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Product–moment correlation coefficient (PMC) is usually taken as a

symmetric measure of the association because it produces an equal estimate

irrespective of how two variables in the analysis are declared. However, in

case the other variable has or both have non-continuous scales and when

the scales of the variables differ from each other, PMC is unambiguously a

directional measure directed so that the variable with a wider scale (X) explains

the order or response pattern in the variable with a narrower scale (g) and

not in the opposite direction or symmetrically. If the scales of the variables

differ from each other, PMC is also prone to give a radical underestimation

of the association, that is, the estimates are deflated. Both phenomena have

obvious consequences when it comes to interpreting and speaking of the

results. Empirical evidence shows that the effect of directionality increases

by the discrepancy of the number of categories of the variables of interest.

In the measurement modelling setting, if the scale of the score variable is

four times wider than the scale of the item, the directionality is notable: score

explains the order in the item and no other way around nor symmetrically. This

is regarded as a positive and logical direction from the test theory viewpoint.

However, the estimate of association may be radically deflated, specifically, if

the item has an extremely difficult level. Whenever the statistic r2 or R2 is used,

as is usual in general scatterplots or when willing to express the explaining

power of the variables, this statistic is always a directional measure, and the

estimate is an underestimate if the scales differ from each other; this should be

kept in mind when interpreting r-squared statistics as well as with the related

statistic eta squared within general linear modelling.

KEYWORDS

product–moment correlation coefficient, coefficient eta, directional coefficient, eta
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Introduction

The coefficients of the association are divided into
symmetric and directional ones. Although the directionality
itself is often defined loosely, the directional measures
give (generally) two options for the association: one of
the variables is dependent and the other is independent,
whereas the symmetric measures handle both variables
as independent ones. Then, traditionally, the symmetric
measures produce only one estimate of the association.
Some traditional directional measures of association are
Goodman–Kruskal lambda and tau (Goodman and Kruskal,
1954), Somers delta (D; Somers, 1962), and coefficient eta
(η; Pearson, 1903, 1905), and some with a symmetric
nature are phi (Pearson, 1904) and Kendall tau-a and tau-b
(Kendall, 1938, 1948).

Some coefficients, such as Goodman–Kruskal gamma
gamma (G; Goodman and Kruskal, 1954) and product–moment
correlation coefficient (PMC; Bravais, 18441; Galton, 1889;
Pearson, 1896; onward), are traditionally taken as symmetric
measures (see e.g., IBM, 2017a) because they produce only one
estimate for the association regardless of how two variables, e.g.,
X and Y, are declared; the outcome takes on the same value
declared either way (e.g., Walk and Rupp, 2010). However, both
G and PMC have, factually, a hidden directional nature (see,
e.g., Metsämuuronen, 2021b, 2022a), and this character related
to PMC is the main interest in this article; this is discussed
later. Although the phenomenon is general, the focus is on the
educational settings and the datasets in the numerical examples
come from datasets related to student assessment.

Metsämuuronen (2022b) noted that of the coefficients of
association between two variables, PMC has the longest history
and the widest applicability. This may be the reason why it is
referred to in academic works more than the other coefficients
taken together; at the time of finalising this article (October
2022), according to Google Scholar, PMC is referred to in
more than 1.4 million publications (523,000 times as “product–
moment”, 883,000 times as “Pearson correlation”, and 47,000
times as “point biserial”). For instance, the second most frequent
family of coefficients, Kendall tau, including tau-a, tau-b, and
tau-c, is referred to around 92,000 times (“Kendall tau” and
“Kendall’s tau”); “biserial correlation” is referred to 32,000 times
(including rank biserial and point biserial correlations); “Somers
delta” is referred to 30,000 times; “polychoric correlation” is
referred to 12,000 times; and coefficients by Goodman and
Kruskal, including gamma, tau, and lambda, are referred to
around 5,600 times (“Goodman–Kruskal”).

1 Although usually referred to as the “Pearson correlation,” it was,
factually, French physicist Auguste Bravais (1844) who derived the
coefficient first. Hence, sometimes the coefficient is called the “Bravais–
Pearson correlation” (e.g., Cleff, 2019). See also Stigler (1989) of the
relevance of Sir Francis Galton in the development of the coefficient.

The wide applicability of PMC has led to its wide use in
numerous applications. PMC is used in procedures related to
factor analysis, structural equation modelling, and regression
analysis; in item analysis as one of the classical estimators
of the item–score association; and in estimating reliability.
Metsämuuronen (2022b) pointed out that PMC has been,
and it still is, one of the main engines of many practical
applications in modern scientific inquiries and analysis settings.
The wide use of PMC alone motivates us to study the
hidden characteristics of PMC: the directional nature may
necessitate to reconsider our interpretations related to the
estimates. Pearson himself, however, valued the polychoric
correlation coefficient (Pearson, 1900, 1913) generalised from
tetrachoric correlation (Pearson, 1900) as his most important
contribution to the research community [based on a note by
Pearson’s colleague Burton H. Camp (1933); see discussion in
Ekström (2011)].

Because of more than a century of research with and on
PMC, some of its weaknesses or challenges are well known, and
those are discussed in general textbooks (e.g., Salkind, 2010;
Tabachnick and Fidell, 2013; Metsämuuronen, 2017). Three
relevant matters from the viewpoint of the topic of this article
are discussed in this study. First, PMC is not powerful when
the phenomenon is curvilinear; the factual association may be
perfect, but PMC cannot detect this. In such settings, η is more
powerful in reflecting curvilinear association (e.g., Ayres, 1920;
Sechrest and Yeaton, 2011; Howell, 2012). For the non-linear
settings, the distance correlation (Székely et al., 2007) based on
Euclidean distances instead of strict covariation may be the best
option though [see a simple introduction in Gleeson (2018); see
literature and fast algorithm in Chaudhuri and Hu (2019); see R
codes in Gleeson, 2018; Rizzo and Székely, 2022].

Second, Meade (2010) and Walk and Rupp, (2010; see
also Sackett and Yang, 2000; Sackett et al., 2007) remind us
of the phenomenon of restriction of range, which is that
when only a portion of the range of values of a variable is
actualised in the sample, it leads to inaccurate estimates of
correlation by PMC. This may happen, for example, when
only the highest-achieving students from the population apply
to a study programme, causing the variance in the entrance
test to be reduced remarkably (see illustrations of different
patterns of restriction of range in Sackett and Yang, 2000). This
phenomenon is called attenuation, which, in general, refers to
underestimating the correlation between two different measures
because of measurement error (Silver, 2008). Pearson offered
the first solution to correct the attenuation in 1903, and many
solutions have been offered since (see the typology in Mendoza
and Mumford, 1987; Sackett et al., 2007). This characteristic
of PMC has been studied and corrected, specifically, in the
validity and meta-analytic studies (see literature and practices
in Schmidt and Hunter, 2003, 2015; Schmidt et al., 2008).

Third, even though we would not face the traditional
condition of restriction of range, PMC is severely affected by
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several sources of systematic and mechanical underestimation
in the estimates of correlation (see Metsämuuronen,
2021a,b); the estimates may be radically deflated caused
by artificial systematic errors during the estimation (see
the discussion of the terms of attenuation and deflation
in, e.g., Chan, 2008; Silver, 2008; Gadermann et al., 2012;
Metsämuuronen, 2022a). For example, it is known that the
number of categories and the division of the observations
in the variable with the narrower scale (“item difficulty”
in the testing settings) influence strictly the magnitude of
the estimates of PMC (e.g., Martin, 1973, 1978; Olsson,
1980; Metsämuuronen, 2022d). It is known that when the
categories of the variables are not equal, PMC cannot reach
the perfect 1 due to mechanical reasons (see Metsämuuronen,
2017; see algebraic proof in Supplementary Appendix 1).
In real-life settings, the deflation may be 0.60–0.70 units
of correlation (see Metsämuuronen, 2022a). This is
discussed later in Section “Practical notes on the deflation
in product–moment correlation coefficient and R2” with a
numerical example.

