Notes on the norm of pre-Schwarzian derivatives of certain analytic functions

Rahim Kargar

Abstract

In this paper, we obtain sharp bounds for the norm of pre-Schwarzian derivatives of certain analytic functions. Initially this problem was handled by H. Rahmatan, Sh. Najafzadeh and A. Ebadian [Stud. Univ. Babeş-Bolyai Math. 61(2016), no. 2, 155-162]. We pointed out that their proofs are incorrect and present correct proofs.

Mathematics Subject Classification (2010): 30C45.
Keywords: Analytic, univalent, locally univalent, subordination, pre-Schwarzian norm.

1. Introduction

Let $\Delta=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disc on the complex plane \mathbb{C}. Let \mathcal{H} be the family of all analytic functions and $\mathcal{A} \subset \mathcal{H}$ be the family of all normalized functions in Δ. We denote by \mathcal{U} the class of all univalent functions in Δ and denote by $\mathcal{L U} \subset \mathcal{H}$ the class of all locally univalent functions in Δ. For a $f \in \mathcal{L U}$, we consider the following norm

$$
\|f\|=\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|
$$

where the quantity $f^{\prime \prime} / f$ is often referred to as pre-Schwarzian derivative of f such that in the theory of Teichmüller spaces is considered as element of complex Banach spaces. We remark that $\|f\|<\infty$ if, and only if, f is uniformly locally univalent in Δ. We also notice that, $\|f\| \leq 6$ if f is univalent in Δ and, conversely, f is univalent in Δ if $||f| \leq 1$. Both of these bounds are sharp, see [1]. For more geometric properties of the function f relating the norm, see $[2,4,9]$ and the references therein.

We say that a function f is subordinate to g, written by $f(z) \prec g(z)$ or $f \prec g$ where f and g belonging to the class \mathcal{A}, if there exists a Schwarz function $w(z)$ is analytic in Δ with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \Delta)
$$

such that $f(z)=g(w(z))$ for all $z \in \Delta$.
Here are two certain subclasses of analytic and normalized functions \mathcal{A} functions defined. First, we say that a function $f \in \mathcal{A}$ belongs to the class $\mathcal{S}(\alpha, \beta)$ if it satisfies the following two-sided inequality

$$
\alpha<\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\beta \quad(z \in \Delta)
$$

where $0 \leq \alpha<1$ and $\beta>1$. The class $\mathcal{S}(\alpha, \beta)$ was introduced by Kuroki and Owa (cf. [7]) and generalized by Kargar et al. [6]. We also say that a function $f \in \mathcal{A}$ belongs to the class $\mathcal{V}(\alpha, \beta)$ if

$$
\alpha<\operatorname{Re}\left\{\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)\right\}<\beta \quad(z \in \Delta) .
$$

The class $\mathcal{V}(\alpha, \beta)$ was first introduced by Kargar et al., see [5].
Since the convex univalent function

$$
\begin{equation*}
P_{\alpha, \beta}(z)=1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} z}{1-z}\right) \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi:=\frac{2 \pi(1-\alpha)}{\beta-\alpha}, \tag{1.2}
\end{equation*}
$$

maps Δ onto the domain $\Omega=\{\omega: \alpha<\operatorname{Re}\{\omega\}<\beta\}$ conformally, thus we have.
Lemma 1.1. ([7, Lemma 1.3]) Let $\alpha \in[0,1)$ and $\beta \in(1, \infty)$. Then $f \in \mathcal{S}(\alpha, \beta)$ if, and only if,

