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ABSTRACT
Chaos is present in most stellar dynamical systems and manifests itself through the exponential
growth of small perturbations. Exponential divergence drives time irreversibility and increases
the entropy in the system. A numerical consequence is that integrations of the N-body
problem unavoidably magnify truncation and rounding errors to macroscopic scales. Hitherto,
a quantitative relation between chaos in stellar dynamical systems and the level of irreversibility
remained undetermined. In this work, we study chaotic three-body systems in free fall initially
using the accurate and precise N-body code Brutus, which goes beyond standard double-
precision arithmetic. We demonstrate that the fraction of irreversible solutions decreases as a
power law with numerical accuracy. This can be derived from the distribution of amplification
factors of small initial perturbations. Applying this result to systems consisting of three
massive black holes with zero total angular momentum, we conclude that up to 5 per cent of
such triples would require an accuracy of smaller than the Planck length in order to produce a
time-reversible solution, thus rendering them fundamentally unpredictable.
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1 IN T RO D U C T I O N

Chaos is an inherent property of most dynamical systems in the
universe, ranging from small bodies in the Solar system (e.g.
Wisdom, Peale & Mignard 1984; Boekholt et al. 2016; Correia
2018), small stellar systems (e.g. Hut & Bahcall 1983; Portegies
Zwart & Boekholt 2014; Boekholt & Portegies Zwart 2015; Porte-
gies Zwart & Boekholt 2018; Leigh & Wegsman 2018; Stone &
Leigh 2019), star clusters (e.g. Miller 1964; Goodman, Heggie &
Hut 1993), and galaxies (e.g. Valluri & Merritt 2000). The main
signature of chaos is the exponential sensitivity to small changes
in the initial conditions, which is quantified by the e-folding time
scale within some finite-time interval, i.e. the finite-time Lyapunov
time-scale (Heggie 1991).

The exponential sensitivity in N-body systems has both physical
and numerical consequences. From a physical point of view, the
rate of growth of perturbations determines the stability of a system.
Such studies are well known for the Solar system, whose Lyapunov
time-scale is about 5 Myr (Laskar 1989). Due to observational
uncertainties in the orbital elements of the planets, we can only
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predict the future evolution of the Solar system for a few million
years, warranting a statistical study of its stability over Gyr time-
scales (Laskar 1989; Sussman & Wisdom 1992; Ito & Tanikawa
2002; Hayes 2007). Hence, in contrast to regular and stable systems,
high precision in the initial conditions is crucial for accurate
modelling of chaotic systems.

In few-body stellar dynamical systems, it was first shown by
Miller (1964) that two nearby trajectories in phase space tend to
diverge exponentially. ‘The divergence of the two trajectories from
each other is a manifestation of the macroscopic irreversibility’ and
‘the rate of divergence yields information on the rate of entropy
production’ (Miller 1964). This rate is linear with time, because the
rate of divergence is exponential, and the entropy proportional to
the logarithm of the increasing phase space volume. The presence
of chaos and macroscopic irreversibility can be related to the arrow
of time, in the sense that it points in the direction of increasing
entropy. Thus, the arrow of time points in the direction of diverging
trajectories rather than converging ones. This leads to the idea that
in a world consisting of only three bodies, there would already be a
definite direction for the arrow of time (Lehto et al. 2008).

From a numerical point of view, errors in N-body simulations
also act as small perturbations to the system, and their subsequent
exponential magnification causes the solution to eventually diverge
on to a completely different trajectory after only a few Lyapunov
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time-scales. The calculated system is not causally related to its
initial condition anymore, in the same way a physical system is
(Miller 1964). This raises suspicions on the reliability of N-body
simulations. The common assumption is that approximate results
from N-body simulations are valid in a statistical sense (Goodman
et al. 1993). Empirically this has been shown to be the case for
certain specific N-body systems (e.g. Portegies Zwart & Boekholt
2014; Boekholt & Portegies Zwart 2015; Portegies Zwart &
Boekholt 2018), but a sound theoretical basis is still missing. Our
trust in N-body simulations can potentially be made more robust
if it can be shown that the ‘numerically diverged trajectory’ still
has some physical connection to the initial condition space under
consideration, but to a slightly different initial realization than
the one used to start the simulation. In other words, we are still
calculating physical trajectories, but to randomize initial conditions
(Dejonghe & Hut 1986). This process can be demonstrated if it
can be shown that approximate solutions have ‘shadow orbits’
(Quinlan & Tremaine 1992; Urminsky 2010). Such orbits remain
close to the approximate trajectory for a time much longer than the
Lyapunov time, but which have a physical connection to the initial
condition space of the N-body problem under consideration.