Based on simulations (Metsämuuronen, 2021b,
2022d), at least six general factors that affect strictly
and cumulatively the deflation in the estimates by
PMC can be highlighted: (1) discrepancy in scales in
general, (2) “difficulty level” and variance in g, (3)
the number of categories in g, (4) the number of
categories in the X, (5) the number of tied cases in X,
and (6) the distribution of the latent variable. In the
measurement modelling settings, specifically, when the
scale in an item is radically narrower than the scale in
the score, the estimates by the PMC between the item
and the score—including factor loadings because, after
all, factor loadings are PMCs between items and score
(see Yang, 2010)—are always attenuated or deflated.
This is specifically seen in the items with an extremely
difficult level.

One specific characteristic of the PMC is that it is
strictly connected to a genuinely directional estimator,
coefficient eta. If the other variable is dichotomous
and the other metric is ordinal, interval, continuous,
or pseudo-continuous, PMC equals a specific direction
of coefficient eta (see, e.g., Metsämuuronen, 2022a,b).
Hence, PMC is a truly directional measure, but this
character and its possible effects are not widely known
or studied in real-life datasets. This article studies the
magnitude and effects of this hidden characteristic of
PMC. It is to be seen that this characteristic has a
notable effect on our interpretation of the generally
known and widely used statistic and its derivative,
explaining power estimated by the squared correlation
r2 or squared multiple correlation R2. There are
many abbreviations in the article. These are collected
in Supplementary Appendix 4.

Research questions and the course
of study

Although we know the algebraic connection between
PMC and η, two relevant questions are largely unanswered:
How remarkable is the effect of directionality in PMC in
real-life settings? and What are the consequences of the
directionality?

The course of the study starts with a discussion of the
different forms of PMC and its connection to coefficient eta
in the dichotomous case in Section “Some characteristics of
PMC and the connection with coefficient eta.” In this section,
some further algebraic treatments of the directionality of
PMC in the polytomous case are given and also a possible
benchmarking estimator for the deflation in PMC, attenuation-
corrected PMC, is discussed. Section “Numerical examples
of the directional nature of product–moment correlation
coefficient” offers numerical examples and small studies of
the effect of directionality. The methodological decisions are
discussed in Section “Datasets, methods, and the course
of study.”

Some characteristics of
product–moment correlation
coefficient and the connection
with coefficient eta

Different forms of product–moment
correlation coefficient

Basically, PMC is a measure of observed association for
two continuous variables (see a typology in Metsämuuronen,
2022c). In general, PMC is the standardised covariation between
variables X and Y :

ρXY =
σXY

σXσY
(1)

where σXY is the covariance and σX and σY are standard
deviations of X and Y, respectively. However, its computational
mechanics is also used in such measures as point biserial
correlation (RPB) between a binary variable and a metric
variable (with an ordinal, interval, or continuous scale) and
point polyserial correlation coefficient (RPP) between an
ordinal variable with a narrower scale and a metric variable
with a wider scale. The mechanics is also used in the
rank correlation coefficient, famously simplified by Spearman
(1904). Additionally, PMC is embedded in the standard
procedures of estimating biserial, polyserial, and polychoric
correlation coefficients for the inferred association between
an observed binary or ordinal variable and a latent non-
observable metric variable or between two non-observable latent
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variables (of the procedures, see Olsson et al., 1982; Drasgow,
1986).

If the other variable is a binary or dichotomous one, a
simplified form for the point biserial correlation is found
in the textbooks (e.g., Lord et al., 1968; Lane et al., 2016;
Metsämuuronen, 2017):

PMC = ρPB = ρgX = (X̄1 − X̄0)×
σg

σX
(2)

originally provided by Swineford (1936) and Kuder
(1937),2 where X̄0 and X̄1 refer to the means of
the variable X in the subpopulations 0 and 1 of g

and σg =

√
(n0 × n1)

/
(n0 + n1)

2
=

√
p
(
1− p

)
and

σX are standard deviations of g and X, respectively.
Eq. 2 appears to be important in understanding the
directional nature of PMC. Namely, Wherry and Taylor
(1946) and Eikeland (1971) showed that a certain
direction of a truly directional coefficient eta equals
Eq. 2. A simplified proof is given in Supplementary
Appendix 2.

Directionality in the dichotomous case

Of the directional estimators of association, coefficient
eta, sometimes called the correlation ratio, specifically, in
the early days (chronologically, e.g., Pearson, 1911; Ayres,
1920; Fisher, 1925; Kelley, 1935), appears to be an interesting
coefficient from the viewpoint of focus in this article because
it has a strict connection to PMC. Coefficient η can be
expressed in multiple ways. Here, the form familiar from
the settings related to general linear modeling (GLM) is
used.

Assume two variables g and X with observed values x
and y, respectively, with x = 1, . . ., R and y = 1, . . .,
C categories and R < < C. Although η is often used in
estimating the association between a nominal-scaled variable
and a metric variable, its computational mechanism can be
used, obviously, with ordinal or even interval-scaled variables.
In many cases related to η, the widths of the scales are far
from each other (R < < C) although this is not a necessity in
calculating Euclidian. The condition of R < < C is specifically
true when we consider a binary or dichotomous g by a
metric X.

In general, the traditional direction of η directed so
that “X dependent” (usually η

(
X
∣∣g ) in the settings related

to GLM) or “g given X” (usually η
(
g |X

)
or, here, ηg|X in

2 Metsämuuronen (2022a) reminds us that Kuder (1937) seems to be
the first to use the term “point biserial correlation.” He also provided the
computational forms. However, Swineford (1936) seems to be the first
who studied the binary case of Pearson correlation in relation to biserial
correlation (see Moses, 2017).

the settings related to conditions)3 can be expressed as
follows:

ηg|X =
√
η2

g|X =

√
SSbetween

(
g |X

)
SStotal

(
g |X

)
=

√√√√∑R
g=1 ng

(
X̄g − GMX

)2∑N
i=1

(
yi − GMX

)2 , (3)

where X̄g refers to the means of X in the subpopulations
in g, and GMX is the grand mean of X. The opposite
direction “g dependent” or “X given g” can be expressed as
follows:

ηX|g =
√
η2

X|g
=

√
SSbetween

(
X
∣∣g )

SStotal
(
X
∣∣g )

=

√√√√∑C
X=1 nX

(
ḡX − GMg

)2∑N
i=1

(
xi − GMg

)2 , (4)

where ḡX refers to the mean of g in each category X, and
GMg is the grand mean of g. Except in the special case where
the variables have equal scales with no crossing categories,
ηg|X 6=ηX|g . If we obtain, in a specific dataset, values ηg|X =

0.7595 and ηX|g = 1, in the framework of GLM, we would
infer that g explains 59% (= 0.762) of the variability in X
while X explains the variability in g perfectly (100%). Within
measurement modelling settings, the interpretation is opposite:
X explains 59% of the response pattern in g and the latter
direction is not meaningful (see footnote 3). However, in
general, both directions ηg|X and ηX|g may make sense in some
practical settings; for example, we may be interested in whether
the attitude explains more the achievement or is it the opposite.

3 This confusing naming of the directions is discussed in detail by
Metsämuuronen (2020a, 2022a). In the literature related to directional
coefficients (e.g., Siegel and Castellan, 1988; Newson, 2002, 2006; IBM,
2017a; Metsämuuronen, 2017) and, consequently, in the outputs of some
generally known software packages, such as IBM SPSS and SAS, as well
as R libraries, this direction of η is labelled “X dependent” and it is notated
as η (X |g ). This label makes sense in GLM settings where a test results
(X) cannot explain the sex (g), as an example and, hence, X must be
“dependent.” An opposite name for the same direction is relevant within
the measurement modelling settings and non-parametric settings (see
discussion related to Table 1 and Metsämuuronen, 2020a). Within the
measurement modelling settings, this direction means that the latent
trait (θ) manifested as a score variable (X) explains the response pattern
in the item (g), and the opposite direction does not make sense (e.g.,
Byrne, 2016; Metsämuuronen, 2017). In manual calculations of Mann–
Whitney U test (Mann and Whitney, 1947) and Jonckheere–Terpstra JT
test (chronologically, Terpstra, 1952; Jonckheere, 1954), as examples, X
is first used to order g after which the order in g is analysed. In these
settings, it is natural to think that “g depends on X,” that is, from the
condition’s viewpoint, “g given X,” usually notated as (g| X). This latter
notation η (g|X) = ηg|X = “eta directed so that ‘g given X’ ” is used in
the text. The notation ηg|X is preferred over η (g|X)because it is easy to
modify to the form eta squared, η2

g|X .
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In the binary case, Eq. 3 is reduced to

ηg|X =

√√√√n0
(
X̄0 − GMX

)2
+ n1

(
X̄1 − GMX

)2∑N
i=1

(
yi − GMX

)2 , (5)

where X̄0 and X̄1 are the means of X in the subpopulations of
g = 0 and 1. This form appears to be important when showing
the directional nature of PMC. Independently, Wherry and
Taylor (1946) and Eikeland (1971) showed that, in the binary
case, Eq. 5 can be expressed in the following form:

ηg|X = (X̄1 − X̄0)
σg

σX
6= ηX|g (6)

which, obviously, equals the simplified form of point biserial
correlation in Eq. 2. Then, with binary items or, for example,
with dummy variables in GLM settings (see Cohen, 1969), PMC
equals η directed so that “g given X” (in the measurement
modelling settings) or “X dependent” (in GLM settings) but not
with the opposite direction of eta:

PMC = RPB = ρgX = ηg|X 6= ηX|g . (7)

This means that PMC is, factually, a directional measure in
the binary case. In what follows, some algebraic evidence of the
phenomenon in the polytomous cases is discussed.

