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Abstract
We study optimal stopping of strongMarkov processes under random implementation
delay. By random implementation delay we mean the following: the payoff is not
realised immediately when the process is stopped but rather after a random waiting
period. The distribution of the randomwaiting period is assumed to be phase-type. We
prove first a general result on the solvability of the problem. Then we study the case of
Coxian distribution both in general and with scalar diffusion dynamics in more detail.
The study is concluded with two explicit examples.

Keywords Implementation delay · Time to build · Optimal stopping · Strong Markov
process · Phase-type distributions · Markov chain · Diffusion · Resolvent operator

1 Introduction

Optimal stopping problems are widely used in economic and financial applications.
One of themost notable application is the real options approach to investment planning,
for a textbook treatment of the topic, see, e.g., Dixit and Pindyck (1994). Since the
late 1970’s, this approach has been used to study broad variety of economic planning
problems, such as corporate strategy (Myers 1977; Ross 1978; Dixit and Pindyck
1995; Panayi and Trigeorgis 1998; Alvarez and Stenbacka 2001), land and real estate
development (Grenadier 1996; Titman 1985; Williams 1993; Capozza and Li 1994),
and natural resources investment (Brennan and Schwartz 1985; Paddock et al. 1988;
Schwartz 1997). In many of these applications, the option mechanism in the real
investment opportunity is the same as in financial options and can be studied by
modeling it as an optimal stopping problem.The task is then to determine an investment
rule which maximizes the expected present value of the total investment revenue. In
the classical treatment of these problems, see, e.g., McDonald and Siegel (1986),
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Dixit and Pindyck (1994), it is assumed that once the investment decision is made, the
project starts to deliver cash flows immediately. In practice, this is often not the case as
most capital projects take a significant time to complete, Bar-Ilan and Strange (1996),
Kydland and Prescott (1982). This completion period is usually called time-to-build,
implementation delay or delivery lag.

The effect of a implementation delay to optimal policy is broadly studied in the
literature. The most straightforward way to model the implementation delay is to
assume that it is simply a constant, see Aïd et al. (2015), Bar-Ilan and Strange (1996),
Bar-Ilan and Sulem (1995). The paper (Bar-Ilan and Strange 1996) is concerned with
a classical timing problem of irreversible investment problem in the style of Dixit
(1989), whereas Aïd et al. (2015) analyses capacity expansion subject to time to build
under the objective of social surplus maximisation. The paper (Bar-Ilan and Sulem
1995) analyzes a continuous-time inventory systemwith fixed delivery lag. In Alvarez
and Keppo (2002) the delivery lag is modelled as a function of the state variable at
the time of the investment. Here, a lump sum is paid when the investment is made and
the investment revenue accrues once the delivery lag depending on the value of the
state variable at the time of the investment has elapsed. Investment timing subject to
inter-temporally controllable investment rate is studied in Majd and Pindyck (1987).
More precisely, the investor is appraising the real option with respect to the uncertain
future revenue and chooses whether to engage the investment. It is assumed that the
investment rate is uniformly bounded, this causes the time to build. Now, the time to
build is a random but endogenous in the sense that it is a result of the implemented
investment policy. The effect of time to build for a levered firm is studied in Sarkar
and Zhang (2015). It is assumed in this paper, in the style of Margsiri et al. (2008),
that a fixed proportion of the investment cost is payed at time when the investment is
engaged and the rest is paid once the implementation period is elapsed. The length
of the period is determined by the revenue process, it is the time that it takes the
process to reach the the level that is a fixed percentage higher than the state at which
the investment is made. The implementation period is random and endogenous also
in this case.

The implementation delay can also be modelled as an exogenous random variable.
This approach is taken in Lempa (2012b), where the implementation delay is a random
variable independent of the state process and exponentially distributed. This allows the
usage of resolvent formalism which can be applied in a general Markov setting. The
current study is an extension of Lempa (2012b). Indeed, we assume that the imple-
mentation delay is again independent but has now a general phase-type distribution.
Phase-type distributions have been broadly applied in different fields such as sur-
vival analysis (Aalen 1995), healthcare systems modelling (Fackrell 2009), insurance
applications (Bladt 2005), queuing theory (Breure and Baum 2005), and population
genetics (Hobolth et al. 2018). These distributions are a class of matrix exponential
distributions that have a Markovian realisation: they can be identified as the absorp-
tion times of certain continuous time Markov chains. We use this connection in our
analysis as follows: once the state process is stopped, the exogenous continuous time
Markov chain is initiated and the payoff paid out at the time of absorption of this chain
depends on the value of the state process at that time. This analysis, which is new to
our best knowledge, generalises significantly the results of Lempa (2012b).
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Phase-type distributions offer a flexible and convenient model for random time
lags. Indeed, it is well known, see, e.g., Breure and Baum (2005), that phase-type
distributions are dense in the class of probability distributions on R+. Furthermore,
there exists well-developed methodology for estimating the parameters of phase-type
distributions, see, e.g., He (2014). As we will see, the Markov realisation of the phase-
type distribution allows us to work the Markov theory of diffusion to derive closed
form characterisations of the optimal solution. All of these aspects of the paper at hand
add to the applicability of the results.

The remainder of the paper is organised as follows. In Sect. 2 we present the
optimal stopping problem. In Sect. 3 our main result on the solvability of the problem
is presented. We study the case of Coxian distribution in more detail in Sect. 4. The
Coxian distribution case is solved in Sect. 5 with scalar diffusion dynamics. Section 6
wraps up the study with two explicit examples.

2 The optimal stopping problem

In this sectionwepresent the optimal stoppingproblem.Let (�,F ,F,P)be a complete
filtered probability space satisfying the usual conditions, where F = {Ft }t≥0, see
Borodin and Salminen (2015), p. 2. We assume that the underlying X is a strong
Markov process defined on (�,F ,F,P) and taking values in E ⊆ Rd for some
d ≥ 1 with the initial state x ∈ E . We take E = (a1, b1) × · · · × (ad , bd), where
−∞ ≤ ai < bi ≤ ∞ for all i = 1, . . . , d. As usual, we augment the state space E
with a topologically isolated element� if the process X is non-conservative. Then the
process X can be made conservative on the augmented state space E� := E ∪ {�},
see Borodin and Salminen (2015), p. 4. In what follows, we drop the superscript �

from the notation. By convention, we augment the definition of functions g on E with
g(�) = 0.

Denote as Px the probability measure P conditioned on the initial state x and as
Ex the expectation with respect to Px . The process X is assumed to evolve under
Px and the sample paths are assumed to be right-continuous and left-continuous over
stopping times meaning the following: if the sequence of stopping times τn ↑ τ , then
Xτn → Xτ Px -almost surely as n → ∞. There is a well-established theory of standard
optimal stopping for this class of processes, see Peskir and Shiryaev (2006).

