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Abstract
Nilpotent cellular automata have the simplest possible dynamics: all initial configurations
lead in bounded time into the unique fixed point of the system. We investigate nilpotency in
the setup of one-dimensional non-uniform cellular automata (NUCA) where different cells
may use different local rules. There are infinitely many cells in NUCA but only a finite
number of different local rules. Changing the distribution of the local rules in the system
may drastically change the dynamics. We prove that if the available local rules are such that
every periodic distribution of the rules leads to nilpotent behavior then so do also all eventu-
ally periodic distributions. However, in some cases there may be non-periodic distributions
that are not nilpotent even if all periodic distributions are nilpotent. We demonstrate such a
possibility using aperiodic Wang tile sets. We also investigate temporally periodic points in
NUCA. In contrast to classical uniform cellular automata, there are NUCA—even reversible
equicontinuous ones—that do not have any temporally periodic points. We prove the unde-
cidability of this property: there is no algorithm to determine if a NUCA with a given finite
distribution of local rules has a periodic point.

1 Introduction

A one-dimensional cellular automaton (CA) consists of an infinite line of cells that evolve
in discrete time following some local update rule. The CA is classical or uniform (UCA)
if all the cells have the same local rule. Otherwise the CA is known as a hybrid or a non-
uniform CA (NUCA). In this work all NUCA are assumed to have finitely many different
local rules. A distribution is a bi-infinite sequence that identifies the rule used by each cell.
The distribution is assumed to remain unchanged over time. It is not surprising that same
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local rules may induce wildly different dynamics under different distributions, and it is then
of interest to analyze the sets of rule distributions that yield a desired property [6–8]. For
example, it is known that for any finite set of local rules the distributions that yield a surjective
(resp. an injective) NUCA form a sofic shift (resp. a ζ -rational set) [7].

Nilpotency is a property studied previously mostly for uniform cellular automata. In
a nilpotent uniform CA, all initial configurations eventually lead to a particular uniform
fixed point configuration. If this happens, the fixed point is reached from all configurations
uniformly within bounded time. Equivalently, every individual cell eventually enters the
same quiescent state, regardless of the initial configuration [11]. There is no algorithm to
determine if a given one-dimensional uniform cellular automaton is nilpotent [1,13], and
this fact has turned out to be a fruitful source of reductions to prove further undecidability
results concerning the eventual behavior of one-dimensional uniform cellular automata. For
example, it implies that equicontinuity is an undecidable property [10], and that all non-
trivial properties concerning the limit set of one-dimensional uniform cellular automata are
undecidable [14].

In this paper we consider the property of nilpotency for non-uniform CA. We show that if
all periodic rule distributions are nilpotent, so are all eventually periodic rule distributions.
However, it is possible that some non-periodic distribution yields a non-nilpotent NUCA
even if all periodic distributions are nilpotent.

We also consider temporally periodic points, i.e., points that have highly regular time
evolution. In chaotic systems one has such regularity everywhere in the phase space inter-
weaved with more complex transitive behavior. In one of the most widely used definitions of
chaos—due to Devaney [9]—one indeed requires a chaotic dynamical system to be topolog-
ically transitive and sensitive to initial conditions, but also to have temporally periodic points
densely in the phase space. An outstanding open problem for uniform cellular automata, due
to F. Blanchard and P. Tisseur (see Section 25 in [3]), asks whether every surjective cellular
automaton has a dense set of temporally periodic configurations, which would then imply
that every transitive cellular automaton is Devaney chaotic. For reversible uniform cellular
automata the property is known to hold since spatially periodic configurations are dense
in the configuration space and they are automatically temporally periodic. However, in the
non-uniform setting the situation is very different: we show that there are reversible equicon-
tinuous NUCAs without any temporally periodic configurations. We also prove that it is
undecidable to establish whether a given NUCA has any temporally periodic configurations.
All considered rule distributions are very simple.

The paper is organized as follows. We first give basic definitions and terminologies in
Sect. 2. We then consider in Sect. 3 temporally periodic points in non-uniform CA and prove
that it is undecidable if there are any. In Sect. 4 we turn to nilpotency of non-uniform cellular
automata and prove that there are local rules such that every periodic arrangement of the
rules yields a nilpotent NUCA while some non-periodic arrangement makes the NUCA
non-nilpotent.