Alternatively, one can apply brute-force computing power to try
and reduce the magnitude of numerical errors. A robust way to
test the accuracy of a specific N-body simulation is by performing
a reversibility test. Since Newton’s equations of motion are time
reversible, a forward integration followed by a backward integration
of the same time should recover the initial realization of the system
(albeit with a sign difference in the velocities). The outcome of a
reversibility test is thus exactly known. In practice, reversibility in
simulations of chaotic systems is very difficult to achieve due to (1)
exponential growth of perturbations due to chaos and (2) irreversible
numerical errors. Time reversibility can be forced by using integer
arithmetic, but this does not guarantee the solution is also accurate.

Recently, Portegies Zwart & Boekholt (2018) obtained a re-
versible solution to the Pythagorean problem (Burrau 1913; Sze-
behely & Peters 1967; Aarseth et al. 1994). This is a classic
example of a three-body system in free fall initially exhibiting
a prolonged chaotic triple interaction, and an eventual break-up
into a permanent and unbound binary-single pair. They applied the
Brutus N-body code and the method of convergence in which
the accuracy and precision of the integration is systematically
increased until convergence of the solution to the first few decimal
places (Boekholt & Portegies Zwart 2015). Although Brutus is
not formally time reversible, they manage to retrieve the initial
condition to the first 10 decimal places in each coordinate of
each body in the final snapshot. Whereas the forward integration
is subject to exponential divergence, the backward integration
is subject to exponential convergence to the initial size of the
perturbation over nine orders of magnitude. This behaviour was
called definitive reversibility by Portegies Zwart & Boekholt (2018).

We extend the initial condition space from the Pythagorean
problem to the homology map of Agekyan & Anosova (1967) and
Agekyan & Anosova (1968) [see also Anosova & Nebukin (1991),
Anosova (1991), Anosova, Orlov & Aarseth (1994), Tanikawa,
Umehara & Abe (1995), Martynova & Orlov (2014), and Orlov,
Titov & Shombina (2016)]. For a definition and visualization of this
map, see fig. 1 of Lehto et al. (2008). The Agekyan–Anosova map
consists of every equal-mass triple system configuration with zero
initial velocities (after potentially rescaling or rotating the system).
The initial conditions thus specify three-body systems in free fall
initially with varying initial mutual separations. Such trajectories
may closely approach a triple collision, which are notoriously

challenging to solve, even using regularization techniques. After
such close triple approaches, the triple can break up, or alternatively
continue its evolution in a prolonged, chaotic, and resonant (Hut &
Bahcall 1983) interaction. Reversibility tests for the ‘homology
map’ have been performed by Lehto et al. (2008). They find
that about half of the systems are reversible and the other half
remains irreversible, regardless how much computer time you
spend on the problem. They conclude that half of the three-body
systems are so chaotic that they cannot be solved numerically
(Valtonen & Karttunen 2006). This is also corroborated by results
from Dejonghe & Hut (1986), who measure amplification factors of
small initial perturbations of up to 10150. However, the fraction of
irreversible solutions can potentially be reduced if one goes beyond
standard double-precision, i.e. using arbitrary-precision arithmetic.

2 R ESULTS

We perform reversibility tests for the Agekyan–Anosova map
(Agekyan & Anosova 1967, 1968; Lehto et al. 2008), using the
arbitrary-precision N-body code Brutus (Boekholt & Portegies
Zwart 2015). We control the accuracy by varying the Bulirsch–Stoer
tolerance (Bulirsch & Stoer 1964), ε, and fix the arbitrary-precision
word-length to 1024 bits (about 300 decimal places). More detail
on the methods is given in Appendix A.