For r > 0, we denote by Lr
1 the class of real valued measurable functions f on

E satisfying the integrability condition Ex
[∫∞

0 e−r t | f (Xt )| dt
]

< ∞ for all x ∈ E .
For a function f ∈ Lr

1, the resolvent Rr f : E → R is defined as (Rr f )(x) =
Ex
[∫∞

0 e−rs f (Xs)ds
]
for all x ∈ E . Denote p repeated applications of Rr to the

function g as (R(p)
r g).

Under this probabilistic setting, we study the following optimal stopping problem.
We want to find a stopping time τ ∗ which maximizes the expected discounted value of
the payoff τ �→ g(Xτ+ζ ). Here, the function g is the payoff function and the variable
ζ is a phase-type distributed random time - specific assumptions on g are made later.
We define next phase-type distributions. Phase-type distributions are particular cases
of matrix-exponential distributions, see, e.g., He (2014), which admit a Markovian
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representation. To bemore precise, letY be a continuous timeMarkov chain defined on
(�,F ,P;F) and taking values values on the set (0, 1, 2, . . . , p). The states 1, . . . , p
are transient and the state 0 is absorbing. Then Y has an intensity matrix of the form

� =
(
0 0
t T

)
,

where T is a p-dimensional real square matrix (the subgenerator of Y ), t is a p-
dimensional column vector and 0 is a p-dimensional row vector of zeros. Since the
intensities of rows must sum to zero, we find that t = −Te, where e is a column vector
of 1’s. Let π = (π1, . . . , πp) denote the initial distribution of Y over the transient
states only. Then we say that the time of absorption ζ = inf {t ≥ 0 : Xt = 0} has a
phase-type distribution and write ζ ∼ PH(π ,T).

Denote as Px,π the probability measure P conditioned on the initial state x and
initial distribution π . The expectation with respect to Px,π in denoted as Ex,π . Now,
the optimal stopping problem can be expressed as follows:

V (x) = sup
τ

Ex,π

[
e−r(τ+ζ )g(Xτ+ζ )1{τ<∞}

]
, (2.1)

where τ varies over F-stopping times and r is the discount rate. We denote an optimal
stopping time as τ ∗. Probabilistically, the problem (2.1) can be interpreted as follows.
At the initial time t = 0, we choose choose a stopping rule described by the stopping
time τ . When τ is realized, the Markov chain Y is initiated from the distribution π

and the payoff is realized when Y is absorbed. The payoff is thus uncertain and we
can regard Y as an additional source of noise driving the payoff.

3 Themain result

In this section, we prove our main result on the solvability of the optimal stopping
problem (2.1). We make the following assumption on the structure of the matrix T.

Assumption 3.1 The eigenvalues of subgenerator T are real and strictly negative

The Assumption 3.1 covers a variety of interesting cases of T. For instance, the
matrix T can be a triangular matrix with strictly negative diagonal entries. Thus it
covers, for example, the following distributions of ζ :

1. Exponential and mixtures of exponentials with mutually distinct rates λi ,
2. Hyperexponential and hypoexponential distribution,
3. Coxian distribution,
4. Erlang-distribution,

see, e.g., Stewart (2009). We prove first an auxiliary result.

Lemma 3.2 Let g ∈ Lr
1 and m = 0, 1, 2, . . . . Then

Ex

[∫ ∞

0
e−rssmg(Xs)ds

]
= m!(R(m+1)

r g)(x).
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Proof We establish the case m = 2, the claim follows by induction. By changing the
order of integration and invoking Chapman–Kolmogorov, we obtain

∫ ∞

0
e−rss

∫

E
g(y)p(x, y; s)ds

=
∫ ∞

0
e−rs

∫ s

0
du
∫

E
g(y)p(x, y; s)ds

=
∫ ∞

0

∫ ∞

u
e−rs

∫

E
g(y)p(x, y; s)dsdu

=
∫ ∞

0

∫ ∞

0
e−r(v+u)

∫

E
g(y)p(x, y; v + u)dvdu

=
∫ ∞

0

∫ ∞

0
e−r(v+u)

∫

E
g(y)

∫

E
p(x, dz; u)p(z, dy; v)dvdu

=
∫ ∞

0
e−ru

∫

E
p(x, dz; u)

(∫ ∞

0
e−rv

∫

E
g(y)p(z, dy; v)dv

)
du,

which concludes the proof. �

The next theorem is the main result of this section.

Theorem 3.3 Let Assumption 3.1 hold. In addition, assume that the payoff g : E → R
is in L1

r , satisfies the condition S+ := {x : g(x) > 0} �= ∅ and the process X
reaches a point yx ∈ S+ with positive probability for all initial states x. Furthermore,
assume that there exist an r-harmonic function h : E → R+ such that the function
x �→ g(x)

h(x) is bounded. Then the value function V exists and can be identified as the

least r-excessive majorant of the function gπ : x �→ ∑
i, j,k πi (Rr+μ j g)(x)α

i
jk tk for

some coefficients α, where π = (π1, . . . , πp), t = (t1, . . . , tp), and the elements
−μ j < 0 are the eigenvalues of T. Furthermore, an optimal stopping time τ ∗

λ exists
and can be expressed as τ ∗

λ = inf{t ≥ 0 : Xt ∈ 	∗
λ} where 	∗

λ = {x : V (x) =∑
i, j,k πi (Rr+μ j g)(x)α

i
jk tk}.

Proof It is known from Bladt (2005), that the density f of ζ reads as f (s) = πeTst,
where t = −Te. Denote the eigenvalues T as −μ1, . . . ,−μk , k ≤ p, with corre-
sponding multiplicities a1, . . . , ak , where a1 + · · · + ak = p. There exists a linear
change of coordinates S such that

T = S

⎛

⎜⎜⎜
⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 · · · · · · Ak

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
:=A

S−1,
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see Teschl (2012), Ch. 3. Here, the diagonal blocks

Ai =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

μi 1 0 · · · 0
0 μi 1 · · · 0
...

...
. . .

. . .
...

0 0
. . . μi 1

0 0 0 · · · μi

⎞

⎟
⎟⎟⎟⎟⎟
⎠

= μi I + Ni

areai×ai -matrices, and thematrixNi satisfiesN
ai
i = 0, for i = 1, . . . , k. Furthermore,

the matrix exponent eTs = SeAsS−1. We readily verify that

eAs =

⎛

⎜⎜⎜
⎝

eA1 0 · · · 0
0 eA2 · · · 0
...

...
. . .

...

0 · · · · · · eAk

⎞

⎟⎟⎟
⎠

, where eAi = e−μi s
ai−1∑

m=0

Nk
ms

m

m! .