Directionality in the polytomous case

In the polytomous case, PMC and ηg|X differ from each
other by a small but important thing. We remember (see, e.g.,
Howell, 2012) that by using the concepts of sums of squares, the
absolute value of PMC can be expressed as follows:

|PMC| =

√
SStotal − SSresidual

SStotal
(8)

and the absolute value of η as follows:

∣∣ηg|X
∣∣ = √SSbetween

SStotal
=

√
SStotal − SSerror

SStotal
. (9)

Unconventionally, η is expressed with absolute signs in this
study. The value of η as we usually see it is, in fact, the absolute
value of the association between two variables—this is discussed
later in Section “Some related consequences of the relationship
of product–moment correlation coefficient and eta.” Hence,
after simplifying, we can express the difference between PMC
and η as follows:

|PMC| =

√√√√√∑(
Xij − X̄

)2
−
∑(

Xij − X̂ij

)2

∑(
Xij − X̄

)2 , (10)

and

∣∣ηg|X
∣∣ = √η2

g|X =

√√√√∑(
Xij − X̄

)2
−
∑(

Xij − X̄j
)2∑(

Xij − X̄
)2 . (11)

Only in the specific case the association between two
variables is perfectly linear, the predicted value by the regression
model (X̂ij) equals the means of the subpopulations in g
(X̄j). In this specific case, which is always true in the binary
and dichotomous cases and may occur, although rarely, in

the polytomous case,
∑(

Xij − X̂ij

)2
=
∑(

Xij − X̄j
)2and,

consequently, |PMC| =
∣∣ηg|X

∣∣. In any other condition,∑(
Xij − X̂ij

)2
<
∑(

Xij − X̄j
)2 because

∑(
Xij − X̂ij

)2
is

constructed so that the residuals related to the data in hand
would be the minimum and, hence,

∑(
Xij − X̄j

)2 would always
be greater than the minimum, causing:

|PMC| ≤
∣∣ηg|X

∣∣ . (12)

Hence, except for the case of linearity in (ordinal) g,
which is a rare case in general but always the condition in
binary and dichotomous settings, the absolute magnitude of the
estimates by PMC is always lower than that by ηg|X . Obviously,
the comparison makes sense only with categorical ordinal g;
PMC does not get meaningful interpretations with categorical
nominal g.

Some related consequences of the
relationship of product–moment
correlation coefficient and eta

The algebraic connection between PMC and η has some
consequences not only in PMC (the directionality) but also in
interpreting η and η2 discussed by Metsämuuronen (2022a).
First, the traditional way of calculating η (by taking the second
powers of all elements in the formula) will lead to an apparent
positive association. However, in fact, ηg|X can also reach
negative values: if in Eq. (6), X̄1 < X̄0, the factual correlation
is negative. Hence, η calculated by using the traditional
formulae gives us only the magnitude of the association and not
necessarily the true association.

Second, the connection of PMC and ηg|X makes it clear
why the estimates ηg|X underestimate the true association in
an obvious manner. The underestimation in ηg|X is mechanical
in nature in the same manner as in PMC discussed above.
The magnitude of this obvious underestimation in PMC, and,
consequently, in ηg|X depends on several factors; six of those
were given above, and Metsämuuronen (2022d) discusses 11
such sources. In the extreme binary case, when the proportion of
1s (p) or 0s (1–p) approximates p = 1 or p = 0, ηg|X approximate
zero regardless of the true association between the variables.
This is seen when comparing the magnitude of the estimates
by PMC and η with ones obtained by such estimators that can
detect the perfect association in extreme datasets (e.g., RPC, G
or D, see Metsämuuronen (2021b, 2022e,f). The phenomenon
also generalises to polytomous cases. Some examples of the
magnitude of the mechanical underestimation are illustrated
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with numerical examples in Section “Numerical examples of the
directional nature of product–moment correlation coefficient.”

Third, because the estimates by ηg|X are deflated in
an obvious manner, also η2

g|X must underestimate the true
explaining power in an obvious manner. Inherited from ηg|X ,
the magnitude of the obvious underestimation in η2

g|X depends
on several factors, such as the number of categories in g and
X, the proportion of 0 s and 1 s (or the variance) in g, and
the distribution of the latent variable (see more factors in
Metsämuuronen, 2022d). In an extreme dichotomous case, η2

g|X
approximates zero irrespective of the true association between
the variables if σ 2

g approximates 0. Then, factually, latent to
a set of an extremely unbalanced dichotomous variable (e.g.,
consisting only of a few cases of males or females or with items
of extremely difficult level) and a metric variable (e.g., score),
there could be a perfect correlation, which should be detected
as perfect explaining power. However, η2

g|X cannot detect this
because it cannot reach the limits of correlation due to deflation,
and the deflation may be remarkable, 50–70% or even more (see
examples in Metsämuuronen, 2022a).

Metsämuuronen (2022a) notes that the obvious
underestimation by η2

g|X evokes justified questions related
to the traditional corrections connected with η2

g|X . The
biased-corrected measures such as omega squared (ω2; Hays,
1963), epsilon squared (ε2, Kelley, 1935), and adjusted eta
squared (η2

adj; Mordkoff, 2019) are developed to correct
the positive bias in η2, specifically, with values near zero
(see Okada, 2013, 2017; Mordkoff, 2019). These measures
tend to make the value of η2 even more deflated. For this,
Metsämuuronen (2022a,e) suggests an attenuation correction
for point biserial and point polyserial correlation coefficients as
well as for ηg|X and η2

g|X . These are briefly discussed as follows.

Practical notes on the deflation in
product–moment correlation
coefficient and R2

Above, it was noted that one of the deficiencies of PMC is
its tendency to produce deflated estimates caused by technical
or mechanical error in the estimation. This can be illustrated
by taking a pair of identical variables with an obvious perfect
correlation (ρθθ = 1). This setting corresponds with the latent
image of the measurement model with one latent variable θ

(such as “achievement in mathematics”) which is manifested as
the score in an item with a narrower scale and in a score variable
with a wider scale.

Let us take a vector of n = 1,000 normally distributed cases
and double it. Of these (identical) variables, one (score X) is
divided into 7 categories (df (X) = 6) with the difficulty level of
p(X) = 0.50, and the other (item g) is divided into a binary form
(df (g) = 1) by using a cut-off of p(g) = 0.10, that is, 90% of the

hypothetical test-takers gave the incorrect answer. This could
be a latent reflection of a very difficult item in a subtest (e.g.,
“sets”) amidst a longer test (“achievement in mathematical”).
The difference between the observed item–score correlation
(Rit = ρiX) and the latent correlation (ρθθ = 1) indicates strictly
the magnitude of deflation in the estimate; in Figure 1, relevant
benchmarking estimators of the association are compared in this
regards.

