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Abstract

Ultimate expansivity extends concepts of expansivity and positive ex-
pansivity. We consider one-sided variants of ultimate expansivity and
pseudo-orbit tracing property (also known as the shadowing property) for
surjective one-dimensional cellular automata. We show that ultimately
right (or left) expansive surjective cellular automata are chain-transitive;
this improves a result by Boyle that expansive reversible cellular automata
are chain-transitive. We then use this to show that left-sided pseudo-
orbit tracing property and right-sided ultimate expansivity together im-
ply pseudo-orbit tracing property for surjective cellular automata. This
reproves some known results, most notably some of Nasu’s. Our result
improves Nasu’s result by dropping an assumption of chain-recurrence,
however, we remark that this improvement can also be achieved using the
Poincaré recurrence theorem.

The pseudo-orbit tracing property implies that the trace subshifts of
the cellular automaton are sofic shifts. We end by mentioning that among
reversible cellular automata over full shifts we have examples of right ex-
pansive cellular automata with non-sofic traces, as well as examples of
cellular automata with left pseudo-orbit tracing property but non-sofic
traces, illustrating that neither assumption can be dropped from the the-
orem mentioned above.

This paper is a generalized and improved version of a conference paper
presented in AUTOMATA 2018.

1 Introduction

Observing a cellular automaton (in this paper all cellular automata are one-
dimensional) through a finite observation window produces a subshift which
is called a trace subshift. The trace subshifts are useful in understanding the
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dynamics of cellular automata. For example, cellular automaton has the same
entropy as its wide enough trace subshift [1, Lemma 1]. For (reversible) ex-
pansive cellular automata trace subshifts are even more important since every
(reversible) expansive cellular automaton is conjugate to its wide enough trace
subshift. Thus it is not surprising that there has been considerable effort to un-
derstand the trace subshifts of expansive cellular automata: In [2, Theorem 10]
Kůrka proved that a positively expansive two-sided cellular automaton is con-
jugate to a one-sided subshift of finite type (henceforth called SFT’s). Earlier
Nasu, using textile systems, had proven that if a two-sided cellular automaton is
conjugate to a one-sided SFT then it is in fact conjugate to a one-sided full shift
[3, Theorem 3.12 (1)], and so overall every positively expansive two-sided cellu-
lar automaton is conjugate to a full shift. That one-sided positively expansive
cellular automata are conjugate to SFT’s was proven by Blanchard and Maass
[4, Theorem 3.8]. However, an example by Boyle, D. Fiebig and U.-R. Fiebig
shows that one-sided positively expansive cellular automata need not be conju-
gate to one-sided full shifts [5, Example 5.6]. In the case of reversible cellular
automata, Nasu has obtained that the trace subshifts of one-sided expansive
cellular automata are SFT’s and some generalizations of this result [6, 7].

The complexity of the trace subshifts has strong connections to the pseudo-
orbit tracing property (also known as the shadowing property): Pseudo-orbit
tracing property implies that all trace subshifts are sofic, and if all trace subshifts
are SFT’s then the cellular automaton has the pseudo-orbit tracing property,
however the converses do not hold (see [2] or [8, Section 5.7.1]). For expan-
sive cellular automata the connection is even stronger: An expansive cellular
automaton has the pseudo-orbit tracing property if and only if its trace sub-
shifts are SFT’s. Kůrka has conjectured [9, Conjecture 30] that every expansive
cellular automaton is conjugated to an SFT, or equivalently, has pseudo-orbit
tracing property; this conjecture remains unsolved today.

In this paper we consider one-sided variants of expansivity and pseudo-orbit
tracing property. We will give a new proof of Boyle’s result that reversible
expansive cellular automata are chain-transitive [10, Corollary 4.3]. Our result
also improves Boyle’s in two regards: The cellular automaton does not need to
be reversible, only surjective, and we use only one-sided variant of expansivity
(extended for surjective cellular automata). We then use this to give a new proof
for some known results mentioned above, most notably some of Nasu’s results.
We do not use textile systems but many ideas and definitions are similar to
those considered in textile system theory, thus this paper can provide, to some,
a more familiar setting to understand results previously only proved using textile
systems.

