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Abstract
We study the factor complexity and closure properties of automatic sequences based on

Parry or Bertrand numeration systems. These automatic sequences can be viewed as general-
izations of the more typical k-automatic sequences and Pisot-automatic sequences. We show
that, like k-automatic sequences, Parry-automatic sequences have sublinear factor complexity
while there exist Bertrand-automatic sequences with superlinear factor complexity. We prove
that the set of Parry-automatic sequences with respect to a fixed Parry numeration system is
not closed under taking images by uniform substitutions or periodic deletion of letters. These
closure properties hold for k-automatic sequences and Pisot-automatic sequences, so our re-
sult shows that these properties are lost when generalizing to Parry numeration systems and
beyond. Moreover, we show that a multidimensional sequence is U -automatic with respect
to a positional numeration system U with regular language of numeration if and only if its
U -kernel is finite.

1 Introduction
Roughly speaking, an automatic sequence is an infinite word over a finite alphabet such that
its nth symbol is obtained as the output given by a deterministic finite automaton fed with the
representation of n in a suitable numeration system. Precise definitions are given in Subsection 2.2.

If we consider the usual base-k numeration systems, then we get the family of k-automatic
sequences [1]. These words are images under a coding of a fixed point of a substitution of constant
length. On a larger scale, if one considers abstract numeration systems based on a regular language
(see for instance [4, Chap. 3] or [20]), then we get exactly the family of morphic words. Morphic
words are images under a coding of a fixed point of an arbitrary substitution. Between these
two extremes, we have the automatic sequences based on Pisot, Parry, and Bertrand numeration
systems (the definitions are given in Subsection 2.1), and we have the following hierarchy:

Integer base systems ⊊ Pisot systems ⊊ Parry systems
⊊ Bertrand systems with a regular numeration language ⊊ Abstract numeration systems.

Abstract numeration systems are uniquely based on the genealogical ordering of the words belong-
ing to a regular language. This is contrasting with the more restricted case, treated in this paper,
of positional numeration systems based on an increasing sequence of integers: a digit occurring in
nth position is multiplied by the nth element of the underlying sequence.

E-mail addresses: a.massuir@uliege.be (A. Massuir), r@turambar.org (J. Peltomäki), m.rigo@uliege.be (M.
Rigo).
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The Pisot-automatic sequences behave in many respects like k-automatic sequences. Most
importantly, in both cases automatic sets have a characterization in terms of first-order logic.
This characterization in the k-automatic case is due to Büchi [6], and it was generalized to the
Pisot case by Bruyère and Hansel [5]; also see [20, Chap. 3] and the references therein. Now by
using the logical characterization, it is particularly straightforward to show that both the class of
k-automatic sequences and the class of Pisot-automatic sequences enjoy many closure properties.
For instance, both classes are closed under taking images by a uniform substitution and under
periodic deletion of letters. For k-automatic sequences, these are classical results of Cobham [7].
The proofs of these results presented in [1, Chap. 6.8] are straightforward to generalize to Pisot-
automatic sequences given the logical characterization of [5]. For more closure properties, see [1,
Chap. 6.8].

In this paper, we study if some properties common to k-automatic sequences and Pisot-
automatic sequences also hold for Parry-automatic sequences or more general automatic sequences.
In a sense, we show that the generalization to Pisot numeration systems is the broadest possible
generalization if the goal is to preserve the many good properties of k-automatic sequences.

It has been known before that a logical characterization no longer exists for Parry-automatic
sequences. This is follows from [11, Example 3]; we shall return to this matter in Section 4. We
show that the closure properties mentioned above break when generalizing from Pisot to Parry
and obtain as a corollary yet another proof showing that no logical characterization indeed exists
for these sequences.

In combinatorics on words and in symbolic dynamics, the factor complexity of infinite words is
often of interest. It was famously shown by Pansiot [17] that the factor complexity of an infinite
word generated by a substitution is in one of the following five classes: O(1), Θ(n), Θ(n log log n),
Θ(n log n), or Θ(n2). Previously, it has been known that the factor complexity of a k-automatic
sequence is sublinear (that is, it is in O(1) or Θ(n)) [7], [1, Thm. 10.3.1]. We extend this result
and show that the factor complexity of any Parry-automatic sequence is sublinear. In contrast,
we show by an explicit example that there exists a Bertrand-automatic sequence of superlinear
complexity.

A well-known result concerning k-automatic sequences is their characterization in terms of
the k-kernel originally due to Eilenberg [8]. This was generalized in [19] for all sequences associ-
ated with abstract numeration systems. The multidimensional version of this generalization [19,
Prop. 32] however needs an additional assumption that is not required in the k-automatic case. We
show in this paper that this additional assumption is unnecessary also for positional numeration
systems with a regular numeration language.

This paper is organized as follows. In Section 2, we recall needed results and notation on
numeration systems and automatic sequences. Then in Section 3 we study the factor complexity
of Parry-automatic sequences, and in Section 4, we show that the closure properties of Pisot-
automatic sequences do not hold for Parry-automatic sequences. The paper is concluded by
Section 5, where the relationship of U -automaticity and the finiteness of the U -kernel is studied
in the multidimensional setting.

2 Basics
2.1 Background on Numeration Systems
For general references on numeration systems and words, we refer the reader to [4, 15, 20]. Let
us first consider the representation of integers. A positional numeration system, or simply, a
numeration system, is an increasing sequence U = (Un)n≥0 of integers such that U0 = 1 and
CU := supn≥0⌈Un+1/Un⌉ < +∞. We let AU be the integer alphabet {0, . . . , CU − 1}. The greedy
representation of the positive integer n is the word repU (n) = wℓ−1 · · ·w0 over AU satisfying

ℓ−1∑
i=0

wi Ui = n, wℓ−1 ̸= 0, and ∀j ∈ {1, . . . , ℓ},
j−1∑
i=0

wi Ui < Uj .
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Figure 1: The canonical automaton accepting {0, 1, 2}∗({ε} ∪ 3 0∗).