Therefore the entries of thematrix eTs are linear combinations of the functions s �→
e−μ j s sm , j = 1, . . . , k and m = 0, . . . , a j − 1, that is,

(
eTs
)
in = ∑k

j=1
∑a j−1

m=0 sm +
e−μ j sαi

jmn . Finally, the density f can be expressed as

f (s) =
p∑

i,n=1

k∑

j=1

a j−1∑

m=0

πi e
−μ j s smαi

jmntn . (3.1)

Since X is strong Markov, the identity

Ex

[
e−r(τ+s)g(Xτ+s)

]
= Ex

[
e−rτEXτ

[
e−rsg(Xs)

]]
,

holds for all s ≥ 0. By integrating this expression over the positive reals with respect
to s with weight f given by (3.1) we obtain

Ex,π

[
e−r(τ+ζ )g(Xτ+ζ )

]

= Ex

[
e−rτEXτ ,π

[∫ ∞

0
e−rsg(Xs) f (s)ds

]]

= Ex

⎡

⎣e−rτ
p∑

i,n=1

πi

k∑

j=1

a j−1∑

m=0

EXτ

[∫ ∞

0
sme−(r+μ j )sg(Xs)ds

]
αi
jmntn

⎤

⎦ .

By Lemma 3.2

Ex

[∫ ∞

0
sme−(r+μ j )sg(Xs)ds

]
= m!(R(m+1)

r+μ j
g)(x).
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By lumping the factorial coefficients together with constants α and still denoting the
resulting constants by α, we obtain

Ex,π

[
e−r(τ+ζ )g(Xτ+ζ )

]
= Ex

⎡

⎣e−rτ
p∑

i,1=1

πi

k∑

j=1

a j∑

m=1

(R(m)
r+μ j

g)(Xτ )α
i
jmntn

⎤

⎦ .

Since the numbers μ j are strictly negative, we can rewrite the resolvent (R
(m)
r+μ j

g)
as

(R(m)
r+μ j

g)(x) = Ex

⎡

⎣
∫ ∞

0
e−μ j t

(R(m−1)
r+μ j

g)(Xt )

h(Xt )
e−r t h(Xt )

h(x)
dt

⎤

⎦ h(x)

=
⎛

⎝Rh
μ j

(R(m−1)
r+μ j

g)

h

⎞

⎠ (x)h(x),

where Rh is the resolvent of the Doob’s h-transform Xh , see Borodin and Salminen
(2015), p. 34. Using this, we rewrite our optimal stopping problem as

V (x) = sup
τ

Eh
x

⎡

⎣
p∑

i,n=1

πi

k∑

j=1

a j−1∑

m=0

(R(m)
r+μ j

g)(Xτ )

h(Xτ )
αi
jmntn1{τ<∞}

⎤

⎦ h(x)

= sup
τ

Eh
x

⎡

⎣
p∑

i,n=1

πi

k∑

j=1

a j−1∑

m=0

⎛

⎝Rh
μ j

(R(m−1)
r+μ j

g)

h

⎞

⎠ (Xτ )α
i
jk tk1{τ<∞}

⎤

⎦ h(x).

Since −μ j < 0 for all j and the family (Rh
λ)λ>0 is a contraction resolvent, we find

that
∥∥∥∥
∥∥

⎛

⎝Rh
μ j

(R(m−1)
r+μ j

g)

h

⎞

⎠

∥∥∥∥
∥∥
u

≤ 1

μ j

∥∥∥∥
∥∥

(R(m−1)
r+μ j

g)

h

∥∥∥∥
∥∥
u

= 1

μ j

∥
∥∥∥∥∥

⎛

⎝Rh
μ j

(R(m−2)
r+μ j

g)

h

⎞

⎠

∥
∥∥∥∥∥
u

≤ · · · ≤ 1

μm
j

∥∥∥
g

h

∥∥∥
u

< ∞.

where ‖ · ‖u denotes the sup-norm, i.e., ‖ f ‖u = supx∈E | f (x)|. Thus the payoff

x �→ ∑p
i,n=1 πi

(

Rh
μ j

(R(m−1)
r+μ j

g)

h

)

(x)αi
jk tk is uniformly bounded and, in particular,

continuous. The claim follows now from Peskir and Shiryaev (2006), Thrm. I.2.7. �
Theorem 3.3 gives a weak set of conditions under which the optimal stopping

problem (2.1) has a well-defined solution and an optimal stopping time exists. These
conditions essentially mean that the optimal stopping region is not empty and that the
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payoff function g cannot grow too fast, even though it can be unbounded. Note that
by Theorem 3.3, we can rewrite the optimal stopping problem (2.1) as

Vπ (x) = sup
τ

Ex
[
e−rτgπ (Xτ )1{τ<∞}

]
. (3.2)

This is the form of the problem we will study in what follows. We point out that
the payoff function gπ can be expressed as

gπ (x) = Ex
[
e−rζ g(Xζ )

]
, (3.3)

where ζ ∼ PH(π ,T).

4 Case study I: Coxian distribution

The purpose of this section is to analyze the optimal stopping problem (3.2) in more
detail when the absorption time has a Coxian distribution.More precisely, we compute
a representation for the payoff function (3.3) that lends itself to explicit computations
in the next section. To this end, assume that the number of transient states of Y is
p. The process Y is then started from the state 1, therefore the initial distribution
π = (1, 0, . . . , 0). The subgenerator of Y is then written as

T =

⎛

⎜⎜
⎜
⎝

−(λ1 + λ12) λ12 0 · · · 0
0 −(λ2 + λ23) λ23 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λp

⎞

⎟⎟
⎟
⎠

. (4.1)

The quantities λi (resp. λi,i+1) are the absorption intensities (resp. transition inten-
sities from state i to i+1). The time of absorption ζ has a nowCoxian distribution, see,
e.g., Bladt (2005). We remark that t = (λ1, . . . , λp)

ᵀ. Furthermore, the eigenvalues
−μi = −(λi + λi,i+1) for i = 1, . . . , p − 1, and −μp = −λp.

We study the function

gπ : x �→
∑

j,k

(Rr+μ j g)(x)α jkλk,

where the coefficients α jk are implicitly defined in the proof of Theorem 3.3. To
determine these constants, we first find that the matrix S of the eigenvectors of T reads
as
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S =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 λ12
μ1−μ2

· · · ∏p−2
i=1

λi,i+1
μi−μp−1

∏p−1
i=1

λi,i+1
μi−μp

0 1 · · · ∏p−2
i=2

λi,i+1
μi−μp−1

∏p−1
i=2

λi,i+1
μi−μp

...
...

. . .
...

...

0 0 · · · 1
λp−1,p

μp−1−μp

0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

where the i th column is the eigenvector corresponding to the eigenvalue −μi . Thus

SeDs =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

e−μ1s λ12
μ1−μ2

e−μ2s · · · ∏p−2
i=1

λi,i+1
μi−μp−1

e−μp−1s
∏p−1

i=1
λi,i+1
μi−μp

e−μps

0 e−μ2s · · · ∏p−2
i=2

λi,i+1
μi−μp−1

e−μp−1s
∏p−1

i=2
λi,i+1
μi−μp

e−μps

...
...

. . .
...

...