We will in fact end up with an improved version of some of Nasu’s results
as chain-transitivity implies, trivially, chain-recurrence which Nasu has as an
assumption. However we note that this improvement can also be achieved in
a different, and more direct, way: Nasu remarks that “It is an open problem
whether an onto endomorphism φ of a mixing SFT has φ-periodic points dense
[...]. If the answer is affirmative, then the chain recurrence condition on φ in
Theorem 6.3 and that on φ̃ in Corollary 6.4 can be removed.” [7, pp. 185],

2



but there is no need to solve this longstanding open problem as denseness of
recurrent points implies chain-recurrence, and this follows from the Poincaré
recurrence theorem. Alternatively, the first half of the proof of our Theorem 1
(that surjectivity and right-expansivity together imply chain-transitivity) proves
exactly what Nasu uses chain-recurrence to prove.

This paper is a generalized version of the conference paper [11] presented
in AUTOMATA 2018. In [11] all results considered cellular automata over
full shifts, in this paper we extend the results for more general shift spaces,
in particular our assumptions regarding the underlying shift spaces of cellular
automata are now the same as in the two main references [10, 7].

The paper is organized as follows. In Section 2 we review basic definitions
of symbolic dynamics and mention some relevant known results. In Section 3
we introduce the notions of ultimate expansivity and one-sided pseudo-orbit
tracing property (right- and left-POTP) for cellular automata. We also prove
some simple results which provide visual interpretations for various definitions.
In Section 4 we prove our improved version of Boyle’s result mentioned above.
In Section 5 we prove that left-POTP and ultimate right-expansivity imply
together that the trace subshifts are sofic, which reproves some known results
regarding traces of cellular automata. In Section 6 we remark that neither the
assumption of left-POTP nor that of ultimate right-expansivity can be dropped
from the theorem proved in Section 5.

2 Preliminaries

2.1 Notations

For two integers i, j ∈ Z such that i < j the interval from i to j is denoted
[i, j] = {i, i + 1, . . . , j}. We also denote [i, j) = {i, i + 1, . . . , j − 1} and (i, j] =
{i + 1, . . . , j}. Notation M is used when it does not matter whether we use N
or Z. Composition of functions f : X → Y and g : Y → Z is written as gf and
defined by gf(x) = g(f(x)) for all x ∈ X.

Sometimes we want to write indices as superscripts. We then write the index
in parenthesis to separate them from exponents (i.e. x(i) denotes an element
indexed by i while xi denotes the ith power of x).

2.2 Topological Dynamics

A (topological) dynamical system is a pair (X, f) where X is a compact metric
space and f a continuous map X → X. Let (X, f) and (Y, g) be two dynamical
systems. A continuous map φ : X → Y is a homomorphism if φf = gφ. If φ is
surjective, it is a factor map, and (Y, g) is a factor of (X, f). If φ is injective, it
is an embedding, and (X, f) is a subsystem of (Y, g). If φ is a bijection, it is a
conjugacy, and (X, f) and (Y, g) are conjugate. Let d : X×X → R+∪{0} be the
metric considered. A sequence (xi)i∈Z is a (two-way) orbit of f if f(xi) = xi+1

for every i ∈ Z. Let x, y ∈ X. There is an ε-chain from x to y if there exists
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n > 0 and a sequence x = x0, x1, . . . , xn = y ∈ X such that d(f(xi), xi+1) < ε,
for all i ∈ {0, 1, . . . , n−1}. Two-way infinite ε-chains are called ε-pseudo-orbits.
The dynamical system (X, f)

• is recurrent if for every non-empty open set U there exists n > 0 such that
Fn(U) ∩ U 6= ∅.

• is transitive if for all non-empty open sets U, V there exists n > 0 such
that Fn(U) ∩ V 6= ∅.

• is mixing if for all non-empty open sets U, V there exists N > 0 such that
for all n ≥ N it holds that Fn(U) ∩ V 6= ∅.

• is chain-recurrent if for all x ∈ X and ε > 0 there exists an ε-chain from
x to x.

• is chain-transitive if for all x, y ∈ X and ε > 0 there exists an ε-chain
from x to y.

• is chain-mixing if for all x, y ∈ X and ε > 0 there exists N > 0 such that
for all n ≥ N there exists an ε-chain x = x0, x1, . . . , xn = y from x to y.

• has the pseudo-orbit tracing property (POTP), often also called the shad-
owing property, if for all ε > 0 there exists δ > 0 such that for any
δ-pseudo-orbit (xi)i∈Z there exists an orbit (yi)i∈Z such that d(xi, yi) < ε
for all i ∈ Z.

A point x ∈ X is f -periodic if there exists n ∈ N \ {0} such that fn(x) = x.
The set of all f -periodic points is denoted by Perf (X).

