mobile app and cloud
server. The data can be accessed through the mobile app or the
server. In this study, we extracted the data from the Oura cloud
[35].

The Shimmer3 ECG is the baseline device selected in this study
to evaluate the HR and HRV of the ring. The device is light (31
g) and has compact dimensions (65 mm×32 mm×12 mm) [37].
The Shimmer3 ECG unit can be configured to measure ECG,
accelerometer, and gyroscope data continuously. The device
has a sufficient battery life and internal memory to perform
monitoring for an entire day. We selected 512 Hz as the
sampling frequency for ECG data collection [39,40]. The
sampling frequency is sufficient to accurately extract HR and
HRV [41]. Data were extracted from the device after the
monitoring [37].

Data Analysis

Oura Ring
The Oura Ring provides various parameters regarding the health,
physical activity, and sleep of the user. PPG-based wearable
devices (including Oura) collect noise along with the signals of
interest, particularly in home-based monitoring. In this study,
we assessed the accuracy level or noise level of HR and HRV
measurements. The ring provides HR and RMSSD when the
user is sleeping, and the values are reported every 5 minutes.
More details about the HR and RMSSD calculation can be found
in the study by Shaffer et al [4]. The ring also provides an IBI
signal [42]. We used the 5-minute window of the IBI signal to
calculate the time domain parameters (ie, AVNN, SDNN, and
pNN50) and frequency domain parameters (ie, LF, HF, and
LF:HF ratio). The HRV parameters are presented in Table 1. It
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should be noted that the ring preprocessed the signals and
provided confidence values, demonstrating the validity of the

IBI signals. We calculated the HRV of the 5-minute IBI signals,
if at least 30% of the signal is valid [35].

Table 1. Heart rate variability parameters.

DescriptionUnitsParameter

Time interval between 2 successive normal heartbeatsmsNNa interval

The RMSSD between adjacent NN intervalsmsRMSSDb

Average value of NN intervalsmsAVNNc

SD of NN intervalsmsSDNNd

The proportion of number of pairs of successive NN intervals differing more than 50 ms divided by total number of
NN intervals

—fpNN50e

Power of the LF band of the IBIh signal (ie, 0.04-0.15 Hz)ms2LFg

Power of the HF band of the IBI signal (ie, 0.15-0.4 Hz)ms2HFi

Ratio of LF to HF—LF:HF

aNN: normal heart beat.
bRMSSD: root mean square of successive differences between normal heartbeats.
cAVNN: average of normal heartbeat intervals.
dSDNN: SD of normal beat-to-beat intervals.
epNN50: percentage of successive beat-to-beat intervals that differ by more than 50 ms.
fNot available.
gLF: low frequency.
hIBI: interbeat interval.
iHF: high frequency.

Shimmer3 ECG
As previously mentioned, ECG was selected as the gold standard
method to extract HR and HRV. In this regard, we chose Lead
II (right arm–left leg) to extract the cardiac rhythm accurately.
As the Oura Ring data were reported every 5 minutes, we also
divided the ECG signals into 5-minute time windows. Then,
we performed an ECG analysis to calculate the HR and HRV
parameters for each window. Different steps of the analysis are
illustrated in Figure 1.

The collected ECG signal quality is susceptible to artifacts
generated by the user’s movements, poor electrode contact, or
environmental noise. Such artifacts are inevitable in home-based
monitoring, as users might engage in various physical activities.
In this regard, we first used a Butterworth band-pass filter with
0.5-100 Hz cutoff frequencies to remove the artifacts that were
not in the desired frequency range.

We designed a two-round peak detection method to extract the
R peaks from the ECG signals. In the first round, the algorithm
computes the average value of the ECG in a 5-minute window.

It then detects all possible peaks, including the real R peaks and
miscalculated peaks (made by P wave, T wave, or noises) using
the average value as the threshold. In the second round, the
algorithm calculates the average value of the peaks detected in
the first round. Using the average value and the normal
frequency (50-200 beats per minute) of heart beats, undetected
R peaks were added and miscalculated peaks were removed.
Our peak detection method obtains higher accuracy than the
Pan–Tompkins [43] and Hamilton [44] algorithms. Figure 2
shows the peak detection results of a sample with a 5-minute
ECG window.