We set repU (0) to be the empty word ε. The language repU (N) is called the numeration language.
A set X of integers is U -recognizable if repU (X) is regular, i.e., accepted by a finite automaton.
The numerical value valU : Z∗ → N maps a word dℓ−1 · · · d0 over any alphabet of integers to the
number

∑ℓ−1
i=0 diUi.

Recall that the genealogical ordering orders words from a language first by length and then by
the lexicographic ordering (induced, in this paper, typically by the natural order of the digits).

Definition 2.1. A numeration system U is a Bertrand numeration system if, for all w ∈ A+
U ,

w ∈ repU (N) if and only if w0 ∈ repU (N).

Example 1. The usual base-k numeration system (kn)n≥0 is a Bertrand numeration system. Taking
F0 = 1, F1 = 2, and Fn+2 = Fn+1 + Fn for n ≥ 0 gives the Fibonacci numeration system
F = (Fn)n≥0, which is a Bertrand numeration system: repF (N) = 1{0, 01}∗ ∪ {ε}. If we slightly
modify the Fibonacci system by taking the initial conditions U0 = 1, U1 = 3, we get a numeration
system (Un)n≥0 = (1, 3, 4, 7, 11, 18, 29, 47, . . .), which is no longer a Bertrand system. Indeed, 2 is
the greedy representation of an integer but 20 is not because repU (valU (20)) = 102.
Example 2. The numeration system B given by the recurrence Bn = 3Bn−1 + 1 for all n ≥ 1 and
B0 = 1 is such that 0∗ repB(N) = {0, 1, 2}∗({ε} ∪ 3 0∗); see [13, p. 131]. The automaton accepting
the language 0∗ repB(N) is depicted in Figure 1. By its simple form, it is obvious that it is a
Bertrand numeration system. Notice that the sequence (Bn)n≥0 also satisfies the homogeneous
linear recurrence Bn = 4Bn−1 − 3Bn−2.

There is a link between the representation of integers and the representation of real numbers.
Let β > 1 be a real number. The β-expansion of a real number x ∈ [0, 1] is the sequence
dβ(x) = (xi)i≥1 ∈ Nω that satisfies

x =

+∞∑
i=1

xiβ
−i

and which is the maximal element in Nω having this property with respect to the lexicographic
order over N. Notice that β-expansions can be obtained by a greedy algorithm and they only
contain letters (digits) over the alphabet Aβ = {0, . . . , ⌈β⌉ − 1}. By Fact(Dβ), we denote the set
of finite factors occurring in the β-expansions of the real numbers in [0, 1).

Definition 2.2. If dβ(1) = t1 · · · tm0ω, with t1, . . . , tm ∈ Aβ and tm ̸= 0, then we say that dβ(1)
is finite and we set d∗β(1) = (t1 · · · tm−1(tm−1))ω. Otherwise, we set d∗β(1) = dβ(1). An equivalent
definition is to set d∗β(1) = limx→1− dβ(x). When d∗β(1) is (ultimately) periodic, then β is said to
be a Parry number.

Definition 2.3. Let β > 1 be a real number such that d∗β(1) = (ti)i≥1. The numeration system
Uβ = (Un)n≥0 canonically associated with β is defined by

Un = t1Un−1 + · · ·+ tnU0 + 1, ∀n ≥ 0. (1)

As a consequence of Bertrand’s theorem, see [3] or [4, Chap. 2], the numeration system Uβ

associated with β satisfies

0∗ repUβ
(N) = Fact(Dβ). (2)
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Thus for all β > 1, the canonical numeration system Uβ associated with β is a Bertrand numeration
system because w ∈ Fact(Dβ) if and only if w0 ∈ Fact(Dβ) for all w ∈ A∗

β .
Remark 1. If β is a Parry number, then the canonical numeration system Uβ satisfies a linear
recurrence equation with integer coefficients which can be obtained from (1).

Definition 2.4. A numeration system U is a Parry numeration system if there exists a Parry
number β such that U = Uβ .

Example 3. Consider the Golden mean β = (1+
√
5)/2. We have dβ(1) = 11 and d∗β(1) = (10)ω, so

the Golden mean is a Parry number. It is straightforward to deduce from (1) that the associated
Parry numeration system is the Fibonacci system of Example 1 defined by the recurrence Fn+2 =
Fn+1 + Fn and the initial conditions F0 = 1, F1 = 2.

Lemma 2.5. The set of Parry numeration systems is a strict subset of the set of Bertrand
numeration systems.

Proof. We have already deduced from (2) that Parry numeration systems are Bertrand numeration
systems. Now consider the Bertrand system B = (Bn)n≥0 of Example 2. We will show that there
is no β > 1 such that B = Uβ . Proceed by contradiction. Assume that there exists β such that
B is the numeration system canonically associated with β. The greatest word of length n for
the lexicographical order in 0∗ repB(N) is 30n−1. Consequently, we have 1 = 3/β. The Parry
numeration system U3 is the classical base-3 system and 0∗ repU3

(N) = {0, 1, 2}∗, which differs
from 0∗ repB(N). This is a contradiction.

Theorem 2.6 (Parry [16]). A sequence x = (xi)i≥1 over N is the β-expansion of a real number
in [0, 1) if and only if (xn+i)i≥1 is lexicographically less than d∗β(1) for all n ≥ 0.