0 0 · · · e−μp−1s λp−1,p
μp−1−μp

e−μps

0 0 · · · 0 e−μps

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

where D = diag(−μ1, . . . ,−μp). Since S is upper unitriangular, the inverse S−1 is
also upper unitriangular. More specifically, we readily verify that

S−1 =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 −λ12
μ1−μ2

· · · ∏p−2
i=1

−λi,i+1
μ1−μi+1

∏p−1
i=1

−λi,i+1
μ1−μi+1

0 1 · · · ∏p−2
i=2

−λi,i+1
μ2−μi+1

∏p−1
i=2

−λi,i+1
μ2−μi+1

...
...

. . .
...

...

0 0 · · · 1
−λp−1,p
μp−1−μp

0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Therefore the matrix exponential

eTs = SeDsS−1 =

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

e−μ1s b12(s) · · · b1,p−1(s) b1p(s)

0 e−μ2s · · · b2,p−1(s) b2p(s)

...
...

. . .
...

...

0 0 · · · e−μp−1s bp−1,p(s)

0 0 · · · 0 e−μps

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

,

where the element

bmn(s) =
n−1∏

i=m

λi,i+1

n∑

j=m

e−μ j s
∏n

k=m
k �= j

(μk − μ j )
, m < n,
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568 J. Lempa

for m = 2, . . . , p. By substituting this to the definition of the density f , we find

f (s) = πeTst = e−μ1sλ1 +
p∑

j=2

b1 j (s)λ j

= e−μ1sλ1 +
p∑

k=2

⎛

⎜
⎝

k−1∏

i=1

λi,i+1

k∑

j=1

e−μ j s

∏k
l=1
l �= j

(μl − μ j )

⎞

⎟
⎠ λk .

From this expression, we obtain the coefficients α:

α jk =
k−1∏

i=1

λi,i+1

⎛

⎜⎜
⎝

k∏

l=1
l �= j

(μl − μ j )

⎞

⎟⎟
⎠

−1

, j = 1, . . . , p, k ≥ max( j, 2),

α11 = 1. (4.2)

Having the coefficients α at our disposal, we proceed with the derivation of the
payoff function gπ . Let A = (α jk) and denote the vector of resolvents (Rr+μ j g),
j = 1, . . . , p, as r. Then the analysis above implies that

gπ (x) = rᵀAt(x)

= λ1(Rr+μ1g)(x) +
p∑

k=2

⎛

⎜
⎝

k−1∏

i=1

λi,i+1

k∑

j=1

(Rr+μ j g)(x)
∏k

l=1
l �= j

(μl − μ j )

⎞

⎟
⎠ λk . (4.3)

for all x ∈ E . We use the following lemma; this result can be regarded as a general-
ization of the resolvent equation.

Lemma 4.1 For each k = 2, . . . , p, the following holds:

k∑

j=1

(Rr+μ j g)(x)
∏k

l=1
l �= j

(μl − μ j )
= (Rr+μ1Rr+μ2 · · · Rr+μk g)(x),

for all x ∈ E.

Proof For all j = 1, . . . , k, letUj ∼ Exp(μ j ). Let Sk = ∑k
j=1Uj . Since the elements

μ j are distinct,wefind by using the formula for the distribution of Sk fromRoss (2010),
p. 309 that

123



Some results on optimal stopping under phase-type distributed… 569

Ex

[
e−r Sk g(XSk )

]
= Ex

⎡

⎢
⎣
∫ ∞

0
e−r t g(Xt )

k∏

i=1

μi

k∑

j=1

e−μ j t

∏k
l=1
l �= j

(μl − μ j )
dt

⎤

⎥
⎦

=
k∏

i=1

μi

k∑

j=1

(Rr+μ j g)(x)
∏k

l=1
l �= j

(μl − μ j )
.

On the other hand, since X is strong Markov, we find that

Ex

[
e−r Sk g(XSk )

]
= Ex

[
e−r Sk−1EXSk−1

[
e−rUk g(XUk )

]]

= Ex

[
e−r Sk−1μk(Rr+μk g)(XSk−1)

]

= Ex

[
e−r Sk−2μkμk−1(Rr+μk−1Rr+μk g)(XSk−2)

]

= . . .

=
k∏

i=1

μi (Rr+μ1Rr+μ2 · · · Rr+μk g)(x),

proving the claim. �
We can now rewrite the expression (4.3) using Lemma 4.1 to obtain the following

result.

Proposition 4.2 Assume that subgenerator T of Y is given by (4.1). Then

gπ (x) = λ1(Rr+μ1g)(x) +
p∑

k=2

k−1∏

i=1

λi,i+1λk(Rr+μ1Rr+μ2 · · · Rr+μk g)(x), (4.4)

for all x ∈ E.

The expression (4.4) has a natural interpretation. Denote the time of absorption
from state i as Ai and time of transition from state i to state i + 1 as Ci . For each
k, define the random time Tk = ∑k−1

i=1 Ci + Ak on the set where the process Y is
absorbed from state k - for k = 1, obviously T1 = A1. Then

gπ (x) = λ1

μ1
μ1(Rr+μ1g)(x)

+
p∑

k=2

k−1∏

i=1

λi,i+1

μi

λk

μk
(μ1Rr+μ1μ2Rr+μ2 · · · μk Rr+μk g)(x)

=
p∑

k=1

Ex

[
e−rTk g(XTk )

] k−1∏

i=1

P(Ci < Ai )P(Ck > Ak).
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This representation of the value is in line with the law of total probability. Indeed,
the payoff is obtained as the sum over all paths of the process Y where the payoff cor-
responding to each realization is expected present value of the variable g(X) sampled
at the time of absorption Tk determined by this particular realization. The times Tk are
sums of mutually independent exponentially distributed random times conditional on
a particular realization.

5 Case study II: Coxian distribution with scalar diffusion dynamics

In this section, we elaborate the results of the previous section in the case where
the process X follows a scalar diffusion. More precisely, we assume that the state
process X evolves on R+ and follows the regular linear diffusion given as the weakly
unique solution of the Itô equation dXt = μ(Xt )dt + σ(Xt )dWt , X0 = x . Here, W
is a Wiener process on (�,F ,F,P) and the real valued functions μ and σ > 0 are
assumed to be continuous. Using the terminology of Borodin and Salminen (2015),
the boundaries 0 and∞ are either natural, entrance-not-exit, exit-not-entrance or non-
singular. In the case a boundary is non-singular, it is assumed to be either killing or
instantaneously reflecting, see Borodin and Salminen (2015), pp. 18–20. As usually,
we denote as A = 1

2σ
2(x) d2

dx2
+ μ(x) d

dx the second order linear differential operator
associated to X . Furthermore, we denote as, respectively, ψr > 0 and ϕr > 0 the
increasing and decreasing solution of the ODE Au = ru, where r > 0, defined
on the domain of the characteristic operator of X . By posing appropriate boundary
conditions depending on the boundary classification of the diffusion X , the functions
ψr and ϕr are defined uniquely up to a multiplicative constant and can be identified
as the minimal r -excessive functions, see (Borodin and Salminen 2015, pp. 18 –
20). Finally, we define the speed measure m and the scale function S of X via the
formulaæ m′(x) = 2

σ 2(x)
eB(x) and S′(x) = e−B(x) for all x ∈ R+, where B(x) :=

∫ x 2μ(y)
σ 2(y)

dy, see Borodin and Salminen (2015), p. 17.