2 Definitions and terminologies

2.1 Cellular automata

Let A be afinite state set.Aone-dimensional configurationover A is any function c : Z −→ A
that assigns a state to every cell i ∈ Z. We usually use the subscript notation and denote by ci
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the state of cell i in configuration c ∈ AZ. A finite pattern over A is an assignment p ∈ AD

of states on a finite domain D ⊆ Z of cells.
A local rule is a function f : An −→ A where n ∈ Z+ is the width of the neighborhood.

A synchronous application of the local rule f using offset a ∈ Z at all cells defines a uniform
cellular automaton F : AZ −→ AZ by

(∀c ∈ AZ)(∀i ∈ Z) F(c)i = f (ci+a, ci+a+1, . . . , ci+a+n−1).

For r ∈ Z+, a radius-r cellular automaton has a local rule of width 2r + 1 and offset −r . We
also use radius- 12 cellular automata that have width 2 local rules and offset 0, i.e., the new
state of each cell only depends on the old states of the cell and its immediate right neighbor.
Uniform one-dimensional radius-1 CA with state set A = {0, 1} are known as elementary
cellular automata (ECA), and we refer to these by their Wolfram number [20]. Note that
every cellular automaton is a radius-r cellular automaton for any large enough r .

Let R be a finite set of radius-r local rules A2r+1 → A. A non-uniform cellular automaton
(NUCA) is specified by a distribution b ∈ RZ where bi identifies the local rule used at cell i .
The NUCA specified by distribution b is hence the transformation Fb : AZ −→ AZ where

(∀c ∈ AZ)(∀i ∈ Z) Fb(c)i = bi (ci−r , ci−r+1, . . . , ci+r ).

Note that in this work the term “distribution” has no probabilistic flavour. It always refers to
the spatial sequence of local rules in a NUCA.

We call NUCA Fb injective (surjective, bijective) if every configuration has at most one
pre-image (at least one pre-image, exactly one pre-image, respectively) under Fb. We call Fb
reversible if it is bijective and the inverse function F−1

b is also NUCA. There are bijective
NUCAs that are not reversible since the inverse functionmay require infinitelymany different
local rules. (See our Corollary 1 and the discussion below it.)

For any finite set S, let σS : SZ −→ SZ be the left shift map defined by σS(x)i = xi+1, for
all x ∈ SZ and i ∈ Z. We may also denote σS by σ when S is clear from the context. We call
two sequences x, y ∈ SZ asymptotic if xi = yi for all but finitely many i ∈ Z. We use this
terminology both for distributions (S = R) and configurations (S = A). We also call x ∈ SZ

– uniform if σS(x) = x , and more precisely a-uniform for a ∈ S if xi = a for all i ∈ Z,
– finite, or more precisely a-finite for a ∈ S, if xi = a for all but finitely many i ∈ Z,
– eventually constant if x = . . . a a u b b . . . for some a, b ∈ S and u ∈ S∗,
– (spatially) periodic if σ k

S (x) = x for some k ≥ 1, that is, if x = . . . p p p . . . for a finite
word p ∈ S+,

– (spatially) eventually periodic if x = . . . p p u q q . . . for some p, q ∈ S+ and u ∈ S∗.

Note that a uniform CA is just a NUCA Fb defined by a uniform distribution b. Note also
the following simple implications:

uniform ⇒ finite ⇒ eventually constant ⇒ eventually periodic,
uniform ⇒ periodic ⇒ eventually periodic.

In [6], three types of NUCAs are defined: dν-CA, pν-CA and rν-CA. Among these, rν-CA
are NUCAs as defined above, pν-CA are NUCAwith an eventually periodic distribution and
dν-CA are NUCAs with a finite distribution of rules.

Let F : AZ −→ AZ be a NUCA. A configuration c ∈ AZ is temporally periodic if
F p(c) = c for some p ≥ 1 called the period, and it is a fixed point if F(c) = c. A
configuration c ∈ AZ is an eventually temporally periodic point if Fn(c) is temporally
periodic for some natural n which is possibly different from zero. While in uniform CA
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Fig. 1 A space-time diagram of
the uniform xor ECA 102 and a
trace at cell 0

every spatially periodic configuration is automatically eventually temporally periodic, the
same is no longer true for non-uniform CA.

A space-time diagram of a NUCA F is a pictorial representation of an orbit, that is,
an infinite sequence of configurations (ct )t∈N where ct+1 = F(ct ). Fig. 1 shows a sample
space-time diagram that is represented by a successive sequence of configurations, from top
to bottom.

For a given configuration c ∈ AZ, the trace τi ∈ AN of cell i in the orbit of c is the i’th
column in the space-time diagram of c, that is, the sequence defined as

(∀ j ∈ N) τi ( j) = F j (c)i .