However, our peak detection algorithm is inaccurate if the
collected ECG includes too much noise (ie, low signal-to-noise
ratio). To avoid such inaccurate peak detection, we developed
a method to detect and remove the distorted signals and invalid
peaks. The removal criteria are based on the normal range of
the HR and RR intervals learned and modified from the ECG
signal quality index [45]. Such a method is important in the
analysis to prevent false peak detection and, subsequently, HR
and HRV extraction. The method pipeline is illustrated in Figure
3.
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Figure 1. The electrocardiography analysis steps. ECG: electrocardiography; HRV: heart rate variability.

Figure 2. The peak detection result of a 5-minute time window. ECG: electrocardiography.

Figure 3. The pipeline of the electrocardiography validation method. ECG: electrocardiography; HR: heart rate; RR: respiratory rate.

Statistical Analysis
We used the Pearson correlation coefficient on pairwise HR
and HRV parameters to investigate the linear relationship and
comparability between the 2 devices. Moreover, a linear
regression analysis was used to assess the accuracy of the HR
and HRV parameters of the Oura Ring. We used Oura’s data
points (HR and HRV parameters) to fit the linear regression

line. Then, we computed the R-squared value (r2) using the
regression line and corresponding baseline data points from the
ECG to evaluate the closeness of the baseline data to the Oura
Ring’s fitted regression line. Finally, the Bland–Altman analysis

was used to illustrate and estimate the agreement between the
2 devices. This method provides mean bias, SD, and 95% CIs
based on the differences between the ring and Shimmer3. We
used Python and Python libraries, including Scipy [46], SKlearn
[47], and Statsmodels [48] to program the statistical analysis
functions.

Research Ethics
The study was conducted according to the ethical principles of
the Declaration of Helsinki and the Finnish Medical Research
Act (No 488/1999). The study protocol was approved by the
ethics committee (University of Turku, Ethics Committee for
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Human Sciences, Statement no: 44/2019). The participants were
informed about the study, both orally and in writing, before
written informed consent was obtained. Participation was
voluntary, and all participants had the right to withdraw from
the study at any time and without giving any reason. To
compensate for the time used for the study, each participant
received a gift card to the grocery store (€20; US $26.83) at the
end of the monitoring period when returning the devices.

Results

Overview
The data of 35 participants (ie, 19 women and 16 men) were
included in the analysis. In this study, an average 8.25 (SD 1.51)
hours of nighttime sleep data were recorded for each participant
to validate HR and HRV parameters. In the following, we first
evaluated the HR and HRV parameters obtained from 5-minute
segments. We then compared the average parameters during
nighttime sleep.

Comparisons of HR and HRV Parameters of Ring and
Shimmer3 in 5-Minute Time Windows
We first investigated the correlation between HR and HRV
parameters of the Oura Ring and Shimmer3 in 5-minute
windows. The Pearson correlation coefficient and corresponding
P values for the HR and HRV parameters are shown in Table
2. The HR and RMSSD between the Oura Ring and ECG were
significantly correlated at P<.001. There were high positive
relationships in the AVNN and pNN50 values, moderate positive
relationships in the SDNN and HF values, and a low positive
relationship in the LF and LF:HF ratio.

We used regression analysis to examine the accuracy of the
Oura Ring data compared with the ECG. The regression lines
(in red) for 5-minute samples of all participants are illustrated
in Figure 4. We also showed y=x lines (in black), indicating the
best scenario where the values obtained from the Oura and ECG

are equal. Moreover, r2 values were reported, showing the scatter
of the data around the regression lines. In this analysis, the fitted
lines of the HR, RMSSD, AVNN, and pNN50 were close to the

ideal lines, and their r2 values were high. However, the data
points of the SDNN, LF, HF, and LF:HF ratio are dispersed,

and their r2 values are relatively low.

In addition, Bland–Altman analysis was performed to investigate
the agreement between the HR and HRV parameters extracted
from the ring and ECG. Figure 5 shows the Bland–Altman plots.
The mean bias and 95% CI are shown in Figure 5 and Table 2.
The ring (on average) overestimated pNN50, LF, and HF values
but underestimated the other parameters. The HR, RMSSD,
AVNN, and pNN50 had narrow 95% CIs; however, SDNN,
LF, HF, and LF:HF ratio had relatively wider 95% CIs.