We know from the literature that for a given f ∈ Lr
1 the resolvent Rr f can be

expressed as

(Rr f )(x) = B−1
r ϕr (x)

∫ x

0
ψr (y) f (y)m

′(y)dy

+B−1
r ψr (x)

∫ ∞

x
ϕr (y) f (y)m

′(y)dy, (5.1)

for all x ∈ R+, where Br = ψ ′
r (x)

S′(x) ϕr (x) − ϕ′
r (x)
S′(x) ψr (x) denotes the Wronskian deter-

minant, see Borodin and Salminen (2015), p. 19.
We consider the optimal stopping problem

Vπ (x) = sup
τ

Ex
[
e−rτgπ (Xτ )1{τ<∞}

]
. (5.2)
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where the payoff

gπ (x) = λ1

μ1
μ1(Rr+μ1g)(x)

+
p∑

k=2

k−1∏

i=1

λi,i+1

μi

λk

μk
(μ1Rr+μ1μ2Rr+μ2 · · · μk Rr+μk g)(x). (5.3)

The following proposition is the main result of this section.

Proposition 5.1 Let the assumptions of Theorem 3.3 be met. In addition, assume that

(A) the function g is stochastically C2, that is, continuous and twice continuously
differentiable outside of a countable set D that has no accumulation points,

(B) the function g(x)
ψr (x)

attains a maximum at an interior point x̂ ,
(C) the function (A − r)g is non-increasing,
(D) the limiting condition (A−r)(Rr+μg)(0+) := limx→0+(A−r)(Rr+μg)(x) > 0

holds for all μ > min{μi }, where μi are the eigenvalues of the subgenerator T.

Then there is a unique x∗ which maximizes the function x �→ gπ (x)
ψr (x)

. The state x∗ is
the optimal stopping threshold for the optimal stopping problem (5.2) and the value
function Vπ can be expressed as

Vπ (x) =
{
gπ (x), x ≥ x∗,
gπ (x∗)
ψr (x∗) ψr (x), x ≤ x∗.

(5.4)

Remark 5.2 By assumption (A), we have

d

dx

(
g(x)

ψr (x)

)
= S′(x)

ψ2
r (x)

∫ x

0
ψr (z)(A − r)g(z)m′(z)dz.

Thus, by assumption (B), a threshold x0 < x̂ such that (A−r)g(x) � 0, when x � x0.

Example 5.3 We present a set of suffients conditions for the assumptions (A)–(D) of
Proposition 5.1. Assume that the function g is

(1) non-negative and non-decreasing with g(0+) = 0,
(2) piecewise linear with a finite number corner points.

These assumptions cover various option-like payoffs such as g(x) = (x − K )+. Now
the assumption (A) is clearly satisfied. The function ψr is known to be increasing. If
it is furthermore assumed to convex, as it is for instance for GBM (see Alvarez (2003)
for general conditions for convexity of ψr ), then the assumption (B) is also satisfied.
With regard to assumption (C), we find by assuming sufficient regularity that

l(x) = (A − r)g(x) = μ(x)g′(x) − rg(x) = μ(x)ck − rg(x),

for some constant ck > 0. Thus l ′(x) = ck(μ′(x) − r) < 0 whenever μ′(x) < r for
all x , that is, the growth rate of the drift function must be uniformly bounded by the
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rate of discounting. This condition is not very severe and is satisfied for reasonable
parameter configurations byGBMand variousmean-reverting diffusions such asCox–
Ingersoll–Ross and Verhulst–Pearl processes. Finally, since (A − r)(Rr+μg)(x) =
μ(Rr+μg)(x) − g(x), we find that the condition of assumption (D) is satisfied in this
case.

An even simpler payoff structure g(x) = x − K is also covered by (A)-(D). In
comparison to (1) and (2), g(0+) is now negative and we cannot argue as above
for (D) to hold. Assume now, that the function μ is non-negative at origin. Then
(A− (r + μ))g(0+) = μ(0+) − (r + μ)g(0+) > 0 for all μ > 0 and, consequently,
the assumption (D) holds.

Remark 5.4 Proposition 5.1 gives sufficient conditions for the existence of a one-
sided optimal stopping rule. Analogous conditions that would result in two-sided rules
could most likely be provided. Indeed, as Remark 5.2 points out, the function g is r -
subharmonic for on (0, x0). On the other hand, if we assume that g is r -subharmonic
on an interval (a, b), where 0 < a < b < ∞, then we would be likely to work out
a set of assumptions such the resulting optimal continuation region is (z∗, y∗), where
0 < z∗ < y∗ < ∞. These assumptions would most likely include boundedness and
monotonicity assumptions of the functions g

ψr
and g

ϕr
, see Lempa (2010). However,

this generalization is beyond the scope of this paper.

Lemma 5.5 Let the assumptions of Proposition 5.1 hold. Then, for all μ > 0, the the
function (A − r)(Rr+μg) is decreasing.

Proof Since (Rr+μ(A − (r + μ))g) = −g = (A − (r + μ)(Rr+μg)), we find that
(A − r)(Rr+μg) = (Rr+μ(A − r)g). Now, ordinary differentiation yields

Br+μ(Rr+μ(A − r)g)′(x) = ϕ′
r+μ(x)

∫ x

0
ψr+μ(z)(A − r)g(z)m′(z)dz

+ ψ ′
r+μ(x)

∫ ∞

x
ϕr+μ(z)(A − r)g(z)m′(z)dz. (5.5)

We observe from (5.5) that this derivative is negative at x0. Let x < x0. Then we can
rewrite (5.5) as

Br+μ(Rr+μ(A − r)g)′(x)

= ϕ′
r+μ(x)

∫ x

0
ψr+μ(z)(A − r)g(z)m′(z)dz + ψ ′

r+μ(x)
(∫ x0

x
ϕr+μ(z)(A − r)g(z)m′(z)dz +

∫ ∞

x0
ϕr+μ(z)(A − r)g(z)m′(z)dz

)
.
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The assumed boundary classification of 0 implies that

ϕ′
r+μ(x)

∫ x

0
ψr+μ(z)(A − r)g(z)m′(z)dz

+ ψ ′
r+μ(x)

∫ x0

x
ψr+μ(z)(A − r)g(z)m′(z)dz

< (A − r)g(x)

(
ϕ′
r+μ(x)

∫ x

0
ψr+μ(z)m′(z)dz + ψ ′

r+μ(x)
∫ x0

x
ϕr+μ(z)m′(z)dz

)

= (A − r)g(x)

r + μ

(

ψ ′
r+μ(x)

ϕ′
r+μ(x0)

S′(x0)
− ϕ′

r+μ(x) lim
x→0+

ψ ′
r+μ(x)

S′(x)

)

< 0,

proving that the derivative (5.5) is negative on (0, x0). The interval (x0,∞) is treated
similarly. �
Lemma 5.6 Let the assumptions of Proposition 5.1 hold. Then, for all μ > 0, the
function x �→ (Rr+μg)(x)

ψr (x)
is decreasing for all x ≥ x̂ .