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} z}{1-z}\right) \quad(z \in \Delta)
$$

where ϕ is defined in (1.2).
Lemma 1.2. ([5, Lemma 1.1]) Let $\alpha \in[0,1)$ and $\beta \in(1, \infty)$. Then $f \in \mathcal{V}(\alpha, \beta)$ if, and only if,

$$
\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z) \prec 1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} z}{1-z}\right) \quad(z \in \Delta)
$$

where ϕ is defined in (1.2).
Rahmatan, Najafzadeh and Ebadian (see [10]) estimated the norm of preSchwarzian derivatives of the function f where f belongs to the classes $\mathcal{S}(\alpha, \beta)$ and $\mathcal{V}(\alpha, \beta)$. Both their estimates and proofs are incorrect. Indeed, the results that were wrongly proven by them are as follows:
Theorem A. For $0 \leq \alpha<1<\beta$, if $f \in \mathcal{S}(\alpha, \beta)$, then

$$
\|f\| \leq \frac{2(\beta-\alpha)}{\pi}\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)
$$

Theorem B. For $0 \leq \alpha<1<\beta$, if $f \in \mathcal{V}(\alpha, \beta)$, then

$$
\|f\| \leq \frac{3(\beta-\alpha)}{\pi}\left(1-e^{2 \pi i \frac{1-\alpha}{\beta-\alpha}}\right)
$$

We first note that both the above bounds are complex numbers!

In this paper we give the best estimate for $\|f\|$ when $f \in \mathcal{S}(\alpha, \beta)$ and disprove the Theorem B. However, we show that $\|f\|<\infty$ when $f \in \mathcal{V}(\alpha, \beta)$.

2. Main results

The correct version of Theorem A is as follows.
Theorem 2.1. Let $\alpha \in[0,1)$ and $\beta \in(1, \infty)$. If a function f belongs to the class $\mathcal{S}(\alpha, \beta)$, then

$$
\begin{equation*}
\|f\| \leq \frac{2(\beta-\alpha)}{\pi} \sqrt{4 \sin ^{2}(\phi / 2)+2 \pi^{2}}-\frac{4 \sin (\phi / 2)}{\sqrt{4 \sin ^{2}(\phi / 2)+2 \pi^{2}}} \tag{2.1}
\end{equation*}
$$

where ϕ is defined in (1.2). The result is sharp.
Proof. Let that $\alpha \in[0,1), \beta \in(1, \infty)$ and ϕ be given by (1.2). If $f \in \mathcal{S}(\alpha, \beta)$, by Lemma 1.1, then we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} z}{1-z}\right) \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

The above subordination relation (2.2) implies that

$$
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right) \quad(z \in \Delta)
$$

or equivalently

$$
\begin{equation*}
\log \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}=\log \left\{1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right\} \quad(z \in \Delta) \tag{2.3}
\end{equation*}
$$

where $w(z)$ is the well-known Schwarz function. From (2.3), differentiating on both sides, after simplification, we obtain

$$
\begin{align*}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}= & \frac{(\beta-\alpha) i}{\pi}\left[\frac{1}{z} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right. \\
& \left.+\frac{\left(1-e^{i \phi}\right) w^{\prime}(z)}{(1-w(z))\left(1-e^{i \phi} w(z)\right)\left(1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right)}\right] \tag{2.4}
\end{align*}
$$

It is well-known that $|w(z)| \leq|z|$ (cf. [3]) and also by the Schwarz-Pick lemma, for a Schwarz function the following inequality

$$
\begin{equation*}
\left|w^{\prime}(z)\right| \leq \frac{1-|w(z)|^{2}}{1-|z|^{2}} \quad(z \in \Delta) \tag{2.5}
\end{equation*}
$$

holds (see [8]). We also know that if log is the principal branch of the complex logarithm, then we have

$$
\begin{equation*}
\log z=\ln |z|+i \arg z \quad(z \in \Delta \backslash\{0\},-\pi<\arg z \leq \pi) \tag{2.6}
\end{equation*}
$$

Therefore, by the above equation (2.6), it is well-known that if $|z| \geq 1$, then

$$
\begin{equation*}
|\log z| \leq \sqrt{|z-1|^{2}+\pi^{2}} \tag{2.7}
\end{equation*}
$$

while for $0<|z|<1$, we have

$$
\begin{equation*}
|\log z| \leq \sqrt{\left|\frac{z-1}{z}\right|^{2}+\pi^{2}} \tag{2.8}
\end{equation*}
$$