2.3 Symbolic Dynamics

A finite non-empty set A is called an alphabet. The functions M → A are
called (one-dimensional) configurations and the set of all configurations over A
is denoted by AM. For us M will usually be Z. We denote ci = c(i) for c ∈ AM

and i ∈M. We consider AM to be a metric space with the metric

d(c, e) =

{
2−min({|i||ci 6=ei}), if c 6= e

0, if c = e

for all c, e ∈ AM. Let D ⊆ M be finite and u ∈ AD, then the set [u] = {c ∈
AM | cD = u} is called a cylinder. It is well-known that the topology induced
by metric d is compact and that cylinders form a countable clopen (open and
closed) base of this topology.

For any n ∈ N we denote by An the words of length n (i.e. finite sequences of
n symbols). We also denote A+ =

⋃
n∈N\{0}A

n and call any subset L ⊂ A0∪A+

a language. The language L is finite if L is finite, and regular if it is accepted by
a finite state automaton. For a word u ∈ An we denote by uω the configuration
c ∈ AN defined by ci = ui mod n, and in the same way we define ωuω ∈ AZ.
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The shift map σ : AM → AM, defined by σ(c)i = ci+1 for all i ∈ M, is
continuous. A subset X ⊆ AM which is non-empty, topologically closed, and
such that σi(X) ⊆ X for all i ∈M, is a shift space or a subshift. The dynamical
system (AZ, σ) is the full (A-)shift. A configuration c ∈ AM avoids u ∈ An if
σi(c)[0,n) 6= u for all i ∈M, otherwise u appears in c. Let S ⊆ A+, and let XS be

the set of configurations that avoid S, i.e. XS = {c ∈ AM | ∀u ∈ S : c avoids u}.
It is well-known that the given topological definition of subshift X is equivalent
to saying that there exists a set of forbidden words S such that X = XS . If
there exists a finite set S such that X = XS , then X is a subshift of finite type
(SFT). A factor of an SFT is a sofic shift. It is known that a subshift X is sofic
if and only if there exists a regular language S such that X = XS .

The language of a subshift (X,σ) is the set of words that appear in some
configuration of X, and is denoted by L(X). We also denote Ln(X) = L(X)∩An
the set of words of length n that appear in X. The subshift (X,σ) is transitive if
and only if for every u, v ∈ L(X) there exists w ∈ L(X) such that uwv ∈ L(X).
The subshift (X,σ) is mixing if and only if for every u, v ∈ L(X) there exists
N such that for every n ≥ N there exists w ∈ Ln(X) such that uwv ∈ L(X).
We will use the following fact about transitive SFT’s.

Proposition 1 ([12, §4.5]). Let (X,σ) be a transitive SFT. There exists k ∈ N
such that (X,σk) is a finite union of disjoint mixing SFT’s.

The entropy of (X,σ) is the exponential growth rate of the number of ap-
pearing words as the length of words increases:

h(X,σ) = lim
n→∞

1

n
log2(|Ln(X)|).

We only need the following facts about entropy.

Proposition 2 ([12, Proposition 4.1.9.]). Let X and Y be subshifts and F :
X → Y a factor map. Then h(Y, σ) ≤ h(X,σ).

Proposition 3 ([12, Corollary 4.4.9.]). Let X be a transitive sofic shift and
Y ⊆ X a subshift. If h(Y, σ) = h(X,σ), then X = Y .

We refer to [12] for a more detailed introduction to symbolic dynamics.

2.4 Cellular Automata

A cellular automaton is a dynamical system (X,F ) where X ⊆ AM is a shift
space and F is a shift-commuting map, i.e. Fσ = σF . In other words, cellular
automata are endomorphisms of shift spaces. When M = N, the cellular au-
tomaton is called one-sided and when M = Z, the cellular automaton is called
two-sided. We will sometimes refer to a cellular automaton by the function
name alone, i.e. talk about a cellular automaton F . The cellular automa-
ton (X,F ) is reversible if there exists a cellular automaton (X,F ′) such that
F ′F (c) = c = FF ′(c) for all c ∈ X. LetD = [i, j] ⊂M and letGloc : AD → A be
a function. Define G : AM → AM by G(c)i = Gloc((σ

i(c))D) for all i ∈M. Then
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G is continuous and commutes with σ, so it is a cellular automaton. The set D
is a local neighborhood of G and the function Gloc is a local rule of G. According
to the Curtis-Hedlund-Lyndon Theorem all cellular automata are defined by a
local rule. If G is defined by a local rule Gloc : A[−m,a] → A, where −m ≤ a, we
say that G has anticipation a, memory m and radius r = max{m, a}. If m ≤ 0
then G is memoryless. We overload the notation for the global function and use
it also on finite words: For any n > m + a and u ∈ An we define in a natural
way the word G(u) ∈ An−(m+a).