Figure1 shows also the trace of cell 0.
Nilpotent cellular automata have trivial dynamics: NUCA F : AZ −→ AZ is nilpotent if

Fn(AZ) is a singleton set for some n ≥ 1. Clearly the unique element of Fn(AZ) then must
be a unique fixed point of F . More generally, NUCA F is equicontinuous if for every cell
i ∈ Z there is a finite set D ⊆ Z of cells such that for any configuration c the finite pattern
c|D uniquely determines the trace τi :

(∀i ∈ Z)(∃ finite D ⊆ Z)(∀c, e ∈ AZ) c|D = e|D 
⇒ (∀n ≥ 0)Fn(c)i = Fn(e)i .

This is equivalent to the formulation that {F, F2, F3, . . .} is an equicontinuous set of func-
tions under the metric

(c, e) �→ 2−min{|i | | ci �=ei } if c �= e

on AZ. (See [16], for example, or the few first pages of [5] for details on the standard
prodiscrete topology on AZ that thismetric induces. Note that AZ is a compactmetric space so
the notions of uniform equicontinuity and pointwise equicontinuity coincide.) Clearly every
nilpotent NUCA is equicontinuous since traces may depend on the initial configuration only
until the NUCA reaches its fixed point. A uniform CA is known to be equicontinuous if and
only if it is eventually temporally periodic, that is, Fn+p = Fn for some n and p ≥ 1 [15] but
such characterization is no longer valid for non-uniformCA. In fact, there are equicontinuous
NUCAs without any temporally periodic points (see Corollary 1 in Sect. 3).

2.2 Wang tiles and cellular automata

Let C be a finite set of colors. A Wang tile is an element of C4, and a Wang tile set T is
a finite set of Wang tiles. Tile (N , E, S,W ) is conveniently drawn as a unit square on the
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Fig. 2 A NW-deterministic tile
set T contains at most one
matching c ∈ T for every
a, b ∈ T

a
b
c

Fig. 3 NW-deterministic Wang
tile set

Fig. 4 Four consecutive
diagonals tiles using the tiles of
Fig. 3

plane whose north, east, south and west edges have colors N , E , S and W , respectively. A
two-dimensional configuration t ∈ TZ

2
, that is, an assignment t : Z

2 −→ T of tiles on
the infinite grid, is a tiling admitted by T if, in every position (i, j) ∈ Z

2, the north and
west colors of tile t(i, j) are the same as the south and east colors of tiles t(i, j + 1) and
t(i −1, j), respectively. In other words, the abutting edges of neighboring tiles must have the
same color. A fundamental result by R.Berger states that it is undecidable if a given Wang
tile set admits a tiling [2].

A two-dimensional configuration t ∈ TZ
2
is periodic if there exists (n,m) ∈ Z

2\{(0, 0)}
such that t(i, j) = t(i + n, j + m) for all (i, j) ∈ Z

2, and we then call (n,m) a period of t .
If t has some vertical and horizontal periods (n, 0) and (0,m) then we call t two-periodic. If
a Wang tile set admits a periodic tiling then it also admits a two-periodic tiling [19]. AWang
tile set is called aperiodic if it admits some tiling but it does not admit any periodic tilings.
Such aperiodic tile sets exist [2], the smallest one contains 11 tiles [12].

AWang tile set T is calledNW-deterministic if (N , E, S,W ), (N , E ′, S′,W ) ∈ T implies
that E = E ′ and S = S′, for all E, E ′, S, S′ ∈ C , that is, the north and thewest colors identify
each tile uniquely. See Fig. 2 for an illustration. For any infinite diagonal d of tiles in the
North-East to South-West orientation on the plane there is then at most one assignment of
tiles on the diagonal below that matches in colors with d . See Fig. 3 for an example of a
NW-deterministic tile set and Fig. 4 for a sample of four consecutive diagonals.

This naturally leads to the idea of considering the diagonals of tilings as configurations
of a one-dimensional CA that maps a diagonal to the unique matching diagonal below. As
in [13] we thus associate to a NW-deterministic tile set a one-dimensional, radius- 12 uniform
cellular automaton FT with state set S = T ∪ {q}, where q /∈ T is a new symbol, and with
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local rule fT : S2 −→ S where

fT (a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

c, if a, b ∈ T and ∃c ∈ T such that the
colors between a, b, cmatch in Fig. 2

q, otherwise.

(1)

It is easy to see that

– FT is nilpotent if and only if T does not admit a tiling, and
– FT has more than one temporally periodic point if and only if T admits a periodic tiling.