We also demonstrated the nocturnal HR and HRV parameters
of one participant (randomly selected) in Figure 6. The
parameters were obtained from the 5-minute segments. Figure
6 shows how the collected parameters from the Oura Ring (in
red) and from the ECG (in green) vary throughout the night. As
indicated, there are missing values, particularly in the frequency
domain parameters, because of the removal of low-quality
segments of the ECG or IBI signals.

Table 2. Pearson correlation coefficient, P values, 95% CI, and mean bias for heart rate (HR) and HR variability parameters between Ring and Shimmer3
in 5-minute window time.

Mean bias95% CIP valuePearson correlation coefficientParameters

−0.44−2.81 to 1.93<.0010.99341HR

−14.97 ms−44.07 to 14.13<.0010.91502RMSSDa

−0.96 ms−88.45 to 86.52<.0010.51772SDNNb

−13.39 ms−210.01 to 183.24<.0010.82486AVNNc

0.06−0.23 to 0.35<.0010.76024pNN50d

23.61 ms2−1758.9 to 1806.12<.0010.42401LFe band

30.23 ms2−1423.92 to 1484.38<.0010.62734HFf band

−0.11−2.53 to 2.31<.0010.35455LF:HF ratio

aRMSSD: root mean square of successive differences between normal heartbeats.
bSDNN: SD of normal beat-to-beat intervals.
cAVNN: average of normal heartbeat intervals.
dpNN50: percentage of successive beat-to-beat intervals that differ by more than 50 ms.
eLF: low frequency.
fHF: high frequency.
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Figure 4. The scatter plots and regression analysis of the nocturnal heart rate and heart rate variability parameters collected from the Oura Ring and
Shimmer electrocardiography in 5-minute segments. The regression lines and ideal lines are indicated in red and black, respectively. AVNN: average
of all normal-to-normal intervals; ECG: electrocardiography; HF: high frequency; HR: heart rate; LF: low frequency; pNN50: percentage of successive
beat-to-beat intervals that differ by more than 50 ms; PPG: photoplethysmography; RMSSD: root mean square of successive differences; SDNN: SD
of beat-to-beat intervals.
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Figure 5. The Bland–Altman plots of the nocturnal heart rate and heart rate variability parameters in 5-minute segments obtained by the Oura Ring
and Shimmer electrocardiography. AVNN: average of all normal-to-normal intervals; HF: high frequency; HR: heart rate; LF: low frequency; pNN50:
percentage of successive beat-to-beat intervals that differ by more than 50 ms; PPG: photoplethysmography; RMSSD: root mean square of successive
differences; SDNN: SD of beat-to-beat intervals.
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Figure 6. The nocturnal heart rate and heart rate variability parameters of one participant during a night sleep event. The data are extracted from the
Oura Ring (in red) and Shimmer electrocardiography (in green). AVNN: average of all normal-to-normal intervals; ECG: electrocardiography; HF:
high frequency; HR: heart rate; LF: low frequency; pNN50: percentage of successive beat-to-beat intervals that differ by more than 50 ms; PPG:
photoplethysmography; RMSSD: root mean square of successive differences; SDNN: SD of beat-to-beat intervals.

Comparisons of Average HR and HRV Parameters of
Ring and Shimmer3 During Sleep Time
We compared the average HR and HRV parameters per night
sleep for the 2 devices to evaluate the overall errors. In this
regard, we first extracted the correlation between the average
HR and HRV parameters using the Pearson correlation test.
Table 3 shows the Pearson correlation coefficients and
corresponding P values. The correlation values of HR and
RMSSD were very close to 1. Therefore, there were very strong
positive correlations between the 2 devices. The AVNN, SDNN,
pNN50, LF, and HF were higher than 0.8, showing high positive
correlations between the 2 devices. There was also a moderately
positive relationship in the LF:HF ratio.

We also used regression analysis to evaluate the average HR
and HRV parameters throughout the night sleep period. Figure
7 illustrates the HR and HRV samples per night, the regression

lines in red, the r2 values, and the ideal lines (ie, y=x) in black.

The r2 values of the HR and RMSSD were greater than 0.9,
indicating that the samples were near the regression lines. The

r2 values of SDNN, AVNN, pNN50, LF, and HF represent good

fits. However, the r2 value for the LF:HF ratio was 0.49.