As a consequence of this result, with any Parry number β is canonically associated a deter-
ministic finite automaton Aβ = (Qβ , qβ,0, Fβ , Aβ , δβ) accepting the language Fact(Dβ). Otherwise
stated, the numeration language of a Parry numeration system is regular. This automaton Aβ

has a special form. Let d∗β(1) = t1 · · · ti(ti+1 · · · ti+p)
ω where i ≥ 0 and p ≥ 1 are the minimal

preperiod and period respectively. The set of states of Aβ is Qβ = {qβ,0, . . . , qβ,i+p−1}. All states
are final. For every j ∈ {1, . . . , i+ p}, we have tj edges qβ,j−1 → qβ,0 labeled by 0, . . . , tj − 1 and,
for j < i+ p, one edge qβ,j−1 → qβ,j labeled by tj . There is also an edge qβ,i+p−1 → qβ,i labeled
by ti+p. See, for instance, [12, 20]. Note that in [15, Thm. 7.2.13], Aβ is shown to be the trim
minimal automaton of Fact(Dβ).
Remark 2. Let β be a Parry number. The automaton Aβ is well-known to be primitive (see, e.g.,
[14, Chap. 3]). Indeed, the periodic part of d∗β(1) contains at least a nonzero digit. Consequently,
there is a path from every state of Aβ to the initial state qβ,0. Moreover, there is a loop on qβ,0
with label 0. Hence Aβ is irreducible (i.e., strongly connected) and aperiodic (the gcd of length
of the cycles going through any state is 1). The conclusion follows.

A Pisot number is an algebraic integer β > 1 whose conjugates have modulus less than 1. A
Salem number is an is an algebraic integer β > 1 whose conjugates have modulus less than or
equal to 1 and at least one has modulus equal to 1. If β is a Pisot number, then Uβ has many
interesting properties [5, 10, 20]: repUβ

(N) is regular, normalization w 7→ repUβ
(valUβ

(w)) (and
thus addition) is computable by a finite automaton, and Uβ-recognizable sets are characterized in
terms of first order logic.

Definition 2.7. A numeration system U is a Pisot numeration system if there exists a Pisot
number β such that U = Uβ .

Remark 3. Pisot numbers are Parry numbers [2, 21], so Pisot numeration systems belong to the
set of Parry numeration systems. The numeration system (4) studied in Section 4 is Parry but not
Pisot, so this inclusion is strict. Further, the Fibonacci numeration system of Example 1 is a Pisot
numeration system because the Golden mean (the largest root of the polynomial X2 −X − 1) is a
Pisot number. As this numeration system is clearly not a base-k numeration system, we see that
base-k numeration systems are strictly included in Pisot numeration systems.
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Remark 4. Let B be the set of Bertrand numeration systems. Let R be the set of numeration
systems U whose numeration language repU (N) is regular. The three sets B ∩R, B \R and R\B
are nonempty. For instance, the modified Fibonacci system of Example 1 belongs to R \ B. All
Parry numeration systems and the Bertrand system of Example 2 belong to B ∩R.

If β is not a Parry number, for instance when β is transcendental, then the numeration language
repUβ

(N) is not regular even though Uβ is a Bertrand system. Hence B \ R is nonempty.
We will often make the assumption that we are dealing with positional numeration systems

U such that repU (N) is regular. This is particularly important when we will deal with finite U -
kernels in Section 5. This assumption is in fact somewhat restrictive. In [22], Shallit proves that
if repU (N) is regular, then (Un)n≥0 must satisfy a homogeneous linear recurrence.

2.2 Automatic Sequences
Definition 2.8. Let U be a numeration system. An infinite word x = (xn)n≥0 over an alphabet B
is U -automatic, i.e., it is an U -automatic sequence, if there exists a complete DFAO (deterministic
finite automaton with output) (Q, q0, AU , δ, τ) with transition function δ : Q×AU → Q and output
function τ : Q→ B such that δ(q0, 0) = q0 and

xn = τ(δ(q0, repU (n))), ∀n ≥ 0.

The infinite word x is k-automatic (resp. Parry-automatic, Bertrand-automatic) if U = (kn)n≥0

for an integer k ≥ 2 (resp. U is a Parry numeration system, resp. U is a Bertrand numeration
system). Properties of Parry-automatic sequences are discussed in [9].

The next result is classical, see for instance [18].
Theorem 2.9. Let U be a numeration system such that repU (N) is regular. An infinite word
x = (xn)n≥0 over A is U -automatic if and only if, for all a ∈ A, the set {j ≥ 0 | xj = a} is
U -recognizable.

Let k ≥ 2 be an integer. The k-kernel of an infinite word x = (xn)n≥0 over A is the set of its
subsequences of the form

{(xken+d)n≥0 ∈ AN | e ≥ 0, 0 ≤ d < ke}.

Observe that an element of the k-kernel is obtained by considering those indices whose base-k
expansions end with repk(d) (possibly preceded by some zeroes to get a suffix of length e). With
this in mind, we introduce the more general U -kernel of an infinite word.
Definition 2.10. Let U be a numeration system and s ∈ A∗

U be a finite word. Define the ordered
set of integers

Is := valU (0
∗ repU (N) ∩A∗

Us) = {i(s, 0) < i(s, 1) < · · · }. (3)

Depending on s, it is possible for this set to be finite or empty. The U -kernel of an infinite word
x = (xn)n≥0 over B is the set

kerU (x) := {(xi(s,n))n≥0 | s ∈ A∗
U}.

With the above remark, this set can contain finite or even empty subsequences.
The next two results have been obtained in the general framework of abstract numeration

systems; see [19, Prop. 7] and [19, Prop. 9].
Proposition 2.11. Let U be a numeration system such that repU (N) is regular. A word x is
U -automatic if and only if its U -kernel is finite.
Proposition 2.12. Let U be a numeration system. If an infinite word is U -automatic, then it is
reversal-U -automatic, i.e., its nth term is obtained by reading the reversal of repU (n) in a DFAO.