Proof Following Remark 5.2, we find by changing the order of integration that

ψ2
r (x)Br+μ

S′(x)
d

dx

(
(Rr+μg)(x)

ψr (x)

)

= Br+μ

∫ x

0
ψr (z)(A − r)(Rr+μg)(z)m

′(z)dz

=
∫ x

0
ψr (y)ϕr+μ(y)

∫ y

0
ψr+μ(z)(A − r)g(z)m′(z)dym′(y)dy

+
∫ x

0
ψr (y)ψr+μ(y)

∫ x

y
ϕr+μ(z)(A − r)g(z)m′(z)dym′(y)dy

=
∫ x

0

(
ψr+μ(z)

∫ x

z
ϕr+μ(y)ψr (y)m

′(y)dy
)

(A − r)g(z)m′(z)dz

+
∫ ∞

x
ϕr+μ(z)

∫ x

0
ψr+μ(y)ψr (y)m

′(y)dy(A − r)g(z)m′(z)dz. (5.6)

By the virtue of Lemma 5.5, it is enough to show that the differential (5.6) is negative at
x̂ . To this end, define the function ψ̌ x

r (y) = ψr (y)1{y≤x}. Since the upper boundary∞
is natural for the diffusion X , it follows from Lempa (2012a), Lemma 2.1 and the fact
that the function ψr is non-negative that μ(Rr+μψ̌ x

r )(y) ≤ μ(Rr+μψr )(y) = ψr (y),
for all y ∈ (0,∞). By evaluating the right hand side at the point x̂ , we then find that

∫ x̂

0

(

ψr+μ(z)
∫ x̂

z
ϕr+μ(y)ψr (y)m

′(y)dy
)

(A − r)g(z)m′(z)dz

+
∫ ∞

x̂
ϕr+μ(z)

∫ x̂

0
ψr+μ(y)ψr (y)m

′(y)dy(A − r)g(z)m′(z)dz
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< Br+μ

∫ x̂

0
ψr (z)(A − r)g(z)m′(z)dz

+
∫ ∞

x̂
ϕr+μ(z)

∫ x̂

0
ψr+μ(y)ψr (y)m

′(y)dy(A − r)g(z)m′(z)dz < 0.

This proves the claim. �
Proof of Proposition 5.1 Let k ∈ {2, . . . , p} and consider the function

x �→
k−1∏

i=1

λi,i+1

μi

λk

μk
(μ1Rr+μ1μ2Rr+μ2 · · · μk Rr+μk g)(x).

We start by analyzing the properties ofμk(Rr+μk g) and show that it satisties the same
assumptions as g. Under the assumption (A), the function μk(Rr+μk g) is obviously
stochasticallyC2. Lemmas (5.5) and (5.6) coupled with the assumption (D) imply that
μk(Rr+μk g) satisfies also the assumptions (B) and (C). To see that the condition (D)
is also satisfied, assume that parameters η1, η2 > min{μi }. Without loss of generality,
we cas assume that η1 > η2. Then the resolvent equation implies that

(A − r)(Rr+η1Rr+η2g)(0+)

= 1

η1 − η2

(
(Rr+η2(A − r)g(0+) − (Rr+η1(A − r)g(0+)

)
> 0.

We can now use the same procedure iteratively through the entire sum in (5.3) to
conclude that the function gπ satisfies also the same assumptions as g. The claim
follows now from Alvarez (2001), Thrm. 3. �
Remark 5.7 We observe from the proof of Proposition 5.1, in particular, from
Lemma 5.6, that the optimal stopping threshold x∗ is dominated by the state x̂ . This
state is the optimal stopping threshold for the same problem in absence of the imple-
mentation delay. In other words, we observe that the introduction of the exercise lag
accelerates the optimal exercise of the option to stop.

Remark 5.8 We observe from the proof of Proposition 5.1 also that we can modify
the function (5.3) and allow for different payoffs for absorption from different phases.
To elaborate, say that we have a collection of functions (gk)

p
k=1 which all satisfy the

assumptions of Proposition 5.1. Then we modify (5.3) such that if the absorption of
Y occurs from the state i , the resulting payoff is given by the function gi , that is,

gπ (x) = λ1

μ1
μ1(Rr+μ1g1)(x)

+
p∑

k=2

k−1∏

i=1

λi,i+1

μi

λk

μk
(μ1Rr+μ1μ2Rr+μ2 · · · μk Rr+μk gk)(x).
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Then we can do a similar analysis as in the proof of Proposition 5.1 to conclude that
the optimal stopping threshold is given the globalmaximumof the function x �→ gπ (x)

ψr (x)
.

To see why this is interesting, consider the following example. In real option appli-
cations, the investor often pays a lump sum cost K either when the investment option
is exercised or when project is completed. The basic form of the exercise payoff is
x �→ Ex

[
e−rζ g(Xζ )

]
, where the function g can, for instance, be x �→ x−K . Now the

lump sum is paid at the completion time. To illustrate how to shift this payment to the
start of the project, consider the following. We assume for brevity that the lag variable
ζ has a two-phase Cox distribution. Furthermore, denote the constant function x �→ 1
as 1. Then

Ex
[
e−rζ g(Xζ )

]− K

= λ1

μ1
μ1(Rr+μ1g)(x) + λ12

μ1
μ1(Rr+μ1λ2Rr+λ2g)(x) − K

= λ1

μ1

(
μ1(Rr+μ1g)(x) − K

)+ λ12

μ1

(
μ1(Rr+μ1λ2Rr+λ2g)(x) − K

)

= λ1

μ1

(
μ1(Rr+μ1g)(x) − μ1

(
Rr+μ1((r + μ1) − A)

K

μ1
1

)
(x)

)

+ λ12

μ1

(
μ1(Rr+μ1λ2Rr+λ2g)(x) − μ1

(
Rr+μ1((r + μ1) − A)

K

μ1
1

)
(x)

)

= λ1

μ1

(
μ1

(
Rr+μ1

(
g − K (r + μ1)

μ1
1

))
(x)

)

+ λ12

μ1

(
μ1

(
Rr+μ1

(
λ2(Rr+λ2g) − K (r + μ1)

μ1
1

))
(x)

)

= λ1

μ1

(
μ1

(
Rr+μ1

(
g − K (r + μ1)

μ1
1

))
(x)

)

+ λ12

μ1

(
μ1

(
Rr+μ1λ2

(
Rr+λ2

(
g − K (r + μ1)(r + λ2)

μ1λ2
1

)))
(x)

)
, (5.7)

for a sufficiently nice function g. Define the functions

g1(x) = g(x) − K (r + μ1)

μ1
,

g2(x) = g(x) − K (r + μ1)(r + λ2)

μ1λ2
.