Thus, it is natural to distinguish the following cases.
Case 1. $\left|\frac{1-e^{i \phi} w(z)}{1-w(z)}\right| \geq 1$.
By (2.7), we have

$$
\begin{align*}
\left|\log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right| & \leq \sqrt{\left|\frac{1-e^{i \phi} w(z)}{1-w(z)}-1\right|^{2}+\pi^{2}} \\
& =\frac{\sqrt{\left|1-e^{i \phi}\right|^{2}|w(z)|^{2}+\pi^{2}|1-w(z)|^{2}}}{|1-w(z)|} \\
& \leq \frac{\sqrt{4 \sin ^{2}(\phi / 2)|w(z)|^{2}+\pi^{2}\left(1+|w(z)|^{2}\right)}}{1-|w(z)|} \\
& \leq \frac{\sqrt{4 \sin ^{2}(\phi / 2)|z|^{2}+\pi^{2}\left(1+|z|^{2}\right)}}{1-|z|} \tag{2.9}
\end{align*}
$$

for all $z \in \Delta$. We note that the above inequality is well defined also for $z=0$. Thus from (2.4), (2.5) and (2.9), we get

$$
\begin{aligned}
& \left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \\
= & \left\lvert\, \frac{(\beta-\alpha) i}{\pi}\left[\frac{1}{z} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right.\right. \\
& \left.+\frac{\left(1-e^{i \phi}\right) w^{\prime}(z)}{(1-w(z))\left(1-e^{i \phi} w(z)\right)\left(1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right)}\right] \mid \\
\leq & \frac{(\beta-\alpha)}{\pi}\left[\frac{1}{|z|}\left|\log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right|\right. \\
& \left.+\frac{\left|1-e^{i \phi}\right|\left|w^{\prime}(z)\right|}{|1-w(z)|\left|1-e^{i \phi} w(z)\right|\left(1-\frac{(\beta-\alpha)}{\pi}\left|\log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right|\right)}\right] \\
\leq & \frac{(\beta-\alpha)}{\pi}\left[\frac{1}{|z|}\left\{\frac{\sqrt{4 \sin ^{2}(\phi / 2)|z|^{2}+\pi^{2}\left(1+|z|^{2}\right)}}{1-|z|}\right\}\right. \\
& \left.+\frac{2 \sin ^{2}(\phi / 2)}{1-|z|-\frac{(\beta-\alpha)}{\pi} \sqrt{4 \sin ^{2}(\phi / 2)|z|^{2}+\pi^{2}\left(1+|z|^{2}\right)}} \cdot \frac{1+|z|}{1-|z|^{2}}\right] .
\end{aligned}
$$

However, we obtain

$$
\begin{aligned}
\|f\|= & \sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \\
\leq & \sup _{z \in \Delta}\left\{\frac { (\beta - \alpha) } { \pi } \left[\frac{1+|z|}{|z|} \sqrt{4 \sin ^{2}(\phi / 2)|z|^{2}+\pi^{2}\left(1+|z|^{2}\right)}\right.\right. \\
& \left.\left.+\frac{2 \sin (\phi / 2)(1+|z|)}{1-|z|-\frac{(\beta-\alpha)}{\pi} \sqrt{4 \sin ^{2}(\phi / 2)|z|^{2}+\pi^{2}\left(1+|z|^{2}\right)}}\right]\right\} \\
= & \frac{2(\beta-\alpha)}{\pi} \sqrt{4 \sin ^{2}(\phi / 2)+2 \pi^{2}}-\frac{4 \sin (\phi / 2)}{\sqrt{4 \sin ^{2}(\phi / 2)+2 \pi^{2}}}
\end{aligned}
$$