Notice that the proof of the latter result only relies on classical constructions on automata
defined from the DFAO generating the U -automatic sequence. The same construction applies in
multidimensional setting, and we shall make use of this in Section 5.
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3 Factor Complexity
The factor complexity function px(n) of an infinite word x counts the number of factors of length
n occurring in x. For more on factor complexity, see [4, Chap. 3].

Let us recall the following result of Cobham.

Proposition 3.1. [7], [1, Thm. 10.3.1] The factor complexity function of a k-automatic sequence
is sublinear.

Next we generalize this result. For the proof, we need the following definition and result.

Definition 3.2. Let σ : A∗ → A∗ be a substitution. If there exists a number α, α ≥ 1, such that
|σn(a)| = Θ(αn) for all a ∈ A, then we say that σ is quasi-uniform.

Proposition 3.3. [17], [4, Thm. 4.7.47] The factor complexity of a fixed point of a quasi-uniform
substitution is sublinear.

Theorem 3.4. The factor complexity function of a Parry-automatic sequence is sublinear.

Proof. Let U be a Parry numeration system having canonical automaton A, and let x be an U -
automatic sequence generated by a DFAO B. The product automaton A×B has QA×B := QA×QB
as set of states, the initial state q0 is the pair made of the initial states of A and B, and the transition
function is given by

δA×B((q, q
′), i) = (δA(q, i), δB(q

′, i)).

We consider the automaton A×B as a DFAO by setting that the output function τ maps a state
(qA, qB) of A× B to the output of the state qB of B. It is clear that x is generated by A× B.

Based on the automaton A×B, we can build a substitution σ and consider the output function
τ as a coding such that x = τ(σω(q)) for some q ∈ QA×B. The construction is classical, see for
instance [20, Lemma 2.28]. The substitution σ is defined as follows

σ((qA, qB)) = (δA(qA, 0), δB(qB, 0))(δA(qA, 1), δB(qB, 1)) · · · (δA(qA, CU − 1), δB(qB, CU − 1)).

In the latter expression, since A is in general not complete, if δA(qA, j) is undefined, then
(δA(qA, j), δB(qB, j)) is replaced by ε. Notice that the substitution σ is defined over the alphabet
QA×B. Since A × B has a loop with label (0, 0) on its initial state q0, iterating σ on this state
generates the sequence of states σω(q0) in A × B reached from the initial state by the words of
repU (N) in genealogical order.

Since every state of a canonical automaton of a Parry numeration system is final, the coding τ is
non-erasing. Then by [4, Lemma 4.6.6], the factor complexity of x is at most the factor complexity
of σω(q0), so it is sufficient to show that a fixed point of σ has sublinear complexity. This is
accomplished as follows. First we establish that there exists a number α such that |σn(q)| = Θ(αn)
for every state q ∈ QA×B. In other words, we show that the substitution σ is quasi-uniform. It
then follows from Proposition 3.3 that the factor complexity of a fixed point of σ is sublinear.

Let us define a projection mapping φ : QA×B → QA by setting φ((qA, qB)) = qA if (qA, qB) is a
state of A×B. By the definition of the product automaton A×B, we have φ(δA×B((qA, qB), a)) =
δA(φ((qA, qB)), a) for all letters a and all states qA and qB.

Recall that given an automaton C with adjacency matrix Adj(C), the entry (Adj(C))ni,j counts
the number of distinct paths of length n from state i to state j; see [14, Chap. 2]. Let (qA, qB) be
a state of A × B and consider all paths of length n starting from this state. These paths can be
identified with their edge labels. Given such a path with edge label w, we find by applying the
projection mapping φ a path in A with edge label w starting at the state qA. Conversely, given a
path of length n in A with edge label w starting at state qA, there exists a path with edge label w
in A× B starting at the state (qA, qB) because the automaton B is complete (see Definition 2.8).
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Denoting the total number of paths of length n starting at a state q of A× B by Kq(n), we have
thus argued that

Kq(n) =
∑

r∈QA×B

(Adj(A× B))nq,r =
∑

s∈QA

(Adj(A))nφ(q),s.

The canonical automaton of a Parry numeration system is primitive (recall Remark 2), we have
for each i and j that ((Adj(A))ni,j = Θ(αn), where α is the Perron–Frobenius eigenvalue of A.
Thus Kq(n) = Θ(αn). By rephrasing the number Kq(n) in terms of substitutions, we have
|σn(q)| = Kq(n). Hence |σn(q)| = Θ(αn), and we are done.

Notice that in fact we showed in the proof of Theorem 3.4 that for each Parry-automatic
sequence x there exists a coding τ and a quasi-uniform substitution σ such that x = τ(σω(a)) for
a letter a. This should be contrasted with the fact that k-automatic sequences are codings of fixed
points of uniform substitutions.

From Lemma 2.5, there exist Bertrand numeration systems that are not Parry numeration
systems. We show that Theorem 3.4 does not generalize to Bertrand-automatic sequences.

Theorem 3.5. There exists a Bertrand-automatic sequence with superlinear factor complexity.

Proof. Consider the numeration system given by the recurrence Bn = 3Bn−1 +1 with B0 = 1. In
Example 2, it was shown that this numeration system is a Bertrand numeration system.

The substitution associated with the canonical automaton, depicted in Figure 1, is σ : a 7→
aaab, b 7→ b; see in the proof of Theorem 3.4 how this substitution is defined. Let x be the infinite
fixed point of σ. Observe that x is a Bertrand-automatic sequence. It is easy to see that abna
occurs in x for all n ≥ 0. Thus x is aperiodic and there exists infinitely many bounded factors
occurring in x (a factor is w bounded if the sequence (|σn(w)|)n≥0 is bounded). It follows by
Pansiot’s theorem [17] that the factor complexity of x is quadratic; see also [4, Thm. 4.7.66].