From the deflation viewpoint, it is notably that such
estimators of item–score association based on the mechanics
of PMC as Henrysson’s item–rest correlation Rir (Henrysson,
1963), Spearman rank-order correlation RRank (Spearman,
1904), Rit, and η, cannot detect the true perfect latent
correlation, and the magnitude of deflation is notable (>0.45
units of correlation). Also, Kendall tau-b (Kendall, 1948) gives
a notably deflated estimate—the magnitude of its estimates is
always lower than those by PMC (see, e.g., Metsämuuronen,
2021b)—as well as the correlation based on distance instead
of covariance and distance correlation (dRit; Székely et al.,
2007).4 In contrast, such estimators as polychoric correlation
(RPC; Pearson, 1900, 1913), Goodman–Kruskal gamma (G;
Goodman and Kruskal, 1954), dimension-corrected G (G2;
Metsämuuronen, 2021a), and attenuation-corrected Rit and
eta (RAC and EAC; Metsämuuronen, 2022a,e) can detect the
latent perfect correlation. Such estimators as r-bireg correlation
(RREG; Livingston and Dorans, 2004; Moses, 2017), Somers
delta directed so that “score dependent” (D; Somers, 1962) and
dimension-corrected D (D2; Metsämuuronen, 2020b, 2021a)
come close the deflation-free outcome. Obviously, when PMC
(= r) is deflated, also r2 is deflated and, hence, the explaining
power may be radically deflated. In the case related to Figure 1,
Rit = 0.545 leads to Rit2 = 0.297, that is, even if the true latent
explaining power between the variables is perfectly ρ2

θθ = 1,
only 29,7% of this can be reached when used PMC in the
estimation.

When it comes to the multiple correlation coefficient
(R) and squared multiple correlation (R2) used widely with
the regression models for the explaining power of multiple
independent variables [see other options in Kvålseth (1985) and
expanded in Onyutha (2022)], the deflation in PMC is also
inherited to these statistics. Let us assume the same hypothetical
settings as above with perfect correlations between variables,
but now we have one dependent variable (score X) with
p = 0.50 and latent normality and two «independent» different
manifestations of the same original variable (items g1 and g2)
explaining the score. Let the items be binary with the difficulty
levels p(g1) = 0.2 and p(g2) = 0.80. Keeping in mind that the

4 Sincere thanks to Counsellor or Evaluation, Jukka Marjanen from
Finnish Education Evaluation Center (FINEEC) for computing the
estimate of distance correlation. R package «Energy» by Rizzo and
Székely (2022) was used in computing.
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N = 1000; df(X) = 6, df(g) = 1, p(X)= 0.50, p(g) = 0.10; latent normality 

Correlation Deflation

FIGURE 1

Magnitude of deflation in the estimates by selected estimators of association. Rir = Henrysson item–rest correlation (= PMC);Tau-b = Kendall
tau-b; RRank = Spearman rank-order correlation (= PMC); dRit = distance correlation; Rit = item–score correlation (= PMC); eta = coefficient
eta (X dependent) (= PMC in the binary case); D = Somers delta (X dependent); D2 = dimension-corrected D; RReg = r-bireg correlation;
RPC = polychoric correlation; G = Goodman–Kruskal gamma; G2 = dimension-corrected G, RAC = attenuation-corrected Rit;
EAC = attenuation-corrected eta.

latent images of these three variables are identical, the observed
correlations as follows:

X g1 (p = 0.20) g2 (p = 0.80)

X 1 0.66055 0.66055

g1 (p = 0.20) 1 0.25313

g2 (p = 0.80) 1

In the case of two independent variables, R is computed

by the formula Ry.xz =

√
ρ2

yx+ρ
2
yz−2ρyxρyzρxz
1−ρ2

xz
, where y

refers to the dependent variable, and x and z are the
independent variables. Here, y = X, x = g1, and z = g2.
The estimate for the multiple correlation coefficient is R =√(

2× 0.6612 − 2× 0.661× 0.661× 0.253
) / (

1− 0.2532
)

= 0.834 and, consequently, R2 = 0.696, that is, less than 70% of
the phenomenon was explained.

Attenuation-corrected
product–moment correlation
coefficient and attenuation-corrected
eta

Because of the attenuation and deflation in the estimates by
PMC, Metsämuuronen (2022e) proposed a simple correction
of attenuation for PMC. The correction is based on the fact
that, given the dataset, the correlation between two variables
cannot exceed the limit specified by the observed values in these

variables—the same logic can be used also with the attenuation-
corrected eta (Metsämuuronen, 2022a). Namely, when the
observed values in two variables are given, the variances (σ 2

X
and σ 2

g ) are fixed. Recalling the basic formula of PMC (ρgX =

σgX
/
σgσX), the only element affecting the magnitude of the

correlation is the covariance between the variables (σgX). The
maximum value of σgX (σMax

gX ) is obtained when g and X are
in the same order. Hence, the maximal possible correlation
(ρMax

gX ) in the given set of variables is given as follows (see
Metsämuuronen, 2022e):

ρMax
gX =

σMax
gX

σgσX
. (13)

Based on this, the attenuation-corrected PMC (ρAC, RAC) is
the proportion of the observed correlation (ρObs

gX ) of the maximal
possible correlation (ρMax

gX ) given the observed values in the
variables:

ρAC =
ρObs

gX

ρMax
gX

. (14)

In the same manner, the attenuation-corrected ηg|X (ηAC,
EAC) is the proportion of observed eta (ηObs

g|X ) to the maximal eta
in the given dataset (ηMax

g|X ), which, in the binary case, equals the
maximum value of PMC:

ηAC =
ηObs

g|X

ηMax
g|X

. (15)

In the case of ηg|X , as with PMC, the maximal ηg|X is
found when the variables are ordered independently and ηg|X

is calculated between these variables (see Metsämuuronen,
2022a). Consequently, the attenuation-corrected eta squared is
the square of EAC, that is, E2

AC.
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The characteristics of RAC and EAC are studied by
Metsämuuronen (2022d). It was noticed that they were free of
deflation in 9 out of 11 sources of deflation and, hence, they
were ranked high in the set of estimators of correlation when
it comes to deflation-free characteristics of different estimators.
Therefore, Metsämuuronen (2022f) suggests these to be used in
deflation-corrected estimators of reliability.

Numerical examples of the
directional nature of
product–moment correlation
coefficient

Datasets, methods, and the course of
study

The empirical section studies different aspects of
directionality in PMC. First, Section “Directionality in the
binary and polytomous datasets—a simple comparison”
illustrates the directionality in binary and polytomous ordinal
cases by using a simple comparison of different patterns in the
variable with a narrower scale. The characteristics of a simple,
hypothetical dataset with purposeful patterns are discussed
in detail in that section. In this section, no specific statistical
methods are used.

Second, the magnitude of the directionality in real-life
settings is studied in Sections “Directionality of product–
moment correlation coefficient in the binary and polytomous
cases in real-life datasets” and “How remarkable is the effect
of directionality in product–moment correlation coefficient?”
from two perspectives. Section “Directionality of product–
moment correlation coefficient in the binary and polytomous
cases in real-life datasets” studies the magnitude of the
directionality in general, and Section “How remarkable is
the effect of directionality in product–moment correlation
coefficient?” studies how remarkable the effect of directionality
in PMC is. The derivation and basic results mentioned
above are general and applicable without connection to any
specific framework. However, the numerical examples and the
applications in Sections “Directionality of product–moment
correlation coefficient in the binary and polytomous cases in
real-life datasets,” “How remarkable is the effect of directionality
in product–moment correlation coefficient?,” “Relation of
product–moment correlation coefficient and RAC” are discussed
within the measurement modelling settings and, specifically,
in the item analysis settings where the point biserial and
point polyserial correlation coefficients (ρgX), that is, item–score
correlation (Rit = PMC) is of interest.