If the functions x �→ gi (x)
ψr (x)

satisfy the assumptions of Proposition 5.1, the conclu-
sion of 5.1 holds for the payoff (5.7). This payoff corresponds to the case where the
lump sum is paid at time when the project is initiated.
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6 Two examples

The purpose of this section is to illustrate the previous results with explicit examples.
We assume throughout the section that the process Y has the subgenerator

T =
(−(λ1 + λ12) λ12

0 −λ2

)
.

This implies that the time of absorption ζ has a two-phase Coxian distribution.

6.1 Geometric Brownianmotion

Assume that the process X is given by a geometric Brownian motion, that is, the
solution of the stochastic differential equation dXt = μXtdt + σ XtdWt . Here, W
is a Wiener process and the constants μ and σ > 0 satisfy the conditions μ < r
and μ − 1

2σ
2 > 0. Then the optimal stopping time is almost surely finite. The scale

density S′ reads as S′(x) = x− 2μ
σ2 and the speed density m′ as m′(x) = 2

σ 2x2
x

2μ
σ2 .

The differential operator A = 1
2σ

2x2 d2

dx2
+ μx d

dx and the functions ψ· and ϕ· can be
written as ψr+λ(x) = xβr+λ , ϕr+λ(x) = xαr+λ , where the constants

⎧
⎪⎪⎨

⎪⎪⎩

βr+λ =
(
1
2 − μ

σ 2

)
+
√(

1
2 − μ

σ 2

)2 + 2(r+λ)

σ 2 > 1,

αr+λ =
(
1
2 − μ

σ 2

)
−
√(

1
2 − μ

σ 2

)2 + 2(r+λ)

σ 2 < 0.

It is a simple computation to show that the Wronskian Br+λ = 2√(
1
2 − μ

σ 2

)2 + 2(r+λ)

σ 2 .

6.1.1 A problemwith an explicit solution

We follow Remark 5.8 and consider the exercise payoff gπ : x �→ Ex
[
e−rζ Xζ

]− K ,
where K > 0. Using the identity (5.7), we obtain

Ex
[
e−rζ Xζ

]− K

= λ1

μ1

(
μ1

(
Rr+μ1

(
id−K (r + μ1)

μ1
1

))
(x)

)

+ λ12

μ1

(
μ1

(
Rr+μ1λ2

(
Rr+λ2

(
id−K (r + μ1)(r + λ2)

μ1λ2
1

)))
(x)

)
,
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where id is the identity function. Let

g1(x) = x − K (r + μ1)

μ1
,

g2(x) = x − K (r + μ1)(r + λ2)

μ1λ2
.

We readily verify that the functions gi satisfy the assumptions of Proposition 5.1.
Next, we study the function x �→ gπ (x)

ψr (x)
. Since

Ex
[
e−rζ Xζ

] = λ1

μ1
μ1(Rr+μ1 id)(x) + λ12

μ1
μ1(Rr+μ1λ2Rr+λ2 id)(x),

we start by computing the required resolvents. First, we find that

μ1(Rr+μ1 id)(x) = 2μ1

Br+μ1σ
2

(
xαr+μ1

∫ x

0
y−αr+μ1 dy + xβr+μ1

∫ ∞

x
y−βr+μ1 dy

)

= 2μ1(βr+μ1 − αr+μ1)x

Br+μ1σ
2(1 − αr+μ1)(βr+μ1 − 1)

= μ1x

r + μ1 − μ

This yields

μ1(Rr+μ1λ2Rr+λ2 id)(x) = μ1λ2x

(r + μ1 − μ)(r + λ2 − μ)
.

We can then write the expectation

Ex
[
e−rζ Xζ

] = 1

r − μ + μ1

(
λ1 + λ12λ2

r − μ + λ2

)

︸ ︷︷ ︸
:=C

x, (6.1)

and, consequently, express the exercise payoff as gπ (x) = Cx − K . The solution to
this optimal stopping problem is well known, see, e.g., McKean (1965). The optimal
stopping threshold, which can be identified as the global maximum of the function
x �→ gπ (x)

ψr (x)
, is the level x∗ = Kβr

C(βr−1) . The value function is

Vπ (x) =
⎧
⎨

⎩

Cx − K , x ≥ x∗,
(
C
βr

)βr
(

βr−1
K

)βr−1
xβr , x ≤ x∗.
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6.1.2 Sensitivity analysis

We study the sensitivities of the trigger threshold x∗ with respect to the jump intensities
of the process Y . We first observe that

dx∗

dλ
= − Kβr

(βr − 1)C2

dC

dλ
,

here, λ denotes any of the rate variables in the coefficient C . For brevity, denote
δ = r − μ. Then elementary computation yields

dC

dλ1
= δ(δ + λ2)(δ + λ12 + λ2)

(δ + λ1 + λ12)2(δ + λ2)2
> 0,

dC

dλ12
= δ(δ + λ2)(λ2 − λ1)

(δ + λ1 + λ12)2(δ + λ2)2
� 0,

dC

dλ2
= δλ12(δ + λ11 + λ2)

(δ + λ1 + λ12)2(δ + λ2)2
> 0.

These results are natural. Indeed, if we increase either the rate λ1 or λ2, we increase the
net absorption rate in the process Y . This decreases the mean absorption time which,
in turn accelerates the optimal exercise. The sensitivity with respect λ12 depends on
relation of λ1 and λ2. Say that λ2 > λ1. Then, when we increase the rate λ12, we are
again increasing the net absorption rate of Y . Increased λ12 means that it becomes
likely that Y jumps from state 1 to 2 and since λ2 > λ1, Y is more likely to be
absorbed from state 2 than 1. In the complementary case λ1 > λ2, we reason similarly
that increased λ12 decreased the net absorption rate.

6.1.3 On the effect of increased uncertainty

Conventional wisdom in options theory says that increased risk (measured by the
volatility σ ) postpones the optimal exercise of option. Next we study whether we
can draw some similar conclusion with respect to the risk emerging from the random
exercise lag. We do this as follows: by moving along the level curve

ζ̄ = E[ζ ] = λ12 + λ2

(λ1 + λ12)λ2
(6.2)

of the expected absorption time, we study whether an increase in variance of the
absorption time, that is, in

Var(ζ ) = λ22 + 2λ12λ1 + λ212

(λ1 + λ12)2λ
2
2

(6.3)
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leads to an increase in the value of C defined in (6.1). First, we solve for λ1 in (6.2)
and obtain

λ1 = λ12 + λ2 − λ12λ2ζ̄

λ2ζ̄
. (6.4)

Then substitution to the expression (6.3) and simplification yields

Var(ζ ) = ζ̄
ζ̄ λ2(λ2 − λ12) + 2λ12

λ2(λ2 + λ12)
.