We do not have examples of Bertrand-automatic sequences with factor complexities Θ(n log log n)
or Θ(n log n).

4 Closure Properties
It is easy to see that the image of a k-automatic sequence x ∈ Aω under a substitution µ : A→ B∗

of constant length ℓ is again a k-automatic sequence. Indeed, Theorem 2.9 implies that for all
a ∈ A there exists a first-order formula φa(n) in ⟨N,+, Vk⟩ which holds if and only if x[n] = a.
Let us then define for each b ∈ B a formula ψb(n) that holds if and only if µ(x)[n] = b. For each n
there exist unique q and r such that 0 ≤ r < ℓ and n = ℓq + r. For each a ∈ A, we can construct
a formula σa(r) that holds if and only if µ(a) contains the letter b at position r (indexing from 0).
Setting

ψb(n) = (∃q)(∃r < ℓ)(n = ℓq + r ∧
∨
a∈A

(φa(q) ∧ σa(r)))

certainly has the desired effect. Notice that this is indeed a formula in ⟨N,+, Vk⟩ since ℓ is constant.
Therefore it follows from Theorem 2.9 that µ(x) is k-automatic. For a proof not based on logic,
see [1, Cor. 6.8.3].
Example 4. Assume A = {a, b}, B = {c, d}, ℓ = 3 and set µ(a) = ccd, µ(b) = dcd. In this case,
the formula ψc(n) is given by

(∃q)(∃r < 3)(n = 3q + r ∧ [(φa(q) ∧ (r = 0 ∨ r = 1)) ∨ (φb(q) ∧ r = 1)]).

The same construction can be applied to numeration systems canonically associated with a
Pisot number [5]. Here, we show that this closure property does not hold for Parry-automatic
sequences.
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Theorem 4.1. There exists a Parry numeration system U such that the class of U -automatic
sequences is not closed under taking image by a uniform substitution.

Throughout this section, we shall consider a specific numeration system U given by the recur-
rence

Un = 3Un−1 + 2Un−2 + 3Un−4 (4)

with initial values U0 = 1, U1 = 4, U2 = 15, and U3 = 54 (it is from [11, Example 3]). The
characteristic polynomial has two real roots β and γ and two complex roots with modulus less
than 1. We have β ≈ 3.61645 and γ ≈ −1.09685. Thus from the basic theory of linear recurrences,
we obtain that Un ∼ cβn for some constant c. The characteristic polynomial of the recurrence
is the minimal polynomial of β so, in particular, γ is an algebraic conjugate of β. Since |γ| > 1,
the number β is neither a Pisot number nor a Salem number. It is however a Parry number, as it
is readily checked that dβ(1) = 3203. Thus U is a Parry numeration system. Moreover, we have
U = Uβ . Recall that repU (N) is regular as this holds for all Parry numeration systems.

Consider the characteristic sequence x of the set {Un | n ≥ 0}:

x = 0100100000000001000000000000 · · · .

From Theorem 2.9, this sequence is U -automatic. We consider the constant length substitution
µ : 0 7→ 0t, 1 7→ 10t−1 with t ≥ 4. Observe that µ(x) is the characteristic sequence of {tUn |
n ≥ 0}. The multiplier 4 is the first interesting value to consider because for j = 2, 3 we have
repU ({jUn | n ≥ 0}) = j0∗, and we trivially get U -recognizable sets. Our aim is to show that µ(x)
is not U -automatic (see Corollary 4.4). This will prove Theorem 4.1.

We begin with an auxiliary result that is of independent interest.

Proposition 4.2. Let r ≥ 2 be an integer. If t is an integer such that 4 ≤ t ≤ ⌊βr⌋, then the
β-expansion of the number t/βr is aperiodic.

For the proof, we need the following technical lemma, which is obtained by adapting [21,
Lemma 2.2] to our situation. Since β is an algebraic number of degree 4, it is well-known that
every element in Q(β) can be expressed as a polynomial in β of degree at most 3 with coefficients
in Q.

Lemma 4.3. Let x ∈ [0, 1) ∩Q(β), and write

x = q−1
3∑

i=0

piβ
i

for integers q and pi. If dβ(x) is ultimately periodic, then

q−1
3∑

i=0

piγ
i =

∞∑
i=1

dβ(x)[i]γ
−i.

Proof of Proposition 4.2. Let us first make the additional assumption that t ≥ ⌈βr−1⌉ and prove
the result in this case. Set x = t/βr = q−1

∑3
i=0 piβ

i, and assume for a contradiction that dβ(x)
is ultimately periodic. Write dβ(x) = d1d2 · · · . Since β and γ are conjugates,

t

γr
= q−1

3∑
i=0

piγ
i

and it follows from Lemma 4.3 that

t

γr
=

∞∑
i=1

diγ
−i.
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In other words, for any positive integer k, we have

t =

∞∑
i=1

diγ
−i+r = S1,k + Sk+1,∞, (5)

where Sm,n :=
∑n

i=m diγ
−i+r. Since γ is negative and di ≤ 3 for all i ≥ 1, we have

Sr+1,∞ =

∞∑
i=1

di+rγ
−i ≤ 3

∞∑
i=1

γ−2i =
3γ−2

1− γ−2
< 15. (6)

Similarly by discarding the odd terms and estimating di ≤ 3, we obtain

S1,r =

r−1∑
i=0

dr−iγ
i ≤ 3(1− γ2(k+1))

1− γ2
, (7)

where k is the largest integer such that 2k ≤ r−1. Combining (5), (6), and (7) with our assumption
t ≥ ⌈βr−1⌉, we obtain that

βr−1 <
3(1− γ2(k+1))

1− γ2
+ 15 (8)

The left side of (8) clearly increases faster than the right side when r → ∞ since β ≈ 3.62 and
γ2 ≈ 1.20. Using these approximations, it is straightforward to compute that for r = 4 the left
side of (8) is approximately 47 while the right side is only approximately 22. Hence it must be
that r ≤ 3.