In Sections “Directionality of product–moment correlation
coefficient in the binary and polytomous cases in real-life
datasets” and “How remarkable is the effect of directionality

in product–moment correlation coefficient?,” the relation of the
estimates by PMC and η is studied by using two larger real-world
datasets, training dataset and cross-validating dataset, related to
item analysis of the test scores of mathematics achievement (see
Supplementary Appendix 3 of forming of the datasets). In the
original dataset of 4,023 test takers of a mathematics test with
30 binary items (FINEEC, 2018), the item–score correlation
varied 0.332 < ρgX < 0.627 with the average ρgX = 0.481, the
difficulty levels of the items varied 0.24 < p < 0.95 with the
average p̄ = 0.63, and the lower bound of reliability was α = 0.885.
For the training dataset, a set of 1,080 real-world tests were
produced with a different number of test-takers (n = 50, 100,
and 200), number of items (k = 2–30, k̄ = 10.22), difficulty
levels (p̄ = 0.55–0.76, ¯̄p = 0.661), reliabilities (α = 0.739–0.935,
ᾱ = 0.862), and degrees of freedom in the item (df (g) = R–
1 = 1–15, df (g) = 5.06) and in the score (df (X) = C–1 = 12–27,
df (X) = 19.2). These tests produced 11,160 test items with
varying difficulty levels, item variances, number of categories,
as well as estimates by PMC and η. The dataset is available
at http://dx.doi.org/10.13140/RG.2.2.24238.02889. Notably, in
Section “Relation of product–moment correlation coefficient
and RAC,” a somewhat larger dataset is used; this dataset includes
also a sample size of n = 25.5 The smaller dataset is used in this
study mainly because of the possibility to compare the results
with a larger cross-validating dataset, which was produced by
using only sample sizes of n ≥ 50. For the cross-validating
dataset, the original 30 items were doubled with small changes
in the order and response patterns of the real test-takers, and
29,887 items were produced. This had a small effect on the item
difficulties and item–total correlations. The original items and
the modified ones were combined as a dataset with 60 binary
items with a nature of odd–even parallel tests. The latter dataset
is referred to if the results between the datasets differ radically
from each other.

Section “Directionality of product–moment correlation
coefficient in the binary and polytomous cases in real-life
datasets” does not use a specific statistical method; visual tools
are used to illustrate the magnitude of the directionality. Section
“How remarkable is the effect of directionality in product–
moment correlation coefficient?” studies the magnitude of the
directionality primarily by using the standard general linear
modeling (GLM). Standard statistics such as eta squared (η2)
and Cohen’s f and d (Cohen, 1988) are used to indicate the
explaining power and effect sizes. The latter are used in assessing
the practical effect of the directionality; for these, we have
commonly accepted, rough boundaries for the low effect size
(d < 0.20, f < 0.10) indicating only small effect, medium

5 This somewhat wider training dataset with an additional sample
size of n = 25, is also published. A dataset of individual items
(n = 14,880) including relevant indicators of item–score association
although without the cross-valiadating dataset is available in CSV format
at http://dx.doi.org/10.13140/RG.2.2.10530.76482 and in SPSS format at
http://dx.doi.org/10.13140/RG.2.2.17594.72641.

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.988660
http://dx.doi.org/10.13140/RG.2.2.24238.02889
http://dx.doi.org/10.13140/RG.2.2.10530.76482
http://dx.doi.org/10.13140/RG.2.2.17594.72641
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-13-988660 October 14, 2022 Time: 12:12 # 9

Metsämuuronen 10.3389/fpsyg.2022.988660

TABLE 1 Hypothetic example of the estimates by PMC and eta under different conditions.

Rows (gi) Column

Test taker A1 A2 A3 B1 B2 B3 X (score)

1 0 0 0 0 0 0 1

2 0 0 0 0 0 0 2

3 0 0 0 0 0 0 3

4 0 0 0 0 0 0 4

5 0 0 0 0 1 0 5

6 0 0 1 0 0 1 6

7 0 0 0 0 0 0 6

8 0 0 0 0 0 0 6

9 0 0 1 0 0 0 6

10 0 0 0 0 0 0 10

11 0 0 0 0 0 0 11

12 0 0 1 0 1 1 12

13 0 0 0 0 0 0 13

14 0 1 0 0 0 0 14

15 0 0 1 1 2 2 15

16 1 0 0 1 0 0 16

17 1 1 0 1 0 0 17

18 1 1 1 2 1 1 18

19 1 1 0 3 3 3 19

20 1 1 0 4 4 4 20

PMC = Rit 0.759 0.721 0.117 0.747 0.603 0.610

η1 “g given X” 0.759 0.721 0.117 0.820 0.606 0.614

η2 “X given g” 1 1 0.856 1 1 0.985

D “g given X” 1 0.947 0.200 1 0.646 0.292

D “symmetric” 0.579 0.548 0.116 0.686 0.443 0.479

D “X given g” 0.408 0.386 0.082 0.522 0.337 0.152

G “g given X” 1 0.947 0.211 1 0.646 0.304

effect size (d ≈ 0.40, f = 0.20–0.30) indicating remarkable
effect, and high effect size (d > 0.80, f > 0.40) indicating
very remarkable effect. The post hoc tests are done by using
Šidák’s routine (Šidák, 1967). Another statistical method, a
data mining tool decision tree analysis (DTA; IBM, 2017b)
with the algorithm CHAID (Chi-square Automatic Interaction
Detector; Kass, 1980) is used in exploring the threshold cut-offs
of interesting variables. This is used, for example, when willing
to find cut-offs for the difference in the scales of two variables to
indicate remarkable directionality. DTA is discussed later with
more details.

Third, Section “Relation of product–moment correlation
coefficient and RAC” studies the relation between PMC
and attenuation-corrected PMC (RAC) suggested by
Metsämuuronen (2022e). In this section, an enlarged dataset of
14,880 with a sample size of n = 25 is used (see text footnote
5). Paired-samples t-test and Cohen’s d are used to study
the difference between PMC and RAC on the one hand, and
coefficient eta and RAC on the other hand.

DTA may be a less known methodological tool for the
average reader and, hence, it is further described in what follows.
More information is found in the manual (IBM, 2017b) or in,
e.g., Metsämuuronen (2017). DTA is a set of algorithms that
detect cut-offs for categorising the explaining variables in groups
where the discrimination is the most statistically significant.
It goes through all possible combinations of categories and
provides us with the one with the highest statistical significance.
The decision is done by using Chi-Squared test (categorical
dependent variable) or F-test (continuous dependent variable).

DTA is strong in finding such cut-offs for continuous
(or categorical) explanatory variables that are practically
unreachable by traditional analytical- or graphical methods
(Metsämuuronen, 2017). In exploring two continues variables
and their possible cut-offs as is the case in this article,
it is difficult to find a more effective tool than these
algorithms. Data mining is done by using different algorithms
such as CHAID (Kass, 1980), Exhaustive CHAID (Biggs
et al., 1991), CRT or CART, (Classification and Regression
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Trees; Breiman et al., 1984), and QUEST (Quick, Unbiased,
Efficient Statistical Tree; Loh and Shih, 1997). The technical
challenge in the algorithms—or factually in our processes
of statistical inference—is that the algorithms tend to find
the best solution when the unit sizes in the groups are
high; it tends to combine the groups with small sample
sizes. In the analysis to come in Section “How remarkable
is the effect of directionality in product–moment correlation
coefficient?”, the procedure is enhanced by doing further
analysis in the extreme groups with smaller unit sizes without
the middle part in most of the cases (see closer Table 5 and
related discussion).

Directionality in the binary and
polytomous datasets—a simple
comparison

The estimates by PMC and η are compared first by using a
simple dataset comprising 6 variables with a narrower scale (g)
and a common metric variable (X) with a wider scale (Table 1).
This could be a partial dataset from an achievement testing
with six selected items gi and the score X. From now on, to
shorten the expression, η1 refers to η

(
g |X

)
or “g given X”

or “X dependent” in the outputs of software packages, which
are the relevant direction from both GLM and measurement
modelling viewpoint, and η2 refers to η

(
X
∣∣g ) or “X given g”

or “g dependent” in the outputs of software packages, which
may be a relevant direction in the general case. Because η,
G, and D are usually calculated from a form of cross-table,
variable g is labelled to be in “Row” and X in “Column.” The
estimates in Table 1 are standard outputs from a data analysis of
cross-tables.

The dataset contains three binary variables (A1, A2, and
A3) and three polytomous ones (B1, B2, and B3). In the
set of A1, A2, and A3, we expect to see PMC = η1 6= η2
because of (7), and in the set of B1, B2, and B3, we expect
to see PMC < η1 because of Eq. (12). Variables A1 and B1
follow a deterministic pattern without tied pairs and without
stochastic error and no crossing pairs between g and X—here,
we expect to obtain a perfect association because X explains
the pattern in g in a deterministic manner, although it includes
a small number of tied cases to illustrate their effect on the
estimates. Variables A2 and B2 include the stochastic error to
a minor extent in the response pattern but no crossing pairs
between g and X—here, we expect to see a less than perfect
association because of the error in the response pattern, so
that PMC = η1 < 1 in A2, PMC < η1 < 1 in B2, and
η2 = 1 in both A2 and B2. Variables A3 and B3 include tied
pairs, more stochastic errors, and crossing pairs between g
and X—here, we expect to see a less than perfect association
and a pattern PMC < η1 < 1 for B3 and η2 < 1 in both
A3 and B3. As benchmarks for PMC and η, two measures

that can detect the deterministic patterns, G and D, are
shown in the table.