(Note that theq-uniformconfiguration is automatically a fixed point and hence temporally
periodic.)

As it is undecidable whether a given NW-deterministic tile set admits a tiling [13], or whether
it admits a periodic tiling [17], we immediately obtain that it is undecidable whether a given
one-dimensional uniform cellular automaton is nilpotent, or whether it has more than one
temporally periodic point.

3 Temporal periodicity in non-uniform CAs

In uniform CA, all spatially periodic configurations eventually enter a temporally periodic
cycle, so UCA always have at least one temporally periodic point. The following proposition
shows that this is no longer true for non-uniform CA. Figure5 illustrates a sample space-time
diagram from the initial configuration of all 0s.

Proposition 1 Consider a binary state NUCA F whose cell 0 uses the local rule of ECA 51
(the cell alternates between states 0 and 1 regardless of its neighbors) or the local rule of
ECA 255 (state becomes 1 in every neighborhood pattern), and cells i < 0 use the local
rule of the ECA 102 (the next state of each cell is the modulo 2 sum on itself and its right
neighbor). Then F does not have any temporally periodic configurations.

Proof Assume, to the contrary, that c ∈ {0, 1}Z is temporally periodic for F , so there is
p > 0 such that F p(c) = c. Let τi ∈ {0, 1}N be the trace of cell i in the orbit of c, that is,

(∀ j ∈ N) τi ( j) = F j (c)i .

Each τi is p-periodic. There are only finitely many p-periodic sequences, so there are a <

b < 0 such that

τb = τa .

We can even find such a and b that satisfy a − b ≤ −2. For every i < 0 and every j ≥ 0 the
local rule gives τi ( j + 1) = τi ( j) ⊕ τi+1( j), where ⊕ denotes the modulo 2 sum, so that

τi+1( j) = τi ( j) ⊕ τi ( j + 1). (2)

Therefore, for all a′ < b′ < 0, it holds that

τa′ = τb′ 
⇒ τa′+1 = τb′+1.

Using this repeatedly starting on τa and τb we obtain that τa−b = τ0. Because of rule 51
or 255 at cell 0, the trace τa−b = τ0 is either an alternating sequence of 0’s and 1’s, or a
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Fig. 5 Snap-shot of a space time diagram of the distribution (· · · 102, 102, 102, 255, ∗, ∗, · · · )

sequence of only 1’s. In either case, using (2) we first obtain that τa−b+2 is a sequence of
only 0’s, and then that

(∀ j ∈ N) τ0( j) = 0 .

This is contradiction with the fact that the rule 51 or 255 in cell 0 forces states 1 in the trace.
Hence, the CA does not have a temporally periodic configuration. ��

By choosing the local rules of cells i > 0 in the proposition suitably we can obtain a
NUCA with a finite rule distribution, or a bijective and equicontinuous NUCA.

Corollary 1 The NUCA with the 102-finite rule distribution

. . . 102 102 102 255 102 102 . . .

does not have any temporally periodic points. Also, the equicontinuous bijective NUCA with
the rule distribution

. . . 102 102 102 51 51 51 . . .

does not have any temporally periodic points.

Note that NUCA . . . 102 102 102 51 51 51 . . . is equicontinuous because the trace of cell
i < 0 is uniquely determined by the initial states ci , . . . , c0, and the trace of cell i ≥
0 only depends on ci . Recall how this is in contrast to the uniform case where among
equicontinuous UCA all configurations are eventually temporally periodic [15]. Note also
that NUCA . . . 102 102 102 51 51 51 . . . is bijective but it is not reversible since the 0-uniform
configuration 0̃ and the 1-uniform configuration 1̃ are mapped into configurations that agree
with each other at all cells i < 0. This means that in the inverse function F−1

b each cell i < 0
needs to have in its neighborhood some cell j ≥ 0, which implies that no finite set of local
rules can provide a NUCA for the inverse.