We are thus left with a few cases we have to deal with separately. The idea is the same, but
we need to actually compute some digits di. Suppose first that r = 3. Like previously, we see that
S4,∞ ≤ 3γ−4/(1−γ−2) < 12.28. Since 14 = ⌈β2⌉ ≤ t ≤ ⌊β3⌋ = 47, by enumerating all possibilities
for the word d1d2d3 (within the given range for t), we see that f(t) = t− S1,3 is minimized when
t = ⌈β2⌉ = 14.

t dβ(t/β
3) t− S1,3

14 100 · · · 12.797
15 101 · · · 12.797
16 102 · · · 12.797
17 110 · · · 16.894
18 111 · · · 16.894
...

...
...

44 311 · · · 40.488
45 312 · · · 40.488
46 313 · · · 40.488
47 320 · · · 45.584

Figure 2: Values of t− S1,3

In this case, d1d2d3 = 100 and t−S1,3 > 12.79. This contradicts (5). Suppose then that r = 2.
We proceed as above, but now we are interested in the number t− S1,12 instead. By enumerating
all possibilities, we see that t−S1,12 is minimized for t = ⌈β⌉ = 4. Then d1 · · · d12 = 101111202300
and t− S1,12 > 5.38. Since S13,∞ < 5, we get a contradiction.

Suppose finally that 4 ≤ t < ⌈βr−1⌉. For r = 2, we have already proven the claim because
⌈β⌉ = 4, so we may suppose that r > 2. As t < βr−1, we see that β · t/βr < 1 meaning that
d1 = 0. Thus d2d3 · · · is the β-expansion of t/βr−1. Inductively it follows that this expansion is
aperiodic, and we are done.
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1 1 0
2 1 0 1
3 1 0 1 1
4 1 0 1 1 1
5 1 0 1 1 1 1
6 1 0 1 1 1 1 2
7 1 0 1 1 1 1 2 0
8 1 0 1 1 1 1 2 0 3
9 1 0 1 1 1 1 2 0 2 3
10 1 0 1 1 1 1 2 0 2 3 0

Table 1: Representations of the first 4Un.

We now have tools to prove that the set {tUn | n ≥ 0} is not U -recognizable for t ≥ 4.

Corollary 4.4. The set {tUn | n ≥ 0} is not U -recognizable for t ≥ 4. In other words, its
characteristic sequence µ(x) is not U -automatic.

Proof. Let t ≥ 4, and suppose that ⌈βr−1⌉ ≤ t ≤ ⌊βr⌋ for some r ≥ 2. Recall that Un ∼ cβn for
some positive constant c. By some simple asymptotic analysis, it is easy to see that Un+r−1 <
tUn < Un+r for n large enough. Hence, for n large enough, repU (tUn) is a word of length n + r
(starting with a nonzero digit). Let k > 0. We show that, for large enough n, repU (tUn) and
dβ(t/β

r) have the same prefix of length k. See Table 1 for an example. Assume that

repU (tUn) = d1 · · · dkdk+1 · · · dn+r.

The extremal values for dk+1 · · · dn+r are 0n+r−k and (possibly) repU (Un+r−k − 1) due to the
greediness of the representations. Hence

0 ≤ tUn − d1Un+r−1 − · · · − dkUn+r−k < Un+r−k.

Dividing by Un+r and letting n tend to infinity, we get

0 ≤ t

βr
− d1
β

− · · · − dk
βk

<
1

βk
.

Otherwise stated, the first k digits of dβ(t/βr) are d1 · · · dk.
Now proceed by contradiction and assume that repU ({tUn | n ≥ 0}) is accepted by a finite

deterministic automaton. By a classical pumping argument, there exist x, y, z ∈ A∗
U , with y

nonempty, such that xyjz is accepted by this automaton for all j ≥ 0. Hence, dβ(t/βr) should be
of the form xyω contradicting Proposition 4.2.

Corollary 4.4 is interesting because it shows that addition in U is not computable by a finite
automaton, i.e., its graph is not a regular language. Indeed, if this was the case, then surely mul-
tiplication by any constant would be computable by a finite automaton contrary to Corollary 4.4.
This result is not new; it already appears in [11, Example 3]. The conclusion is that addition in
a Parry numeration system is not necessarily computable by a finite automaton. This shows in
particular that Parry-recognizable sets do not have a characterization based on first-order logic
like Pisot-recognizable sets have. This is a considerable defect of Parry numeration systems that
are not Pisot.

Let us then describe why a word obtained from a k-automatic sequence by periodically deleting
letters is still k-automatic. Suppose that x is a k-automatic sequence over A, and let y be the
word obtained from x by keeping only the letters at positions 0, t, 2t, 3t, . . . for a fixed integer
t ≥ 2. In other words, we have y[n] = x[tn]. As mentioned at the beginning of this section, for
each a ∈ A, there exists a first-order formula φa(n) in ⟨N,+, Vk⟩ such that it holds if and only if

10



x[n] = a. By substituting n by tn in φa(n), we obtain a new first-order formula in ⟨N,+, Vk⟩ such
that it holds if and only if y[n] = a. It follows from Theorem 2.9 that y is k-automatic. Again, a
similar construction works in the Pisot case. See also [1, Thm. 6.8.1].

Let us next show that the class of U -automatic sequences is not closed under periodic deletion.
Consider the characteristic sequence y of the set {Un/2 | n ≥ 0 and Un is even}:

y = 0010000000000000000000000001 · · · .