The main idea of our experiment is the following. Each triple
system has a certain escape time, which is the time it takes for
the triple to break-up into a permanent and unbound binary-single
configuration. Given a numerical accuracy, ε, there is also a tracking
time, which is the time that the numerical solution is still close to
the physical trajectory that is connected to the initial condition.
If the tracking time is shorter than the escape time, then the
numerical solution has diverged from the physical solution, and
as a consequence, it has become time irreversible. Only the systems
with the smallest amplifications factors will pass the reversibility
test. However, by systematically increasing the numerical accuracy
(decreasing ε), we aim to increase the tracking time of each system.
An increasing fraction of systems will obtain a tracking time
exceeding its escape time, thus gradually decreasing the fraction
of irreversible solutions.

In Fig. 1, we present our low-resolution Agekyan–Anosova map,
where we plot the lifetime of the triple system as a function of
initial condition. The triple lifetime is defined as the duration of
the triple interaction until a permanent and unbound binary-single
configuration is reached. When comparing the least accurate (ε =
10−6) and the most accurate (ε = 10−70) maps, we observe that
there are ‘microscopic’ differences. However, in a ‘macroscopic’
sense, the maps look similar. This is confirmed by performing
a Kolmogorov–Smirnoff test, which gives a p-value of 0.72.
This implies that we cannot reject the hypothesis that the two
distributions are statistically indistinguishable. Therefore, it seems
that for the Agekyan–Anosova map, approximate computations are
nevertheless reliable in a statistical sense (Goodman et al. 1993).
This is another example of the concept of ‘nagh-Hoch’ (Portegies
Zwart & Boekholt 2018), which refers to the ‘similar appearance’ of
statistical distributions, which are obtained with different numerical
precisions.1

In Fig. 2, we plot the fraction of irreversible solutions as a function

1The term ‘Nagh Hoch’ was first defined by Portegies Zwart & Boekholt
(2018) and comes from the Klingon dictionary meaning ‘similar appearance’
or ‘set in stone’.
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Figure 1. Duration of the triple interaction as a function of initial condition in the Agekyan–Anosova map (a higher resolution map can be found in fig. 1
of Lehto et al. 2008). We show the ‘lifetime map’ for a numerical accuracy of ε = 10−6 (left) and ε = 10−70 (right). Black dots represent systems that live
for longer than a 1000 time units. Even though the same initial condition in the two maps can give very different lifetimes, the two maps are statistically
indistinguishable according to a Kolmogorov–Smirnoff test.

Figure 2. Fraction of irreversible solutions, firr, as a function of numerical
accuracy, ε. The power-law fit gives log10 firr = α log10 ε + β, with α =
0.029 ± 0.001 and β = 0.15 ± 0.04.

of numerical accuracy, i.e. the Bulirsch–Stoer tolerance, ε. For
an accuracy close to double-precision, the fraction of irreversible
solutions is about half, consistent with the results of Lehto et al.
(2008). By increasing the numerical accuracy beyond machine-
precision, we demonstrate that we are able to further decrease the
fraction of irreversible solutions. The data are accurately fitted by a
power law, given by

log10 firr = α log10 ε + β, (1)

Figure 3. Distribution of amplification factors. The jackknife estimated
errorbars increase towards large values of A due to the decrease in number
of systems. The power-law fit gives log10 df /d log10 A = γ log10 A + δ,
with γ = −0.0270 ± 0.0008 and δ = −1.20 ± 0.01.

with α = 0.029 ± 0.001 and β = 0.15 ± 0.04.
In Fig. 3, we plot the distribution function of the amplification

factors of small initial perturbations. This quantity is defined as
the Euclidean norm of the distance in position space between
the forward and backward integration as a function of time.2 In

2This is similar to the phase space distance (equation 2 of Miller 1964), but
only considering the position coordinates.
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Figure 4. Minimum separation, �rmin, between two bodies during a
simulation, which required a Bulirsch–Stoer tolerance, ε, in order to pass
the reversibility test. The data points and errorbars correspond to the average
and standard deviation.

a perfectly time reversible integration, the norm should remain
zero, but during a numerical integration it will grow exponentially.
The final distance divided by the initial distance (after a single
integration step) is the amplification factor, A. We find that the
distribution is accurately fitted by a power law, given by

log10
df

d log10 A
= γ log10 A + δ, (2)

with γ = −0.0270 ± 0.0008 and δ = −1.20 ± 0.01. If this relation
could be extrapolated, this would imply that for a very high sampling
of the Agekyan–Anosova map, there should be some systems with
amplification factors exceeding 10100, which would take a long time
to calculate up to convergence. The average wall-clock time of our
simulations was about 7 h, with the longest run taking 1 month to
complete.