From Table 1, four outcomes are highlighted. First, as
expected from Eq. (7), in the binary case with A1–A3, PMC
equals η1 but not η2. Second, with polytomous variables
B1–B3, PMC is closer to η1 than η2, however, such that
PMC < η1, as expected by Eq. (12). Third, of the measures of
association in comparison, only G and D directed so that “g
given X” detect the deterministic pattern in variables A1 and
B1 of the measures of association in comparison. Although η2
seemingly detects the deterministic pattern, the value η2 = 1
is obtained only because there are no crossing categories in
variables A1, A2, B1, and B2 in relation to X. Variables A3
and B3 are constructed so that the category yi = 6 in X
is connected with two different categories in g (xi = 0,1)
and, hence, η2 6= 1. Fourth, unlike G and D, PMC and
η1 cannot indicate the deterministic pattern of association.
This is caused by the mismatch in the number of categories
of the variables; perfect PMC implies identical scales of the
variables, and perfect η implies a dataset without crossing
categories. Then, the values η1 = 0.759 and η1 = 0.820
leading to η2

g|X = 0.576 and η2
g|X = 0.672 reflecting strictly the

magnitude of the underestimation of the true association and
explaining power.

The direction of PMC can be verified easily by rotating the
cross-table data such that X is the row factor and g is the column
factor. The result would be the same as above: PMC is not related
to the rows or columns of the cross-table but to the width of the
scales of the variables.

Directionality of product–moment
correlation coefficient in the binary
and polytomous cases in real-life
datasets

Basic statistics related to the empirical dataset discussed
in Section “Datasets, methods, and the course of study” are
collected in Table 2 and visualised in Figure 2. Notably, the
number of items in the dataset decreases by the width of the
scale; most of the items are binary (n = 5,943), and items with
more than 10 categories are sparse.

The empirical dataset supports the idea that PMC is a
directional measure not only in the binary case but also when
a variable with a narrower scale is polytomous (see Table 2 and
Figure 1). This is demonstrated by the fact that when df (g)> 1,
PMC follows closer to η1 than η2. In Figure 1, this is strictly
seen in the fact that the curve related to PMC (red line with
squares) closely follows the curve related to η1 (blue line with
triangles) and not the curve related to η2 (blue line with circles).
The difference between PMC and η1 is strictly dependent on
how far X̂ij is from X̄j, that is, how far the observed dataset is
from the linear situation as discussed above.
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TABLE 2 Selected characteristics of 11,160 items in comparison.

Range in the
item scale

df(g) Number of
items

Average rit Average η11 Average η22 Average
item

difficulty (p̄)

Average
item

variance

0–1 1 5,943 0.486 0.486 0.646 0.661 0.210

0–2 2 2,265 0.625 0.632 0.730 0.664 0.503

0–3 3 1,029 0.708 0.719 0.788 0.668 0.883

0–4 4 546 0.771 0.782 0.828 0.666 1.373

0–5 5 354 0.812 0.823 0.861 0.647 2.027

0–6 6 278 0.846 0.857 0.885 0.675 2.738

0–7 7 190 0.873 0.882 0.899 0.661 3.635

0–8 8 98 0.892 0.903 0.918 0.686 4.688

0–9 9 127 0.911 0.921 0.933 0.655 5.913

0–10 10 118 0.926 0.934 0.941 0.643 7.153

0–11 11 85 0.940 0.948 0.954 0.673 8.784

0–12 12 61 0.943 0.951 0.956 0.682 10.232

0–15 13–14 66 0.944 0.950 0.956 0.667 11.649

Total 11,160 0.596 0.600 0.716 0.663 0.932

1ηg|X = eta directed so that “g given X” (as conditions) or “X dependent” (as in GLM).
2ηX|g = eta directed so that “X given g” (as conditions) or “g dependent” (as in GLM).
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FIGURE 2

Connection of PMC and eta in real-life datasets (k = 11,160 estimates).

How remarkable is the effect of
directionality in product–moment
correlation coefficient?

In the training dataset, the average difference between PMC
and η1 varies between 0.000 and 0.013 units of correlation
following an exponential distribution—possibly referring to a

cut-normal distribution. The range is somewhat smaller in
the cross-validating dataset varying 0.000–0.009. From the
viewpoint of interpreting PMC, more important than the

difference between η1 and PMC is the difference between η1 and
η2; this reflects strictly how far the estimates by PMC are from
the symmetric condition.

The empirical datasets suggest that the closer are the number
of categories of the variables the less difference there tends to
be between η1 and η2 (see also Figure 1). Then, the closer are
the number of categories of the variables the more symmetrical
interpretation we can make by PMC as well as by the squared
PMC, that is, by the explaining power between the variables. On
the other hand, the further the scales of two variables are, the less
symmetric interpretation we can make from the squared PMC.
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TABLE 3 Difference between eta1 and eta2 by df(g).

Training dataset Cross-validating dataset

df(g) Meanη2 – η1 Std. deviation N Meanη2 – η1 Std. deviation N

1 0.15988 0.096480 5,943 0.14528 0.053269 20,426

2 0.09789 0.062310 2,265 0.10998 0.038545 3,898

3 0.06939 0.045693 1,029 0.08786 0.030073 1,253

4 0.04596 0.032817 546 0.05772 0.020795 1,131

5 0.03753 0.027430 354 0.05658 0.021637 1,830

6 0.02751 0.018152 278 0.06041 0.016985 133

7 0.01732 0.014543 190 0.02308 0.012072 13

8 0.01489 0.012894 98 0.02566 0.011268 229

9 0.01204 0.011770 127 0.02586 0.012140 488

10 0.00731 0.007255 118 0.02615 0.011412 230

11 0.00599 0.005562 85 0.01887 0.012374 47

12 0.00536 0.004957 61 0.0141 0.007802 101

13–14 0.00527 0.006326 66 0.01431 0.008364 108

Total 0.11628 0.093203 11,160 0.12419 0.059041 29,887

Standard GLM is used to study the effect size of the number
of categories in g, divided into 13 categories (2–13 and 14–15
combined) in explaining the variation in the difference between
η1 and η2. In the training dataset, the effect is high [F(12,
11,147) = 409.525; η2

= η2
g|X = 0.306, Cohen’s f = 0.664] and

even higher in the cross-validating dataset with wider scales
in X [F(12, 29,887) = 1415,501; η2

= η2
g|X = 0.362, Cohen’s

f = 0.753]. The post hoc tests with Šidák’s routine (Šidák, 1967)
indicate that when the number of categories exceeds seven
(df (g) > 6), the difference between η1 and η2 is no more
significant. In the cross-validating dataset, this threshold comes
with eight categories (df (g)> 7). Because of the large number of
estimates, the significance is obvious even with minor practical
differences. This is re-evaluated from the effect size viewpoint.

Basic statistics related to the difference between η1 and η2
are collected in Table 3 by the number of categories in the
items. Notably, in both the training and cross-validating dataset,
the difference gets smaller the more categories the items have.
The average standard deviation of the difference in the training
dataset is 0.093, whereas, in the cross-validating dataset, it is
0.059. Hence, by using Cohen’s d, we can roughly estimate that
the mean difference between η1 and η2 of the magnitude of
0.03–0.04 is remarkable: dtraining =

0.04
0.093 = 0.430 and Cohen’s

dcross-validating =
0.025
0.059 = 0.424 showing a medium effect size

(Cohen, 1988). Hence, we conclude that from the effect size
perspective, the directionality in PMC seems to be remarkable
when g has less than six or seven categories assuming a notably
wider scale in X.

An obvious confounding factor in the interpretation of the
number of categories in g is that the number of categories in
X is also related to the matter. Hence, the ratio of the number
of categories of g and X (C/R) is studied further. The statistic

C/R indicates strictly how much longer the scale of X is in
comparison with the scale of g. This ratio appears to explain well
the difference between η1 and η2. The connection is somewhat
different in the training dataset with a relatively narrow range
of df (X), causing smaller values in C/R (≤14.00) in comparison
with the cross-validating dataset with a wider range in df (X),
causing wider values (<21.50).