In addition, we used the Bland–Altman analysis to investigate
the differences between the average parameters per night sleep
from these 2 devices (Figure 8). Table 3 shows the mean bias
and 95% CI values. The results show that, on average, the ring
overestimates pNN50, LF, and HF but underestimates the other
parameters. Moreover, the 95% CIs of the HR, RMSSD, AVNN,
and pNN50 were narrow, whereas the values were relatively
wider for the SDNN and frequency domain parameters. These
results are in accordance with the results presented in the
previous section—Comparisons of HR and HRV Parameters
of Ring and Shimmer3 in 5-Minute Time Windows.
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Table 3. Pearson correlation coefficient, P values, 95% CI, and mean bias for the average heart rate (HR) and HR variability parameters per night
collected from the Oura Ring and Shimmer3.

Mean bias95% CIP valuePearson correlation coefficientParameter

−0.44−0.92 to 0.03<.0010.99968HR

−15.88 ms−33.29 to 1.53<.0010.96210RMSSDa

−0.76 ms−25.88 to 24.37<.0010.88469SDNNb

−10.05 ms−153.75 to 133.64<.0010.88010AVNNc

0.06−0.1 to 0.22<.0010.91251-pNN50d

17.54 ms2−535.08 to 570.17<.0010.82916LFe band

27.83 ms2−542.39 to 598.06<.0010.92585HFf band

−0.1−0.98 to 0.78<.0010.69837LF:HF ratio

aRMSSD: root mean square of successive differences between normal heartbeats.
bSDNN: SD of normal beat-to-beat intervals.
cAVNN: average of normal heartbeat intervals.
dpNN50: percentage of successive beat-to-beat intervals that differ by more than 50 ms.
eLF: low frequency.
fHF: high frequency.
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Figure 7. The scatter plots and regression analysis of the average heart rate and heart rate variability parameters (which are collected from the Oura
Ring and Shimmer electrocardiography) per night sleep time. The regression lines and ideal lines are indicated in red and black, respectively. AVNN:
average of all normal-to-normal intervals; ECG: electrocardiography; HF: high frequency; HR: heart rate; LF: low frequency; pNN50: percentage of
successive beat-to-beat intervals that differ by more than 50 ms; PPG: photoplethysmography; RMSSD: root mean square of successive differences;
SDNN: SD of beat-to-beat intervals.
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Figure 8. The Bland–Altman plots of the average heart rate and heart rate variability parameters (which are obtained by the Oura Ring and Shimmer
electrocardiography) per night sleep time. AVNN: average of all normal-to-normal intervals; HF: high frequency; HR: heart rate; LF: low frequency;
pNN50: percentage of successive beat-to-beat intervals that differ by more than 50 ms; PPG: photoplethysmography; RMSSD: root mean square of
successive differences; SDNN: SD of beat-to-beat intervals.

Discussion

Principal Findings
In our analysis, we first validated the parameters extracted from
the 5-minute PPG segments. 5-minute HRV recording, also
known as short-term HRV analysis, is a measurement standard
for extracting HRV parameters, such as RMSSD, SDNN, LF,
and HF [4]. The LF:HF ratio is conventionally calculated via
the 24-hour HRV recording [5]; however, it can also be collected
in 5-minute recordings [4]. Our findings show relatively low
mean biases for the HR and HRV parameters, where the Oura
Ring overestimated pNN50, LF, and HF values but
underestimated the other parameters. HR, RMSSD, AVNN,
and pNN50 of the Oura Ring showed high positive correlations
with the baseline, SDNN and HF showed moderate positive
correlations, and LF and LF:HF ratio had low positive
correlations.

However, the error variances of the parameters were different.
The parameters provided by the Oura Ring dashboard (ie, HR
and RMSSD) showed a relatively lower error variance compared

with the HRV parameters extracted from the IBI signals. The
error of HR is lower than that of RMSSD, which is in
accordance with other studies showing that RMSSD is more
sensitive to motion artifacts [35,49]. Among the parameters
extracted from the IBI signals, AVNN and pNN50 showed
moderate error rates compared with the baseline. However,
SDNN, LF, HF, and LF:HF ratio had relatively higher error
rates. The findings of the frequency domain parameters follow
those of other studies, which show that these parameters are
more sensitive to noise [30].