This sequence y is obtained from the characteristic sequence x of the set {Un | n ≥ 0} by
removing its every second letter. Indeed, y[n] = x[2n] hence y[n] = 1 if and only if 2n belongs to
{Uj | j ≥ 0}. We will show that y is not U -automatic, which will prove the following theorem.

Theorem 4.5. There exists a Parry numeration system U such that the class of U -automatic
sequences is not closed under periodic deletion.

Let us begin with the following result.

Proposition 4.6. The β-expansion of 1/2 is aperiodic.

Proof. Assume for a contradiction that dβ(1/2) = d1d2 · · · is ultimately periodic. As in the proof
of Proposition 4.2, we obtain that

1

2
=

∞∑
i=1

diγ
−i = S1,k + Sk+1,∞,

where Sr,s =
∑s

i=r diγ
−i. It can be computed that d1 · · · d21 = 123102303001010220123. This

computation actually needs some extra accuracy. It is sufficient to know that 3.61645454325 are
correct initial digits for β. Using this information on d1 · · · d21, it is computed that

S1,21 < −2.20.

Since γ is negative and di ≤ 3 for all i ≥ 1, we obtain that

S22,∞ ≤ 3γ−22

1− γ−2
< 2.33.

The two preceding inequalities show that 1/2 < −2.20+2.33 = 0.13, which is obviously absurd.

Interestingly the β-expansion of 1/3 is ultimately periodic. Indeed, it can be shown that
dβ(1/3) = 10(2212)ω.

Corollary 4.7. The set {Un/2 | n ≥ 0 and Un is even} is not U -recognizable. In other words, its
characteristic sequence y is not U -automatic.

Proof. We follow steps similar to those of the proof of Corollary 4.4. From (4), it is clear that
Un−1 < ⌊Un/2⌋ < Un for n > 1, so that repU (⌊Un/2⌋) is a word of length n. Let k > 0. We show
that, for large enough n, repU (⌊Un/2⌋) and dβ(1/2) have the same prefix of length k. Assume
that

repU (⌊Un/2⌋) = d1 · · · dkdk+1 · · · dn.

Again, the extremal values for dk+1 · · · dn are 0n−k and (possibly) repU (Un−k − 1) due to the
greediness of the representations. Therefore

0 ≤ ⌊Un/2⌋ − d1Un−1 − · · · − dkUn−k < Un−k.

Clearly ⌊Un/2⌋/Un
n→∞−−−−→ 1/2 so, dividing by Un and letting n tend to infinity, we obtain

0 ≤ 1

2
− d1
β

− · · · − dk
βk

<
1

βk
.
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Thus the first k digits of dβ(⌊Un/2⌋) are d1 · · · dk. This means that the words of the language
repU ({Un/2 | n ≥ 0 and Un is even}) share longer and longer prefixes with dβ(1/2).

The results follows by an argument similar to the final paragraph of the proof of Corollary 4.4:
if repU ({Un/2 | n ≥ 0 and Un is even}) is accepted by a finite deterministic automaton, then
dβ(1/2) is ultimately periodic, and this is impossible by Proposition 4.6.

Notice that the proof in fact shows that the set {⌊Un/2⌋ | n ≥ 0} is not U -recognizable.
Even though y is not U -automatic, we suspect that the word obtained from x, the characteristic
sequence of {Un | n ≥ 0}, by keeping only the letters at indices that are divisible by 3 is U -
automatic. This would follow from our conjecture that repU ({Un/3 | n ≥ 0 and Un ≡ 0 (mod 3)})
equals 11 + 10(2212)∗(3 + 23 + 222 + 2213), but we have not attempted to prove this rigorously.
Notice that Un is divisible by 3 when n ≥ 2.

5 Multidimensional sequences
By Proposition 2.11, an infinite word is U -automatic with respect to a numeration system U
with repU (N) regular if and only its U -kernel is finite. Moreover, this is true more generally
for abstract numeration systems. The generalization of this result to multidimensional sequences
x = (xm,n)m,n≥0 [19, Prop. 32] is however slightly problematic as an extra assumption on the
projections (xk,n)n≥0 and (xm,k)m≥0 is required. This extra assumption is however unnecessary
for positional numeration systems considered in this paper. We did not find this fact in the
literature, and this section is devoted to filling this gap.

For the sake of simplicity of presentation, we limit our presentation to two-dimensional se-
quences. We will consider finite automata reading pairs of digits. In particular, a pair of words
can be read only if the two components have the same length. With positional numeration sys-
tems, when considering two representations of different length, then the shorter is padded with
leading zeroes. For general abstract numeration systems an additional padding letter needs to be
added, and this causes some complications.

Definition 5.1. Let U be a numeration system. A 2-dimensional word x = (xm,n)m,n≥0 over an
alphabet B is U -automatic if there exists a complete DFAO (Q, q0, AU ×AU , δ, τ) with transition
function δ : Q× (AU ×AU )

∗ → Q and output function τ : Q→ B such that δ(q0, (0, 0)) = q0 and

xm,n = τ(δ(q0, (0
ℓ−| repU (m)| repU (m), 0ℓ−| repU (n)| repU (n)))), ∀m,n ≥ 0,

where ℓ = max{| repU (m)|, | repU (n)|}. The 2-dimensional word x is k-automatic (resp. Parry-
automatic, Bertrand-automatic) if U = (kn)n≥0 for an integer k ≥ 2 (resp. U is a Parry numeration
system, U is a Bertrand numeration system).

Definition 2.10 is extended as follows (we make use of the notation i(s, n) introduced therein).

Definition 5.2. The U -kernel of a 2-dimensional word x = (xm,n)m,n≥0 over B is the set

kerU (x) := {(xi(s,m),i(t,n))m,n≥0 ∈ BN2

| s, t ∈ A∗
U , |s| = |t|}.

Let us then state and prove the result mentioned above.