However, it is even possible to find a reversible equicontinuous NUCA that does not have
any temporally periodic points:
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Example 1 Let A = {0, 1}2, and consider the NUCA F over A whose cells i < 0 use
radius- 12 local rule f ((a, b), (c, d)) = (b, a ⊕ d) and cells i ≥ 0 use the radius-0 rule
g(a, b) = (b, a ⊕ 1). The local rule f of the negative cells is the rule of a one-sided uniform
CA that is reversible and expansive, see [4]. First, F is equicontinuous since the trace of
cell i < 0 is uniquely determined by the initial states ci , . . . , c0, and the trace of cell i ≥ 0
only depends on ci . Second, F is reversible: its inverse is the NUCA that uses in cells
i ≥ 0 the radius-0 rule (a, b) �→ (b ⊕ 1, a) and in cells i < 0 the radius- 12 local rule
((a, b), (c, d)) �→ (b ⊕ c, a). Finally, a similar argument as in Proposition 1 shows that
there are no temporally periodic points. The key observation is the fact that, for i < 0, if
τi ( j − 1) = (a, b), τi ( j) = (b, c), and τi ( j) = (c, d) are three consecutive elements of the
trace at cell i then the element τi+1( j) = (a⊕c, b⊕d) of the trace of cell i+1 is determined.
Hence, as in the proof of Proposition 1, among the traces for any temporally periodic initial
configuration c there is some τk = τ0 for k ≤ −2. Regardless of the initial configuration, the
trace τ0 at cell 0 is the 4-periodic sequence . . . , (0, 0), (0, 1), (1, 1), (1, 0), . . .. But then τk+1

is the (1, 1)-uniform sequence, and consequently τk+2, . . . , τ0 are (0, 0)-uniform, which is
a contradiction.

With the help of Proposition 1 we can now proceed to prove that it is undecidable if a
NUCA with a given finite distribution of rules has any temporally periodic points.

Proposition 2 It is undecidable if the NUCA with the f -finite distribution

. . . f f f g f f f . . .

for given local rules f , g has any temporally periodic points.

Proof Let T be any given NW-deterministic tile set, let f0 and g0 be the local rules of ECA
102 and 255, respectively, and let F0 be the non-uniform CA with the binary state set {0, 1}
and the distribution . . . f0 f0 f0 g0 f0 f0 f0 . . . of rules where rule g0 is applied at cell 0.
By Proposition 1 the NUCA F0 does not have any periodic points. We construct a NUCA F
with the state set A = T ∪ {0, 1} where we can assume that 0, 1 /∈ T . Let us call the tiles of
T as type 1 states and {0, 1} as type 2 states. The local rule of cell i has radius 1 and it is
defined as follows:

– If the neighborhood i − 1, i, i + 1 contains both type 1 and type 2 states, then the next
state of cell i is state 0.

– If all neighbors are of type 1 then, for a ∈ T and b ∈ T the current states of the cell and
the right neighbor, respectively,

– if there is a matching tile c in Fig. 2 then c is the new state of cell i ,
– if no matching tile c exists, then the next state is state 0.

– If all neighbors i − 1, i, i + 1 are of type 2, apply the local rule of F0, that is, apply g0
if i = 0 and f0 if i �= 0.

We have that rule g of cell i = 0 is different from the local rule f of the other cells i �= 0.
Let us prove that F has a temporally periodic point if and only if T admits a periodic tiling.

If T admits a valid two-way periodic tiling of the plane then the consecutive diagonals of
the tiling, as discussed in Sect. 2.2, form a periodic orbit of the NUCA, so the diagonals are
temporally periodic configurations of the NUCA.

Conversely, suppose there exists a temporally periodic configuration c ∈ AZ. If c only
contains type 2 states then the forward orbit of c is the same as the orbit of c under NUCA F0
and, as proved in Proposition 1, configuration c cannot be temporally periodic. If c contains
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both type 1 and type 2 states then there is a cell i such that ci is of type 1 but ci−1 or ci+1

is of type 2. As type 2 states spread, Fn(c)i is of type 2 for all n ≥ 1, and again c cannot
be temporally periodic. We conclude that a temporally periodic c can only contain type 1
states, that is, all states that appear in the orbit of c are tiles from the tile set T . The bi-infinite
periodic orbit containing c then provides a valid periodic tiling of the plane whose diagonals
are the consecutive configurations of the orbit.

Therefore, T admits a periodic tiling if and only if the NUCA has a temporally periodic
point. Since the problem of establishing whether a given NW-deterministic tile set admits a
periodic tiling is undecidable [17], the claim is proved. ��

4 Nilpotency in non-uniform CAs

In this section we assume a fixed finite set R of local rules over a state set A, and we consider
the set N ⊆ RZ of distributions b such that NUCA Fb is nilpotent. Analogous sets of
distributions that provide a desired property have been considered in the literature for other
properties such as injectivity and surjectivity, and for equicontinuity and sensitivity to initial
conditions among linear CA [7]. In these cases the corresponding sets of distributions are
recognized by a finite state ζ -automaton, and are hence ζ -rational. (See [18] for details on
ζ -rationality.) For surjectivity the corresponding set of distributions is even closed in the
usual prodiscrete topology of AZ.