concluding the inequality (2.1).
Case 2. $\left|\frac{1-e^{i \phi} w(z)}{1-w(z)}\right|<1$.
By (2.8), we have

$$
\begin{aligned}
\left|\log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right| & \leq \sqrt{\left|\frac{\frac{1-e^{i \phi} w(z)}{1-w(z)}-1}{\frac{1-e^{i \phi} w(z)}{1-w(z)}}\right|^{2}+\pi^{2}} \\
& =\frac{\sqrt{\left|1-e^{i \phi}\right|{ }^{2}|w(z)|^{2}+\pi^{2}\left|1-e^{i \phi} w(z)\right|^{2}}}{\left|1-e^{i \phi} w(z)\right|} \\
& \leq \frac{\sqrt{4 \sin ^{2}(\phi / 2)|w(z)|^{2}+\pi^{2}\left(1+|w(z)|^{2}\right)}}{1-|w(z)|} \quad\left(\left|e^{i \phi}\right|=1\right) \\
& \leq \frac{\sqrt{4 \sin ^{2}(\phi / 2)|z|^{2}+\pi^{2}\left(1+|z|^{2}\right)}}{1-|z|}
\end{aligned}
$$

Since in both cases 1 and 2 we have the equal estimates for

$$
\left|\log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right|
$$

therefore, in this case also, the desired result will be achieved. For the sharpness, consider the function $f_{\alpha, \beta}(z)$ as follows

$$
\begin{aligned}
f_{\alpha, \beta}(z) & =z \exp \left\{\frac{(\beta-\alpha) i}{\pi} \int_{0}^{z} \frac{1}{\xi} \log \left(\frac{1-e^{i \phi} \xi}{1-\xi}\right) \mathrm{d} \xi\right\} \\
& =z+\frac{(\beta-\alpha) i}{\pi}\left(1-e^{i \phi}\right) z^{2}+\cdots
\end{aligned}
$$

where ϕ is defined in (1.2), $0 \leq \alpha<1$ and $\beta>1$. A simple calculation, gives us

$$
\frac{z f_{\alpha, \beta}^{\prime}(z)}{f_{\alpha, \beta}(z)}=1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} z}{1-z}\right) \quad(z \in \Delta)
$$

and thus $f_{\alpha, \beta}(z) \in \mathcal{S}(\alpha, \beta)$. With the same proof as above we get the desired result. The result also is sharp for a rotation of the function $f_{\alpha, \beta}(z)$ as follows:

$$
\mathfrak{f}_{\alpha, \beta}(z)=z \exp \left\{\frac{(\beta-\alpha) i}{\pi} \int_{0}^{z} \frac{1}{\xi} \log \left(\frac{1-e^{i \phi} \xi}{1-e^{-i \phi} \xi}\right) \mathrm{d} \xi\right\} .
$$

This is the end of proof.
Remark 2.2. In Theorem B, the authors of [10] estimated the norm $\|f\|$ when $f \in$ $\mathcal{V}(\alpha, \beta)$. But in the proof of this theorem [10, p. 160], wrongly, they used from the following equation

$$
\frac{z f^{\prime}(z)}{f(z)}=P_{\alpha, \beta}(w(z))
$$

where $P_{\alpha, \beta}$ is defined in (1.1). This means that f, simultaneously, belonging to the class $\mathcal{S}(\alpha, \beta)$ and $\mathcal{V}(\alpha, \beta)$.
Next, we show that the best estimate for $\|f\|$ when $f \in \mathcal{V}(\alpha, \beta)$ does not exist.
Theorem 2.3. Let $\alpha \in[0,1)$ and $\beta \in(1, \infty)$. If a function f belongs to the class $\mathcal{V}(\alpha, \beta)$, then $\|f\|<\infty$.
Proof. Let $\alpha \in[0,1)$ and $\beta \in(1, \infty)$ and $f \in \mathcal{V}(\alpha, \beta)$. Then by Lemma 1.2 and by use of definition of subordination, we have