Proposition 5.3. Let U be a numeration system such that the numeration language repU (N) is
regular. A 2-dimensional word x = (xm,n)m,n≥0 is U -automatic if and only if its U -kernel is
finite.

Proof. Let x = (xm,n)m,n≥0 be a 2-dimensional word. From [19, Prop. 32], we already know that
if x is U -automatic, then its U -kernel is finite because the result holds for all abstract numeration
systems. We only need to prove the converse.

We let K denote the U -kernel of x and suppose that it is finite. For s ∈ A∗
U , define

L(s) := 0∗ repU (N) · s−1 = {w ∈ A∗
U | ws ∈ 0∗ repU (N)}.
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By assumption 0∗ repU (N) is regular, so it follows from the Myhill–Nerode theorem that the set
of right quotients

J := {L(s) | s ∈ A∗
U}

is finite. Let us define a DFAO M with state set

Q := J × J ×K,

transition function δ, output function τ , and initial state

q0 := (0∗ repU (N), 0∗ repU (N), (xm,n)m,n≥0) =
(
L(ε),L(ε), (xi(ε,m),i(ε,n))m,n≥0

)
.

For a state q = (L(s),L(t), (xi(s,m),i(t,n))m,n≥0) in Q, with |s| = |t|, and each pair (a, b) of digits
in AU ×AU , we set

δ(q, (a, b)) = (L(as),L(bt), (xi(as,m),i(bt,n))m,n≥0).

For other types of states, i.e., (L(s),L(t), (xi(s′,m),i(t′,n))m,n≥0) with s ̸= s′ or t ̸= t′, we leave the
transition function undefined as it is clear that such states are not reachable from the initial state
q0.

We have to check that the transition function δ is well-defined. Assume that

(L(s),L(t), (xi(s,m),i(t,n))m,n≥0) = (L(s′),L(t′), (xi(s′,m),i(t′,n))m,n≥0)

with |s| = |t| and |s′| = |t′|. For all (a, b) ∈ AU ×AU , we need to show that

(L(as),L(bt), (xi(as,m),i(bt,n))m,n≥0) = (L(as′),L(bt′), (xi(as′,m),i(bt′,n))m,n≥0).

For the first two components, the result follows from the definition: L(as) = L(s) · a−1 for any
letter a. For the third component, we want to prove that xi(as,m),i(bt,n) = xi(as′,m),i(bt′,n) for all
m,n ≥ 0. We know that L(s) = L(s′), L(t) = L(t′), and xi(s,m),i(t,n) = xi(s′,m),i(t′,n) for all
m,n ≥ 0. Enumerate the words of L(s) \ 0A∗

U in genealogical order ≺:

L(s) \ 0A∗
U = {rs,0 ≺ rs,1 ≺ rs,2 ≺ · · · }.

Similarly, we write

L(t) \ 0A∗
U = {rt,0 ≺ rt,1 ≺ rt,2 ≺ · · · }.

Note that if s is a suffix occurring in a valid U -representation, then rs,0 = ε; similarly for rt,0. Let
j, k ≥ 0. Since rs,j and rs,k do not start with a zero digit, we have

rs,j ≺ rs,k ⇔ valU (rs,j0
|s|) < valU (rs,k0

|s|),

and an analogous equivalence holds for rt,j and rt,k. The subsequence (xi(s,m),i(t,n))m,n≥0 is the
same as the sequence

(xvalU (rs,ms),valU (rt,nt))m,n≥0

because by definition (3), i(s,m) (resp. i(t, n)) is the mth (resp. nth) integer belonging to
Is = valU (0

∗ repU (N) ∩ A∗
Us) (resp. It). Notice that words in L(s) (resp. L(t)) starting with

0 do not provide any new indices. So when building the subsequence, we can limit ourselves to
words not starting with 0. If we select in L(s) \ 0A∗

U all words ending with a, we get exactly
(L(as) \ 0A∗

U )a, which is equal to (L(as′) \ 0A∗
U )a because L(as) = L(as′). Let m ≥ 0 and ras,m

be the mth word in L(as) \ 0A∗
U . Suppose that the mth word in (L(as) \ 0A∗

U )a, which is ras,ma,
occurs as the kth word rs,k in L(s)\0A∗

U . Then rs,k also occurs as the kth word rs′,k in L(s′)\0A∗
U .

With our notation, we have

ras,ma = rs,k, valU (ras,mas) = valU (rs,ks), and i(as,m) = i(s, k) = i(s′, k).
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We can make similar observations for the other component. Supposing that rbt,n = rt,ℓ for some
ℓ, we thus have

xi(as,m),i(bt,n) = xi(s,k),i(t,ℓ) = xi(s′,k),i(t′,ℓ) = xi(as′,m),i(bt′,n),

where the central equality comes from our initial assumption. Therefore we have shown that δ is
well-defined.

From our definition of the transition function δ, the accessible part of M is limited to states q
of the form

(L(s),L(t), (xi(s,m),i(t,n))m,n≥0)

with |s| = |t|. For such a state q, we set

τ(q) = xi(s,0),i(t,0).

Notice that the preceding arguments show that τ is also well-defined. To conclude the proof, let
us show that if s, t are two words of the same length in 0∗ repU (N), then

τ(δ(q0, (s
R, tR))) = xvalU (s),valU (t),

where sR and tR respectively denote the reversals of the words s and t. Reading (sR, tR) from q0
leads to the state (L(s),L(t), (xi(s,m),i(t,n))m,n≥0). Since s, t ∈ 0∗ repU (N), we have that ε belongs
to L(s) and L(t). It is clear that i(s, 0) = valU (s) and i(t, 0) = valU (t).

We have thus proved that x is reversal-U -automatic. It follows from Proposition 2.12 (which
also holds in the multidimensional setting) that x is U -automatic.
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