The following simple example shows that N may be neither open nor closed in the
prodiscrete topology.

Example 2 Let f and g be the local rules of ECA 255 and ECA 254, respectively, so that
f (a, b, c) = 1 for all a, b, c ∈ {0, 1}, and g(a, b, c) = 0 only for a = b = c = 0. Every
f -finite distribution defines a nilpotent NUCA since in one step rule f creates states 1 at all
but a finite number of cells, and then in finite time these states 1 spread to all cells. On the
other hand, all g-finite distributions define non-nilpotent NUCAs since the 0-uniform initial
configuration never reaches a fixed point. Since f -finite and g-finite configurations are both
dense in { f , g}Z, we see that N is neither open nor closed in the prodiscrete topology.

We start by proving that if all periodic distributions over R are inN , so are all eventually
periodic distributions.

Proposition 3 If Fa is nilpotent for every periodic distribution a ∈ RZ then Fb is nilpotent
for every eventually periodic distribution b ∈ RZ.

Proof Let R contain local rules of radius r . Assume that Fa is nilpotent for all periodic a,
and let b = . . . p p u q q . . . be an arbitrary eventually periodic distribution, p, q ∈ R+ and
u ∈ R∗. Let p̃ and q̃ be the periodic distributions p̃ = . . . p p p . . . and q̃ = . . . q q q . . . ,
where we align p’s and q’s in the same positions as in the tails of b on the left and on the
right, respectively.

Due to nilpotency of Fp̃ and Fq̃ there exist configurations cp and cq and a constant n such
that Fn

p̃ (c) = cp and Fn
q̃ (c) = cq for all initial configurations c. There is then number M > 0

such that for all c it holds that

Fn
b (c)(i) =

{
cp(i) for i < −M,

cq(i) for i > M .
(3)
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Note that (3) holds for all configurations c, so by applying (3) to initial configurations
Fb(c), F2

b (c), . . . in place of c we see that (3) also holds for any t ≥ n in place of n:

(∀t ≥ n) Ft
b(c)(i) =

{
cp(i) for i < −M,

cq(i) for i > M .
(4)

Local rules in R have radius r , so changing the distribution b at cells > M + r + nr will not
influence by time n the states of cells ≤ M + r . Analogous fact holds on the negative side.
Hence, for any distribution b′ that agrees with b in cells −(M + r + nr), . . . , M + r + nr ,
we have for any configuration c that

Fn
b′(c)(i) = Fn

b (c)(i) for − (M + r) ≤ i ≤ M + r . (5)

By (3) and (5) we have that Fn
b′(c)(i) = cp(i) when −(M + r) ≤ i < −M and Fn

b′(c)(i) =
cq(i) when M < i ≤ M + r . This is true for all configurations c, so again by applying it to
configurations Fb(c), F2

b (c), . . . in place of c, we have that for all t ≥ n holds

Ft
b′(c)(i) = Ft

b(c)(i) =
{
cp(i) for −(M + r) ≤ i < −M,

cq(i) for M < i ≤ M + r .
(6)

Since r is the radius of the local rules we can infer from (5) and (6), inductively for t =
n + 1, n + 2, . . ., that for all t ≥ n

Ft
b′(c)(i) = Ft

b(c)(i) for − (M + r) ≤ i ≤ M + r . (7)

Equality (7) holds for any distribution b′ that agrees with b in cells−(M +r +nr), . . . , M +
r + nr . Among such distributions there clearly is a periodic b′ with repeating period
p . . . p p u q q . . . q (with sufficientlymany p’s and q’s). SinceNUCAwith periodic distribu-
tion b′ is nilpotent, there is a configuration c′ and constantm ≥ n such that Fm

b′ (c) = c′ for all
c ∈ AZ. Putting this together with (7) gives that Fm

b (c)(i) = c′(i) for−(M+r) ≤ i ≤ M+r ,
and finally with (4) we have that Fm

b (c) is independent of c, that is, Fb is nilpotent. ��
Note that Theorem 6.1 in [6] implies the analogous result for equicontinuity: if Fa is

equicontinuous for every periodic distribution a ∈ RZ then Fb is equicontinuous for every
eventually periodic distribution b ∈ RZ.

One may wonder whether nilpotency of all periodic distributions implies that all dis-
tributions are nilpotent. In the following we construct an example showing that this is not
necessarily the case. In the construction we rely on the structure of valid tilings by Robinson’s
aperiodic Wang tile set [19], and the NW-deterministic variant of this set [13].