We observe a very large difference in the ranges of the axes
in Figs 2 and 3. Whereas the fractions vary over two orders of
magnitude, the accuracy and amplification factors vary over 70
orders of magnitude in Figs 2 and 3, respectively. The slope is
very small and only resolvable due to the very high accuracy
and precision of the Brutus code. The results are inconsistent
with a flat curve, which intuitively makes sense since with higher
numerical accuracy we expect to reduce the fraction of irreversible
solutions.

Finally, we show in Fig. 4 that there is only a mild dependence
of the required numerical accuracy, ε, on the closest encounter
between any two bodies during the simulation. This is because a
close two-body encounter with a small perturbation from the third
body is well approximated by a Keplerian orbit. It is the close
encounter plus a large third-body perturbation that may lead to loss
of numerical accuracy. The amplification factor is determined by
both the lifetime of the triple system, and the magnitude of the
finite-time Lyapunov exponent. It remains an open question what
determines the rate of exponential growth and transitions in the
growth (see e.g. fig. 1 of Portegies Zwart & Boekholt 2018). The
exponential sensitivity, or ‘the butterfly effect’, can be explained in
terms of separatrix crossings (Mardling 2008). A trajectory in phase
space approaches a separatrix, which divides regions of libration
and circulation. It might succeed in crossing the separatrix to a new
region in phase space, with potentially different chaotic properties.

However, a nearest neighbour trajectory might fail to cross the
separatrix and remain in its current region of phase space, resulting
in an exponential magnification of its separation in phase space from
the other trajectory. A detailed study of the relation between orbital
geometries and the rate of exponential growth of small perturbations
will be presented elsewhere.

The errorbars in Figs 2 and 3 result from a finite sampling of the
Agekyan–Anosova map. The exact fraction of irreversible solutions
as a function of accuracy is obtained when sampling the map with
infinite resolution. However, this is impractical, and instead we
generate a sample of 1212 initial conditions by overlaying a uniform
grid on the map with a grid-spacing of 0.015 625. The uncertainty
due to the finite sample is estimated by the jackknife resampling
method. The errorbars in Fig. 4 are much larger, simply because
the variation in the minimal distance between two bodies varies
a lot among different simulations with the same accuracy. This
shows that the exponential growth is not driven by close two-body
encounters, but rather by a prolonged phase of strong three-body
encounters.

3 D ISCUSSION

The absolute values of the coefficients α and γ are statistically
indistinguishable. This suggests that a relation exists between the
distribution of amplification factors and the fraction of irreversible
solutions. Given a certain value of the Bulirsch–Stoer tolerance, ε,
we can only resolve amplification factors of order ε−1, i.e. with
ε = 10−10 amplification factors of order A = 1010 can be resolved.
Hence, the fraction of irreversible solutions equals the fraction of
systems with an A > ε−1, i.e. firr(ε) = F(A > ε−1). Thus, the
fraction of irreversible solutions for a given numerical accuracy,
ε, is determined by the distribution of amplification factors of
the systems in the initial condition map. In Fig. 3, we show that
the distribution of amplification factors is also a power law. In
Appendix B, we demonstrate that the two power laws in Figs 2 and
3 are related.

In this study, we limit our initial conditions to three-body systems
in free fall, i.e. with zero angular momentum. The power law indices
measured in Section 2 reflect these initial conditions and the way
the homology map was sampled. It is likely that for a different
set of initial conditions, such as a Plummer distribution with non-
zero angular momentum, the power-law indices might be different.
Nevertheless, large amplification factors can still be expected for
some non-zero angular momentum systems, since the amplification
factor is determined not only by the finite-time Lyapunov exponent
(through close triple encounters) but also by the duration of the
triple interaction, which is considerably longer for systems with a
larger angular momentum (e.g. fig. 7 of Boekholt & Portegies Zwart
2015). An example for a binary-single scattering experiment is given
in fig. 4 of Dejonghe & Hut (1986) who measure an amplification
factor of about 1040 over a time interval of about 5400 N-body time
units.