We also compared the average HR and HRV parameters during
nighttime sleep. This comparison evaluates the long-term trends
of HRV parameters and shows the validity of the parameters in
a per-night analysis [34]. The mean biases per night were low,
which is in accordance with the 5-minute recording analysis.
In contrast, the error variances of the average values per night
were considerably lower. This can be explained by the variance
decrease because of averaging of the independent measurements.
HR, RMSSD, AVNN, pNN50, SDNN, LF, and HF indicated
high positive correlations, and the LF:HF ratio had a moderate
positive correlation. To summarize, the average HR and HRV
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parameters per night were relatively more accurate than the
parameters extracted from 5-minute segments. Our results
showed that the Oura Ring could accurately measure HR and
RMSSD in both the 5-minute and average-per-night tests. The
ring provided acceptable nocturnal AVNN, pNN50, HF, and
SDNN accuracy in the average-per-night test but not in the
5-minute test. In contrast, the LF and LF:HF ratio of the ring
had high error rates in both tests.

Comparison With Previous Studies
To the best of our knowledge, this is the first study to evaluate
different HRV parameters of the Oura Ring in comparison with
a standard ECG device. Kinnunen et al [34,35] focused on
assessing the HR and RMSSD of the Oura Ring. In the 5-minute
segment analysis, the HR and RMSSD were highly accurate.

We obtained a higher r2 for HR and a lower r2 for RMSSD.
Moreover, for the average-per-night analysis, we obtained

almost the same r2 for HR but lower r2 for RMSSD. Our results
indicate a narrower 95% CI and a smaller mean bias difference
for average HR, and a wider 95% CI and a greater mean bias
difference for average RMSSD.

Limitations
This study is limited to the nocturnal HR and HRV parameters,
as the Oura Ring only provides the HR, RMSSD, and IBI values
during sleep [34]. Future work should include the assessment
of HR and HRV parameters during awake time. The PPG
signals, and subsequently the parameters, might be distorted
because of artifacts when the users engage in various activities
and environments [50]. Such an evaluation is essential when
using the ring in remote health monitoring and wellness tracking
apps.

A total of 46 individuals participated in this home-based study,
and data from 35 individuals were included in the analysis.
However, this study was restricted to overnight data collection.
Our future work will consider assessing the ring over the data
collected over several days or weeks. This validation will

provide a higher confidence level for the validity of the reported
HR and HRV parameters.

Another limitation is the lack of generalizability of the results
to nonhealthy individuals, as the study only included healthy
participants. Recent studies have shown that the validity of
wearable devices may be different for different population
groups [51,52]. For example, atrial fibrillation affects the heart
rhythms (irregular beats) of PPG [3]. Therefore, both time and
frequency domain HRV parameters of individuals with atrial
fibrillation are not the same as those of healthy people [36].
Consequently, the accuracy of the PPG-based atrial fibrillation
methods should be investigated separately. Future directions
for this study should include evaluating the PPG-based
parameters acquired from individuals of different ages and with
various health conditions.

Conclusions
In this study, we comprehensively evaluated the validity of the
HR and HRV parameters collected by the Oura Ring. Our results
showed low mean biases for the 8 parameters. In the 5-minute
test, the error variances of the parameters were different. The
parameters provided by the Oura Ring dashboard (ie, HR and
RMSSD) showed relatively low error variance compared with
the HRV parameters extracted from the IBI signals. HR,
RMSSD, AVNN, and pNN50 of the ring indicated high positive
correlations with the baseline values; SDNN and HF had
moderate positive correlations; and LF and LF:HF ratio showed
low positive correlations. In contrast, the average-per-night test
indicated considerably lower error variances than the 5-minute
test for all parameters. The Oura Ring was capable of accurately
measuring HR and RMSSD in both the 5-minute and
average-per-night tests. The ring indicated acceptable nocturnal
AVNN, pNN50, HF, and SDNN accuracy in the
average-per-night test but not in the 5-minute test. In contrast,
the LF and LF:HF ratio of the ring had high error rates in both
tests. Future work should include assessing the HR and HRV
of the ring in long-term monitoring of population groups with
different health conditions.
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Abbreviations
AVNN: average of all normal heart beat intervals
ECG: electrocardiography
HF: high frequency
HR: heart rate
HRV: heart rate variability
IBI: interbeat interval
LF: low frequency
pNN50: percentage of successive beat-to-beat intervals that differ by more than 50 ms
PPG: photoplethysmography
RMSSD: root mean square of successive differences
SDNN: SD of beat-to-beat intervals
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