We first review some relevant features of Robinson’s tiles, using the terminology of [19].
The tile set consists of crosses (Fig. 6) and arms (Fig. 7). The tiles may be rotated, so each
of the six arms in Fig. 7 come in four different orientations. The matching rule is that the
arrows must continue across tile boundaries so that arrow heads meet arrow tails. The arrows
on the horizontal and vertical center lines of the tiles are central arrows, and the arrows on
the sides are side arrows. A cross faces the two directions of its side arrows. There are some
additional layers of arrows on the tiles that we do not draw: a parity layer that guarantees a
regular lattice of crosses on every second row and column, and diagonal signals introduced
in [13] to make the tile set NW-deterministic.

For each n ≥ 1, special squares of size (2n −1)× (2n −1) can be constructed recursively.
Such a square is called a level n square. Level 1 squares are crosses. At level n+1, four level
n squares are placed facing each other and with a cross in the middle (Fig. 8). The central
cross can be oriented in any direction.
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(a) (b) (c) (d)

Fig. 6 Crosses, in all four different orientations

Fig. 7 Arms. Each arm can be rotated in four orientations

Fig. 8 Recursive construction of level n + 1 square from four level n squares facing each other along with a
cross in the middle
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Fig. 9 Nested borders formed by
the side arrows

The special squares can be constructed at all levels without tiling errors. In the limit, one
obtains a valid tiling of the plane. Moreover, it is proved in [19] that every valid tiling of the
plane must contain special squares of all levels, proving that no tiling can be periodic (the
center lines of special squares only contain one cross so there can be no horizontal or vertical
period in a valid tiling). This implies that the Robinson’s tile set is aperiodic.

The side arrows draw in special squares a hierarchy of square shaped borders, see Fig. 9.
The north (south) segments of these borders consist of precisely those tiles that have a
horizontal side arrow above (below, respectively) the center line of the tile.

Lemma 1 Let T be the (NW-deterministic) Robinson’s tile set, and let A and B be the disjoint
subsets of T containing those tiles that have a horizontal side arrow above or below the center
line, respectively.

(a) There is a valid tiling by T such that no horizontal row contains tiles from both A and B.
(b) For every valid tiling and every even integer m > 0, there exists i ∈ Z such that row i

contains a tile from B and row i + m contains a tile from A.
(c) For every even integer m > 0 there exists integer M such that every correctly tiled M×M

square has some rows i and i+m containing a tile from B and a tile from A, respectively.

Proof In the special squares the nested square borders are aligned so that no horizontal row
contains both a top segment of a border (A tiles) and a bottom segment of a border (B tiles).
In the limit one obtains a valid tiling where (a) holds.

To prove (b), write m = k2n for k odd and n ≥ 1. In the special square of level n + 1
there are horizontal rows j and j + 2n containing a tile from B and A, respectively. (These
are the two rows containing the centers of the four level n squares facing each other, see
Fig. 8.) For every t ≥ 0, the level n + t + 1 special square contains 2t level n + 1 squares
on top of each other. The rows j and j + 2n of these squares form a sequence of rows
j, j + 2n, j + 2 · 2n, . . . , j + (2t+1 − 1) · 2n that alternatingly contain a tile from B and a
tile from A. Choosing t such that 2t+1 − 1 ≥ k we have row j containing a tile from B and
row j + k2n = j +m containing a tile of A. Since every valid tiling contains special squares
of all levels, claim (b) follows.

Claim (c) now follows from (b) using compactness: suppose (c) is false so that there is an
even m > 0 such that for every M there is a correctly tiled M × M square sM without any
rows at distancem containing a B and an A tile. Centering these squares at the origin, letting
M grow and taking the limit of a converging subsequence we obtain a valid tiling t of the
plane whose every finite pattern appears in some square sM . By (b) there are some x, y, i ∈ Z
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such that t(x, i) ∈ B and t(y, i +m) ∈ A. But a finite pattern of t containing cells (x, i) and
(y, i + m) appears in some square sM , contradicting the choice of these squares. ��

Now we are ready to construct NUCAs from the NW-deterministic Robinson tile set.