In the limit of infinite accuracy (ε → 0), we retrieve the
microscopic time-reversibility of Newton’s equations of motion.
In the presence of perturbations of size ε, whether numerical or
physical, a fraction of systems becomes irreversible. As a concrete
application of our result, we consider three black holes, each of
a million solar masses, and initially separated from each other by
roughly one parsec. Such a configuration is not uncommon among
supermassive black holes in the concordance model of cosmology
and hierarchical galaxy formation (Amaro-Seoane et al. 2010).
Here, we will focus specifically on the subset of triples that approach
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zero angular momentum, consistent with the systems studied in
this work. From Fig. 4, we estimate that the closest approach
between any two black holes is on average between 10−2.5 and 10−2

parsec, during which the Newtonian approximation still holds. A
parsec equals 1051 Planck lengths. Hence, from equation (1) and
Fig. 2, we estimate that up to 5 per cent of triples with zero angular
momentum are irreversible up to the Planck length, thus rendering
them fundamentally unpredictable.
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A P P E N D I X A : N U M E R I C A L M E T H O D S

We adopt the Agekyan–Anosova map (Agekyan & Anosova 1967,
1968) and sample it uniformly with a resolution of 0.015 625.
This results in an ensemble of 1212 initial realizations. For a high-
resolution version of the map, see the ‘warrior shield’ by Lehto et al.
(2008).

We use the arbitrary-precision N-body code Brutus
(Boekholt & Portegies Zwart 2015) and vary its two main param-
eters, ε, the Bulirsch–Stoer tolerance, and, Lw , the word-length in
bits. In order to reduce the grid of parameters to vary, we fix Lw =
1024 bits, which corresponds to about 300 digits, which is sufficient
for the calculations in this work.

We evolve each initial realization to the point of a permanent
binary-single configuration, or a maximum time of 10 000 time
units (Heggie & Mathieu 1986). The single body is defined to be
permanently escaped if (1) it is separated from the binary centre of
mass by more than 10 distance units, (2) it is moving away from the
binary, and (3) its energy is positive. Note that for near parabolic
escapes these criteria are only fulfilled at very large separations,
potentially exceeding our maximum time limit.

Once the system has fulfilled the escape criteria at time t = T, we
reverse the velocity of each body, and continue the integration up to
t = 2T. Then, we compare the initial snapshot to the final snapshot by
calculating the Euclidean norm of the distance between the solutions
in position space. This is similar to the phase space distance defined
by Miller (1964), but only using the position coordinates. On the
one hand, this is done to avoid confusion between adding quantities
with different units, but also because from experience, we noticed
that if the Euclidean norm in position space is small, then this
is also the case in momentum space and vice versa. Hence, if
the initial positions are retrieved after performing the reversibility
experiment, then this must also be the case for the momenta.
Otherwise chaos would have caused the time-reversed solution to
exponentially diverge from the forward-integrated solution. If the
Euclidean norm of the distance in position space, �, is sufficiently
small, then the simulation has passed the reversibility test. If not,
then we redo the simulation with a higher accuracy (smaller ε), until
for some accuracy the reversibility test is successful. This way, we
iteratively increase the fraction of reversible solutions. Our criterion
for deeming a solution reversible is log10 � < −3, i.e. each position
coordinate of each body in the initial and final snapshot differs only
in the third decimal place or beyond. The phenomenon that, after
iteratively increasing the accuracy and precision, the first n decimal
places of the solution have converged, and the solution has started
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to become time-reversible up to n decimal places, is defined as
definitive reversibility (Portegies Zwart & Boekholt 2018).

Once we have the ensemble of definitive reversible solutions
for the Agekyan–Anosova map, we measure the lifetime, T, and
amplification factor, A, for each system. The lifetime is measured by
considering the final snapshot of the forward integration, consisting
of the permanent binary+single, and then retracing their steps to the
moment when the binary+single were closest to the moment of the
final ejection. Especially for near parabolic escapes, this can cut off
a significant fraction of the simulation as the escape criteria are only
fulfilled when the binary and single are at very large separations.
The amplification factor of a small initial perturbation is calculated
by measuring the Euclidean norm of the distance in position space
between the forward and backward integration as a function of time.
The backward integration diverges exponentially from the forward
integration at a rate given by the finite-time Lyapunov exponent
(Heggie 1991) of the system. Note that the perturbation is smallest
at the end of the forward integration. The amplification factor is
then defined as the ratio of the initial and final Euclidean norm of
the distance in position space, A = �T/�0.