$$
\begin{equation*}
\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)=P_{\alpha, \beta}(w(z))=1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right) \tag{2.10}
\end{equation*}
$$

where w is Schwarz function and ϕ is defined in (1.2). Taking logarithm on both sides of (2.10) and differentiating, we get

$$
\begin{align*}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}= & 2\left(\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}\right)+\frac{(\beta-\alpha) i}{\pi} \tag{2.11}\\
& \times\left[\frac{\left(1-e^{i \phi}\right) w^{\prime}(z)}{(1-w(z))\left(1-e^{i \phi} w(z)\right)\left(1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right)}\right]
\end{align*}
$$

With a simple calculation, (2.10) implies that

$$
\begin{equation*}
\left(\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}\right)=\frac{f(z)}{z}\left(\frac{P_{\alpha, \beta}(w(z))}{z}-1\right) . \tag{2.12}
\end{equation*}
$$

Combining (2.11) and (2.12), give us

$$
\begin{aligned}
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}= & 2\left(\frac{f(z)}{z}\left(\frac{P_{\alpha, \beta}(w(z))}{z}-1\right)\right) \\
& +\frac{(\beta-\alpha) i}{\pi}\left[\frac{\left(1-e^{i \phi}\right) w^{\prime}(z)}{(1-w(z))\left(1-e^{i \phi} w(z)\right)\left(1+\frac{(\beta-\alpha) i}{\pi} \log \left(\frac{1-e^{i \phi} w(z)}{1-w(z)}\right)\right)}\right]
\end{aligned}
$$

It was proved in ([5, Theorem 2.2]) that if $f \in \mathcal{V}(\alpha, \beta)$ where $0<\alpha \leq 1 / 2$ and $\beta>1$, then

$$
1-\frac{1}{\alpha}<\operatorname{Re}\left\{\frac{f(z)}{z}\right\}<\infty \quad(z \in \Delta)
$$

Since $\operatorname{Re}\{z\} \leq|z|$, the last two-sided inequality means that $|f(z) / z|<\infty$ when $f \in \mathcal{V}(\alpha, \beta)$. Thus from the above we deduce that

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\infty \quad(z \in \Delta)
$$

concluding the proof.

References

[1] Becker, J., Pommerenke, Ch., Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math., 354(1984), 74-94.
[2] Choi, J.H., Kim, Y.C., Ponnusamy, S., Sugawa, T., Norm estimates for the Alexander transforms of convex functions of order alpha, J. Math. Anal. Appl., 303(2005), no. 2, 661-668.
[3] Duren, P.L., Univalent Functions, Springer-Verlag, New York, 1983.
[4] Kim, Y.C., Sugawa, T., Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math., 32(2002), no. 1, 179-200.
[5] Kargar, R., Ebadian, A., Sokół, J., On subordination of some analytic functions, Sib. Math. J., 57(2016), no. 4, 599-605.
[6] Kargar, R., Ebadian, A., Sokól, J., Some properties of analytic functions related with bounded positive real part, Int. J. Nonlinear Anal. Appl., 8(2017), no. 1, 235-244.
[7] Kuroki, K., Owa, S., Notes on new class for certain analytic functions, RIMS Kokyuroku Kyoto Univ., 1772(2011), 21-25.
[8] Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.
[9] Ponnusamy, S., Sahoo, S.K., Sugawa, T., Radius problems associated with preSchwarzian and Schwarzian derivatives, Analysis, 34(2014), no. 2, 163-171.
[10] Rahmatan, H., Najafzadeh, Sh., Ebadian, A., The norm of pre-Schwarzian derivatives of certain analytic functions with bounded positive real part, Stud. Univ. Babes-Bolyai Math., 61(2016), no. 2, 155-162.

Rahim Kargar
Department of Mathematics and Statistics, University of Turku,
Turku, Finland
e-mail: rakarg@utu.fi, rkargar1983@gmail.com