A data mining algorithm CHAID (Kass, 1980; IBM, 2017b)
was used in finding the threshold points in the ratio of the
number of categories in g and X that would maximise the
significance between the means of η1 and η2. Because of the
radically different ranges in the ratio, the datasets were analysed
together (n = 11,160 + 28,890 estimates) in determining the
thresholds. In the combined dataset, CHAID divides the ratio
into nine categories from C/R < 5.0 to C/R > 17.5 [F(8,
41,038) = 2364,57, p < 0.001]. The range was extended by
reanalysing the extreme groups without the rest dataset. At the
extreme of C/R < 5, DTA found six detailed groups and, at the
extreme of C/R > 17.5 four detailed groups more, altogether
17 groups. Of these, 11 actualised in the training dataset and
16 in the cross-validating dataset (Table 4 and Figure 3). It is
evident that the higher comes C/R, that is, the wider is the scale
of the score in comparison with the scale of items, the higher gets
the discrepancy between η1 and η2 and, consequently, the more
directional will be the PMC; the effect sizes are high (Cohen’s
f training = 0.55; f cross-validating = 0.97).

The association between the ratio of the scales of X and g and
the difference between η1 and η2 is curvilinear in the training
dataset at the range of 5 < C/R < 15 (quadratic R2 = 0.240 and
linear R2 = 0.182), indicating a magnitude of the correlation that
ranges 0.43–0.49. In the cross-validating dataset, the association
is clearly more linear (linear R2 = 0.492), indicating the
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TABLE 4 Difference between eta1 and eta2 by C/R.

Training dataset Cross-validating dataset

C
/
R1 Meanη2 – η1 Std. deviation N Meanη2 – η1 Std. deviation N

≤1.929 0.00662 0.00714 363 – – –

(1.929–2.500] 0.01715 0.01538 273 0.01117 0.005443 130

(2.500–3.111] 0.02683 0.022606 348 0.01907 0.009835 402

(3.111–3.909] 0.04267 0.033194 524 0.02754 0.011277 562

(3.909–4.333] 0.05552 0.043617 341 0.03413 0.011424 106

(4.333–5.000] 0.06759 0.05038 563 0.04332 0.017637 493

(5.000–6.833] 0.09558 0.066038 1,587 0.05914 0.020941 2,375

(6.833–9.333] 0.15063 0.104120 2,541 0.07974 0.027926 1,293

(9.333–10.50] 0.15586 0.099859 2,369 0.10105 0.036171 2,510

(10.50–12.50] 0.13654 0.077862 1,923 0.1152 0.040712 5,897

(12.50–14.00] 0.10871 0.050848 328 0.13006 0.043605 4,388

(14.00–15.50] – – – 0.14309 0.04652 3,650

(15.50–16.50] – – – 0.15407 0.048539 1,895

(16.50–18.00] – – – 0.17029 0.049647 2,540

(18.00–19.00] – – – 0.17869 0.053302 1,922

(19.00–20.00] – – – 0.18588 0.054029 964

>20.00 – – – 0.19155 0.055442 760

Total 0.11628 0.093203 11,160 0.12419 0.059041 29,887

Statistics related to the solutions

F; (Sig.) 356.03; (p< 0.001) 1,927.03; (p< 0.001)

Eta squared 0.242 0.492

Cohen’s f 0.565 0.984

1C = number of categories in X, R = number of categories in g.
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FIGURE 3

Discrepancy between the scales of the variables explaining the difference in eta1 and eta2 (k = 11,160 + 29,887 estimates).
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TABLE 5 Relation of PMC and RAC.

Correlations Number of cases Standard deviations

df(g) RgX RAC Eta1 Eta2 n RgX RAC Eta1 Eta2
1 0.473 0.586 0.473 0.682 7,948 0.136 0.166 0.118 0.136

2 0.612 0.675 0.625 0.755 3,056 0.110 0.117 0.092 0.104

3 0.701 0.746 0.717 0.807 1,390 0.085 0.088 0.072 0.081

4 0.766 0.801 0.784 0.843 729 0.071 0.071 0.058 0.065

5 0.809 0.838 0.828 0.873 474 0.058 0.058 0.049 0.054

6 0.848 0.871 0.865 0.897 366 0.037 0.038 0.039 0.038

7 0.878 0.897 0.893 0.912 255 0.032 0.034 0.035 0.035

8 0.901 0.918 0.916 0.933 140 0.028 0.029 0.031 0.030

9 0.916 0.931 0.929 0.940 160 0.026 0.027 0.026 0.028

10 0.929 0.942 0.939 0.947 136 0.020 0.022 0.023 0.023

11 0.941 0.951 0.950 0.956 93 0.013 0.014 0.017 0.017

12 0.945 0.955 0.954 0.959 67 0.011 0.013 0.014 0.014

13 0.944 0.952 0.950 0.957 42 0.008 0.008 0.011 0.009

14 0.945 0.953 0.951 0.955 24 0.008 0.008 0.009 0.008

Total 0.584 0.666 0.591 0.744 14,880 0.182 0.172 0.128 0.186

TABLE 6 Paired-samples t-test of the difference between PMC and RAC and Eta1.

RgX – RAC Eta1 – RAC

df(g) t p (2-sided) Cohen d T p (2-sided) Cohen d df

1 –172.3 <0.001 –1.933 –172.3 <0.001 –1.933 7,947

2 –179.6 <0.001 –3.25 –81.4 <0.001 –1.473 3,055

3 –130.6 <0.001 –3.502 –41.0 <0.001 –1.101 1,389

4 –80.5 <0.001 –2.982 –19.5 <0.001 –0.721 728

5 –56.6 <0.001 –2.601 –9.2 <0.001 –0.423 473

6 –48.9 <0.001 –2.554 –7.0 <0.001 –0.364 365

7 –38.7 <0.001 –2.421 –5.0 <0.001 –0.314 254

8 –32.1 <0.001 –2.712 –2.2 0.027 –0.189 139

9 –25.8 <0.001 –2,036 –2.2 0.028 –0,175 159

10–14 –31.3 <0.001 –1,645 –3.8 <0.001 –0,249 361
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FIGURE 4

PMC, RAC and coefficient eta.
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magnitude of correlation at 0.702. The curvilinearity in the
training dataset in comparison with the cross-validating dataset
is caused by variety in sample sizes and heteroscedasticity in
the phenomenon: the difference between η1 and η2 tends to
get wider when the sample size gets lower and the residuals
tend to get higher the wider is the difference between the scales
of X and g. In each subsample of n = 50, 100, and 200, the
linear connection is around the same magnitude as in the cross-
validating dataset (linear R2 = 0.481–0.495). Notably, the higher
the sample size gets, the less difference between η1 and η2.

All in all, from the effect size viewpoint, the directionality
in PMC tends to be remarkable when C/R ≥ 4, that is, when
the scale of X is four times wider than the scale of g in
measurement modelling settings. In measurement modelling
settings with binary items, this means that if the test has more
than four (binary) items, PMC is expected to be significantly
and remarkably a non-symmetrical measure. Because the
datasets are limited to dependent variables g and X relevant
in measurement modelling settings, the thresholds should be
studied further with independent variables before a general
conclusion can be drawn about the thresholds in general.

Relation of product–moment
correlation coefficient and RAC

Finally, a brief empirical note on the relation between PMC
and RAC is given. The estimates by RAC are always higher or the
same as those by PMC. This is inherited from the definition of
RAC; when the maximal correlation is reached, then PMC = RAC.
Otherwise, PMC < RAC. The relation of these estimators has
not been studied, and, hence, it may be generally interesting to
know what the effect of the correction is on the PMC. The larger
dataset pointed out in text footnote 5 is used in this. Instead of
11,160 estimates as above, an enlarged dataset of 14,880 with a
sample size of n = 25 is used in this study. Table 5 shows the
estimates of correlation by the number of categories in g, and
Table 6 shows the test statistics for the paired-samples t-tests for
comparing PMC and RAC on the one hand, and η1 and RAC on
the other hand. Figure 4 illustrates the differences.