APPENDIX B: SUPPLEMENTA RY TEXT

In Fig. 1, we present our low-resolution Agekyan–Anosova map,
where we plot the lifetime of the triple system as a function of initial
condition. We observe the blue ‘rivers’ of systems that dissolve
rapidly, and the surrounding chaotic landscape where nearest
neighbours can have very different lifetimes. When comparing the
least accurate (ε = 10−6) and the most accurate (ε = 10−70) maps,
we observe that there are ‘microscopic’ differences. For example the
black dots, which represent very long lived systems, are differently
populated in the two maps, However, in a ‘macroscopic’ sense, the
maps look similar. To make the comparison more quantitative, we
take the distributions of triple lifetime and binding energy of the
final, permanent binary, and perform a two-sample Kolmogorov–
Smirnoff test. We find that the least and most accurate data sets
are statistically indistinguishable according to the Kolmogorov–
Smirnoff test, giving p-values of 0.72 (lifetimes) and 0.85 (binding
energies). These results demonstrate that, for the Agekyan–Anosova
map, approximate computations are nevertheless reliable in a
statistical sense (Goodman et al. 1993), verifying the ergodic-like
property of ‘nagh-Hoch’ (Portegies Zwart & Boekholt 2018).

Correlation between amplification factor and fraction of
irreversible solutions

In Fig. 2, we plot the fraction of irreversible solutions as a function of
numerical accuracy, i.e. the Bulirsch–Stoer tolerance, ε. We observe
that initially, at low accuracy, the fraction of irreversible solutions is
close to unity. As we increase the accuracy to about standard double-
precision, the reversible and irreversible fractions have become
roughly equal. This result is consistent with that of Lehto et al.

(2008). By increasing the numerical accuracy beyond machine-
precision, we demonstrate that we are able to further decrease the
fraction of irreversible solutions. In Fig. 2, we show that the fraction
of irreversible solutions is accurately fitted by a power law, given
by

log10 firr = α log10 ε + β, (B1)

with α = 0.029 ± 0.001 and β = 0.15 ± 0.04. By the time we
reached a Bulirsch–Stoer tolerance of ε = 10−70, the fraction of
irreversible solutions had dropped to about 1 per cent, which is
when we decided to end the iteration for practical reasons.

In Fig. 3, we plot the distribution of amplification factors. This
distribution is also accurately fitted by a power law, given by

log10

df

d log10 A
= γ log10 A + δ, (B2)

with γ = −0.0270 ± 0.0008 and δ = −1.20 ± 0.01. If this relation
could be extrapolated, this would imply that for a very high sampling
of the Agekyan–Anosova map, there should be some systems with
amplification factors exceeding 10100, which would take a long time
to calculate up to convergence. The average wall-clock time of our
simulations was about 7 h, with the longest run taking 1 month to
complete.

The coefficients α and γ in equations (B1) and (B2) are equal
to within 3σ . This suggests that there is a relation between the
distribution of amplification factors and the fraction of irreversible
solutions for some specified numerical accuracy. Given a Bulirsch–
Stoer parameter, ε, we are only able to resolve amplification
factors of order ε−1, i.e. with an ε = 10−10 we can resolve
amplification factors of order A = 1010. Hence, the fraction of
irreversible solutions should approximately be equal to the fraction
of systems with an A > ε−1, i.e. firr(ε) = F(A > ε−1). Hence, using
equation (B2), we can derive the following:

firr

(
log10 ε

) = F
(
log10 A > − log10 ε

)
, (B3)

firr

(
log10 ε

) =
∫ ∞

− log10 ε

df

d log10 A
d log10 A, (B4)

firr

(
log10 ε

) =
∫ ∞

− log10 ε

10γ log10 A+δd log10 A, (B5)

firr

(
log10 ε

) ∼ [
10γ log10 A

]∞
− log10 ε

, (B6)

firr

(
log10 ε

) ∼ 10−γ log10 ε . (B7)

Finally, taking the logarithm, we can write

log firr ∼ −γ log10 ε. (B8)

Comparing this expression to equation (B1), we conclude that
−γ = α.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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