Proposition 4 There are two local rules f and g such that Fb is nilpotent for every periodic
distribution b ∈ { f , g}Z but Fb is not nilpotent, or even equicontinuous, for some (non-
periodic) distribution b ∈ { f , g}Z.
Proof Let T be the NW-deterministic Robinson’s tile set, and let A and B be the disjoint
subsets of T containing those tiles that have a horizontal side arrow above or below the center
line, respectively. The state set of our NUCAs is S = T ∪ {q} where q /∈ T . Local rules
f and g use radius- 12 neighborhood. The rules are identical to the rule fT given by (1) in
Sect. 2.2 with the following exceptions:

(∀a ∈ A)(∀s ∈ S) f (a, s) = q,

(∀b ∈ B)(∀s ∈ S) g(b, s) = q.
(8)

Let us first prove that there is a rule distribution b ∈ { f , g}Z such that Fb is not nilpotent, or
even equicontinuous. By Lemma 1(a) there is a valid tiling t where no row contains both a
tile of A and a tile of B. Let us choose a rule distribution b such that if row i contains a tile
of A then bi = g and if row i contains a tile of B then bi = f . For rows i without tiles of A
or B the rule bi can be chosen arbitrarily.

Tiling t yields then a valid space-time diagram of NUCA Fb where consecutive diagonals
are the consecutive configurations in the orbit: for any n ∈ Z the configuration c(n) at time n
is the n’th diagonal, i.e., c(n)

i = t(n + i, i) for all i ∈ Z. Note that the states that any cell i
obtains in configurations c(n) are the tiles of the i’th row of tiling t . This means that a cell with
local rule f never has state from set A and a cell with local rule g never has state from set B, so
that the special rules (8) are not applicable in any cell in any configuration c(n). Consequently,
each cell applies the local rule fT given by (1) which means that Fb(c(n)) = c(n+1) for all
n ∈ Z. Because the NUCA Fb has a fixed point configuration . . . q q q . . . that this orbit
never reaches, the NUCA is not nilpotent. It is not even equicontinuous since the state q
spreads to the left, so that changing in configuration c(0) the state of any cell i > 0 to q
causes a change in the trace τ0 of cell 0 in the orbit of c(0).

Let us prove next that all periodic distributions yield a nilpotent NUCA. Let b ∈ { f , g}Z
be periodic so that for some even number m > 0 we have σm(b) = b. Let M be the number
provided by Lemma 1(c) for this number m.

We claim that in NUCA Fb every initial configuration becomes the q-uniform configura-
tion q̃ within 2M steps. Suppose the contrary: for some c ∈ SZ and cell k ∈ Z we have that
F2M
b (c)(k) �= q . Let us denote c(n) = Fn

b (c) for n ≥ 0, and let t ∈ SZ
2
be a two-dimensional

configurationwhose consecutive diagonals contain consecutive configurations of the forward
orbit of c. More precisely, t(n+ i, i) = c(n)

i for all n ≥ 0 and i ∈ Z, and the values t(n+ i, i)
for n < 0 may be chosen arbitrarily.

We have that t(2M + k, k) �= q . Because states q spread with speed one to the left, we
then also have that

t(x, y) �= q when M + k ≤ x ≤ 2M + k and k ≤ y ≤ k + M . (9)

This means that t(x, y) for M+k ≤ x < 2M+k and k ≤ y < k+M form an M×M square
that is correctly tiled by T . By Lemma 1(c) there are two rows in this square at distancem that
contain an element of A and an element of B, respectively. Since distribution b has period
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m, both rows correspond to cells that apply the same local rule, f or g. In any case, one of
these cells enters state q by the special update rule (8). This means that t(x, y) = q for some
x, y in the intervals M + k ≤ x ≤ 2M + k and k ≤ y ≤ k + M , which contradicts (9). We
conclude that NUCA Fb is nilpotent. ��

5 Conclusions

The paper deals with temporal periodicity and nilpotency in non-uniform one-dimensional
CA. Some significant differences can be seen between non-uniform and uniform CA. In
contrast to the classical uniform case, there are NUCAs—even reversible equicontinuous
ones—that do not have any temporally periodic points. Moreover, whether a given NUCA
has any temporally periodic points turns out to be undecidable. The undecidability holds for
NUCAs with very simple rule distributions so it is not due to non-recursiveness hidden in the
distribution. Whether undecidability holds also for bijective or reversible NUCAs remains
for future study.

We also considered the effect of local rule distributions on nilpotency of NUCAs. Using
Robinson’s aperiodic tile set we showed that there is a pair of local rules such that some
distribution of the rules defines a non-nilpotent NUCA even though every periodic distri-
bution leads to a nilpotent NUCA. We proved, however, for any collection of local rules
that nilpotency on all periodic distributions implies nilpotency on all eventually periodic
distributions.
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