The first lift of the relation between PMC and RAC in the
dataset is that the attenuation or deflation in PMC tends to get
smaller by the number of categories in g. With binary items, the
deflation is 19.3% (= (0.586 – 0.473)/0.586 = 0.193), whereas
with five categories, the deflation is 4.4%. In both extremes,
the difference is statistically significant when the paired-samples
t-test is used, and the difference is remarkable when evaluated
by using Cohen’s d (d > 1.6; see Table 6). Second, RAC tends
to follow η1 when six categories are reached. This is indicated
also by Cohen’s d; with df (g) ≥ 5,

∣∣d∣∣ < 0.43; see Table 6).
Notably, the dataset does not include extremely difficult or easy
items; and, hence, the deflation appears to be moderate (12.3%
on average) instead of being a radical one. With radically more

extreme difficulty levels, the deflation is more notable; in the
dataset, the highest deflation rate was 67.7%, and in 50 cases,
it exceeded 50%. That is, the observed correlation may be 0.36,
and this may be the highest possible estimate it can reach. This
pattern is typical with items with extreme difficulty levels.

Discussion and limitations

Conclusion and discussion

This article reminds, reveals, and studies the hidden
characteristics of product–moment coefficient of correlation of
being a directional statistic rather than a symmetric one as it is
often taken in the textbook materials. The starting point of this
article was that PMC is not a symmetric measure of association
if the number of categories of variables differs from each other.
The research interest in the study was in the effects of the
hidden directionality in PMC. This was studied by comparing
PMC with coefficient eta. In different types of settings related
to the use of correlation coefficients, the interpretations of
the results vary.

Within the general settings of correlational studies, the
explaining power by PMC between a variable with a narrower
scale (g) and a wider scale (X) (ρ2

g|X ) indicates the extent
to which X explains g which, in the language of conditions,
can be expressed by using the phrase “association when g
given X.” The deflation related to the pattern that the scale
in one variable is notably (more than four times) wider than
that in the other variables causes notable deflation also in the
explaining power (r2). Similarly, the explaining power related
to the squared multiple correlation (R2) in the settings related
to regression analysis is deflated although its magnitude in the
practical settings was not studied in this article. In both cases, the
amount of deflation could be assessed by using maximal possible
correlation given the dataset or the attenuation-corrected PMC
(RAC) or distance correlation as a benchmarking statistics.
Systematic studies in this regards would be beneficial.

Within the settings related to measurement modelling
related to items (g) and scores or measurement scales (X),
PMC and the related explaining power (ρ2

g|X ) are always
directed so that the score or measurement scale explains the
response pattern in an item—not the other way around or
symmetrically. Here, also, the expression related to conditions
(“g given X”) is relevant. This means that the traditional
item–total correlation is a directional measure that indicates
how well the score explains the response pattern in the item.
This makes sense in the measurement modelling settings
(e.g., Byrne, 2016; Metsämuuronen, 2017), and, hence, the
directional nature of point biserial and point polyserial
correlation or item–score correlation can be taken as a
positive matter. In these settings, the deflation in the estimates
has a notable effect on the negative bias in the estimates
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of reliability. Metsämuuronen (2022d,e,f) suggested using
deflation-corrected estimators of reliability where the deflation-
prone estimator or correlation PMC would be replaced by
some other better-behaving estimators. Some of these are
RAC and EAC, as well as D and G, discussed in this article
(see Metsämuuronen, 2022f).

Within the settings related to GLM with dichotomous
independent variables, the direction of PMC equals the
traditional direction related to η2, and in the polytomous
ordinal case, it corresponds closely to the traditional direction
of η2 directed the way we usually use η2 in the GLM settings.
In these settings, the opposite naming (“X dependent”) is
traditionally used (ρ2

X|g
). However, in these settings too, in the

case of binary or ordinal settings, X explains the order of the
responses in g, and hence with a dichotomous and ordinal g,
we could call this also “g given X” or “g dependent” (ρ2

g|X ).
While eta and eta squared are strictly related to PMC, they
are also prone to give notable understimation of association
as well as explaining power. Then, the attenuation-corrected
eta and attenuation-corrected eta squared (E2

AC) could be used
as a benchmark for the magnitude of the probable deflation
(see Metsämuuronen, 2022a).

So far, the results are clear. The question is what the
consequences of the directionality in PMC are in real-life
settings. For many practical settings, the directionality has no
effect. For example, if the variables are (essentially) continuous
or when the variables have an identical scale, directionality is
not a relevant issue. Also, if the scales are near each other
and the sample size is high, the directionality seems not
to have practical relevance—the issue is merely in principle
rather than practical.

However, when there is a radical asymmetry in the scales
of two variables, PMC is always a directional measure, and
this may have notable practical consequences. This should
be kept in mind when estimating the association between a
variable with a narrow scale and a variable with a wider metric
(ordinal, interval, or continuous) scale, which is more than
four times wider than the scale of the other variable. Also, R2

seen in the standard scatterplots of the bivariate correlation
related to PMC or in the ordinary least square regression
is not a symmetric but a directional statistic, so that the
variable with a wider scale explains the order in the variable
with a narrower scale. Deflation in R2 (or in eta squared)
leads us to conclude that the explaining power, traditionally
nuanced as “the proportion of remaining variance,” means,
factually, “the proportion of remaining variance of which the
coefficient can reach” (Metsämuuronen, 2022a). Hays (1963,
p. 505; see also Richardson, 1996) pointed out the same thing:
The proportion of the total variation in the dependent variable
is what can be predicted or explained based on its regression
on the independent variable within the sample being studied.
A possible solution is to calculate the maximal PMC, if not RAC,
for the given dataset as a benchmark: These indicate how far the

observed correlation is from the maximal possible correlation
in the given dataset. This reflects the magnitude of deflation.
Another relevant benchmark could be the efficiency measure E
suggested recently by Onyutha (2022); this is based on distance
correlation instead of PMC. However, based on Figure 1 and
related procedure, it seems that the distance correlation is
not specifically strong in the measurement modelling settings
at least with binary items. From this perspective, Onyutha’s
E based on distance correlation may not fully solve the
challenge of deflation caused by the discrepancy between the
scales of variables. Obviously, systematic studies would be
beneficial to understand the boundaries and strengths of these
estimators.

It may also be good to rethink the possible consequences
of directionality and related deflation in widely used routines
for, say, factor analysis, structural equation modelling analysis,
and regression analysis, to conclude whether there is something
to amend in our practices or the interpretation of the
estimates. For the estimation of reliability, several new
solutions have been suggested based on changing the PMC
in the traditional estimators of reliability by better-behaving
estimators; one of these is RAC (see Metsämuuronen, 2022e,f).
At least, it would be good to rethink and rephrase our
textbooks and teaching, if needed, of the “symmetricity”
related to PMC.

Limitations and suggestions for further
studies

An obvious restriction in the article is that the relation
of PMC and ηg|X is derived algebraically only for a binary
and dichotomous case. The connection in the polytomous
ordinal cases is not as obvious to show as in the binary case
(see, however, relevant formulae in Wherry and Taylor, 1946);
overall, with the polytomous variables, the case of PMC = ηg|X

is a very rare specific case which may not need to be shown in the
first place. Nevertheless, the connection is obvious in empirical
datasets. Deriving the polytomous ordinal case algebraically may
increase our understanding of the matter; polytomous nominal
case does not make sense.

Another relevant obvious limitation is related to the datasets
used in the empirical part of this article. Although the basic
results and derivations in this article are general, practical
illustrations of the connection between PMC and η were made
by using datasets relevant to measurement modelling settings
and specifically item analysis settings. In these settings, two
variables, item g and score X, are mechanically dependent,
and they both are reflections of a common latent variable (θ).
In these settings, the higher the number of categories gets
in the items and the less there are items comprising the test
score, the closer the correlation between g and X approximates
the value 1. This phenomenon does not make sense outside
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the measurement modelling settings. Some relevant threshold
values based on the empirical datasets were discussed within
the text: how many categories g needs to have and how much
longer the scale of X needs to be in comparison with the
scale of g to obtain the remarkable effect of directionality in
PMC. These thresholds (seven or eight categories and four
times longer) may be applicable in measurement modelling
settings, although replications of the design and independent
studies of the thresholds would confirm or specify the
thresholds. This needs to be studied with simulations of truly
independent variables.
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