It is a matter of elementary differentiation to see that the gradient

∇ Var(ζ ) =
(
2ζ̄ (1 − ζ̄ λ2)

(λ12 + λ2)2
,−2ζ̄ λ12(λ12 + λ2(2 − ζ̄ λ2))

λ22(λ12 + λ2)2

)

:= (a1, a2). (6.5)

Next we do the same analysis for the coefficient C . After substituting (6.4) to the
definition of C , a round of simplification and differentiation yields

∇C =
(

δ2ζ̄ λ2(1 − ζ̄ λ2)

(δ + λ2)(λ12 + λ2(1 + δζ̄ ))2
,−δ2ζ̄ λ12(δ + λ12 + λ2(2 − ζ̄ λ2))

(δ + λ2)(λ12 + λ2(1 + δζ̄ ))2

)

:= (b1, b2),

(6.6)

where δ = r − μ > 0. We identify now the directions to which the variance is
increasing. Assume that λ2 > ζ̄−1, the complementary case is studied similarly. Then
the coefficient a1 < 0 and, consequently, the directional derivative of the variance to
the direction ū = (u1, u2), that is,

∇ Var(ζ ) · u > 0 when u1 < −a2
a1

u2 = λ12(λ12 + λ2(2 − ζ̄ λ2))

λ22(1 − ζ̄ λ2)
u2. (6.7)

Assume now that u1 <
λ12(λ12+λ2(2−ζ̄ λ2))

λ22(1−ζ̄ λ2)
u2 and that the coefficient

λ12(λ12 + λ2(2 − ζ̄ λ2))

λ22(1 − ζ̄ λ2)
< 0, (6.8)

the case complementary to (6.8) is studied similarly. By studying the sign of the
numerator and combining the result with the condition λ2 > ζ̄−1, we find that if

λ2 ∈
(
1

ζ̄
,
1 +

√
1 + λ12ζ̄

ζ̄

)

, (6.9)

then (6.8) holds.
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The next task is to look at the directional derivatives of the coefficient C . We notice
that under the assumption (6.9), the coefficient b1 in (6.6) is negative. Thus

∇C · u > 0 when u1 < −b2
b1

u2 = λ12(δ + λ12 + λ2(2 − ζ̄ λ2))

λ2(δ + λ2)(1 − ζ̄ λ2)
u2. (6.10)

Define the function f as

f (δ) = λ12(δ + λ12 + λ2(2 − ζ̄ λ2))

λ2(δ + λ2)(1 − ζ̄ λ2)

on the positive real numbers. Elementary differentiation yields

f ′(δ) = −λ12(λ12 + λ2(1 − ζ̄ λ2))

λ2(δ + λ2)2(1 − ζ̄ λ2)
.

We obtain by a simple computation

f ′(δ) � 0 when λ2 �
1
2 +

√
1
4 + λ12ζ̄

ζ̄
<

1 +
√
1 + λ12ζ̄

ζ̄
. (6.11)

Using the function f , we observe that the condition (6.8) can bewritten as f (0) < 0
and that the sufficient condition in (6.7) can be written as u1 < f (0)u2. Furthermore,
the sufficient condition in (6.10) can be written as u1 < f (δ)u2. Assume that u2 < 0,
thus f (0)u2 > 0. Using the condition (6.11), we find that if

λ2 ∈
⎛

⎝ 1

ζ̄
,

1
2 +

√
1
4 + λ12ζ̄

ζ̄

⎞

⎠ , (6.12)

then 0 < f (0)u2 < f (δ)u2. In other words, if the condition (6.12) is satisfied and
the variance is increasing in the direction in a direction where u2 is negative, then the
coefficient C and, consequently, the optimal stopping threshold x∗ is also increasing
in that same direction. By reasoning similarly, we obtain the same conclusion in case
u2 > 0 when

λ2 ∈
⎛

⎝
1
2 +

√
1
4 + λ12ζ̄

ζ̄
,
1 +

√
1 + λ12ζ̄

ζ̄

⎞

⎠ . (6.13)

Summarizing, we have the following partial result: the conditions (6.12) and (6.13)
identify, in their corresponding cases, parts of the level curve (6.2) where increased
exercise lag risk (measured in terms of the variance of the exercise lag) postpones the
optimal exercise.
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6.2 Square-root diffusion

Let X be a square root diffusion known as the Cox–Ingersoll–Ross process, for the
following properties of X , we refer to Campolieti and Makarov (2012), Sect. 5.2. The
infinitesimal generator of X reads as

A = (a − bx)
d

dx
+ 1

2
σ 2x

d2

dx2
.

Introduce the parameters

μ = 2a

σ 2 − 1, κ = 2b

σ 2 .

The scale function and speed measure are now given by S′(x) = x−μ−1eκx and
m′(x) = 2

σ 2 x
μe−κx for all x ∈ (0,∞). The upper boundary ∞ is natural. We assume

that μ > 0, then the lower boundary 0 is entrance-not-exit.
For an arbitrary ρ > 0, the functions ψρ and ϕρ can be represented as

ψρ(x) = M

(
ρ

b
,
2a

σ 2 ,
2b

σ 2 x

)
, ϕρ(x) = U

(
ρ

b
,
2a

σ 2 ,
2b

σ 2 x

)

where M and U are, respectively, the confluent hypergeometric functions of first and
second type, for the definitions of M and U , for the properties of these functions, see
Borodin and Salminen (2015), p. 647. Finally, the Wronskian determinant can then be
expressed as Bρ = κ−μ 	(μ+1)

	( ρ
b )

.

We consider the exercise payoff gπ : x �→ Ex
[
e−rζ

√
Xζ

] − K , where K > 0.
Denote the square root function as h. Then we write using the resolvent equation

Ex

[
e−rζ

√
Xζ

]
= λ1

μ1
μ1(Rr+μ1h)(x) + λ12

μ1
μ1(Rr+μ1λ2Rr+λ2h)(x)

=
(

λ1 + λ12λ2

λ2 − μ1

)
(Rr+μ1h)(x) − λ12λ2

λ2 − μ1
(Rr+λ2h)(x).

We cannot find explicit expression for these resolvents, therefore we resort to
numerical solution. To this end, R-packages fAsianOptions and numDerivwere
employed to handle the Kummer functions numerically and to numerically determine
the zero (x∗, that is) of the derivative of gπ (x)

ψr (x)
, respectively. Using these, the value

function were obtained numerically from Proposition 5.1.
In Fig. 1 we illustrate the solution of the problem. The solid black curve rep-

resents the value function and the grey dashed line represents the exercise payoff
x �→ Ex

[
e−rζ

√
Xζ

] − K under the parameter configuration a = 0.03, b = 0.05,
σ = 0.2, r = 0.06, K = 1, λ1 = 0.1, λ12 = 0.2, and λ2 = 0.1. The black dashed
line indicates the position of the optimal exercise threshold x∗ = 1.701597. As the
general theory suggests, the figure indicates that the value function is smooth over the
optimal exercise boundary x∗.
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Fig. 1 Square root diffusion the
solid black curve represents the
value function and the grey
dashed line represents the
exercise payoff

x �→ Ex

[
e−rζ√Xζ

]
− K . The

black dashed line indicates the
position of the optimal exercise
threshold x∗ = 1.701597
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