For a cellular automaton (X,F ) the space-time diagrams are the two-way
infinite orbits. The set of space-time diagrams of F is denoted by

st(F ) = {(c(i))i∈Z ∈ XZ | ∀i : F (c(i)) = c(i+1)}.

As a pictorial presentation we consider these as coloured square lattices where
rows are the points of the orbit and time advances downwards; left, right, up,
and down should be understood accordingly. Notice that for us orbits, or space-
time diagrams, are two-way infinite, so that we only consider points which can
be seen after arbitrarily many time steps, in other words points which are in the
limit set ΛF = ∩i∈NF i(X) of the cellular automaton. Of course for a surjective
cellular automaton ΛF = X.

In [11] we used the balancedness property of surjective cellular automata
[13] to show that ultimately right-expansive surjective cellular automata over
full shifts are chain-transitive. In extending this result to cellular automata over
more general shift spaces we need a more general version of the balancedness
property; luckily measure theory has provided such. The following proposition
is sufficient for our purposes and is directly extracted from known results.

Proposition 4. Let X be a mixing sofic shift, (X,F ) a surjective cellular au-
tomaton, and U ⊆ X a clopen set. If F (U) ⊆ U then F (U) = U = F−1(U).

Proof. As measure theory plays no further role in this paper, we will not go into
details. The following outlines known results that can be used to conclude the
claim:

According to [14] X has a unique σ-invariant measure of maximal entropy
µ (known as the Parry measure, originally presented in [15] for SFT’s). From
the definition one sees that µ(U) > 0 for every non-empty open set U ⊆ X.

The push-forward measure of µ under F is defined by F (µ)(U) = µ(F−1(U))
for any clopen set U ⊆ X. According to [16, Theorem 3.3.] every σ-invariant
measure of maximal entropy is the push-forward measure under F of some σ-
invariant measure of maximal entropy. Since µ is the unique σ-invariant measure
of maximal entropy, we have that F (µ) = µ.

Now suppose that F (U) ⊆ U for some clopen set U ⊆ X. Then U ⊆ F−1(U).
Now we have that µ(F−1(U)\U) = µ(F−1(U))−µ(U) = 0, and since F−1(U)\U
is open we get that F−1(U) \ U = ∅. So we have that F−1(U) ⊆ U , and thus
F−1(U) = U . Since F is surjective we also have that F (U) = U .
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3 Ultimate Expansivity and One-Sided Pseudo-
Orbit Tracing Property

3.1 Ultimate Expansivity

Expansivity of a dynamical system is a strong form of sensitivity where any small
change in the state of the system is magnified above a fixed threshold under
the time evolution. Here we consider the evolution of a cellular automaton
in its limit set, both backward and forward in time. In other words, we are
interested in the propagation of perturbations along two-way infinite orbits. If
not otherwise stated the shift space X is assumed to be a subshift of AZ.

A cellular automaton (X,F ) is ultimately expansive if there exists ε > 0 such
that for all space-time diagrams (c(i))i∈Z, (e

(i))i∈Z ∈ st(F ) it holds that

c(0) 6= e(0) =⇒
(
∃n ∈ Z : d(c(n), e(n)) > ε

)
. (1)

The cellular automaton is ultimately right-expansive if there exists ε > 0 such
that for all space-time diagrams (c(i))i∈Z, (e

(i))i∈Z ∈ st(F ) it holds that

(∃i > 0 : c
(0)
i 6= e

(0)
i

)
=⇒

(
∃n ∈ Z : d(Fn(c), Fn(e)) > ε

)
. (2)

Ultimately left-expansive is defined analogously.
In terms of multi-dimensional symbolic dynamics, the set st(F ) of space-time

diagrams of cellular automaton F is a two-dimensional subshift. Boyle and Lind
studied in [17] expansive subspaces of multidimensinonal subshifts. Ultimate
expansivity means in their terminology that the vertical direction (that is, the
temporal direction) is an expansive direction for subshift st(F ).

The terminology regarding expansivity somewhat varies, but one common
practice is to call expansive cellular automata which are reversible and fulfill
(1) and to call positively expansive cellular automata which are surjetive and
fulfill (1) where “∃n ∈ Z” is replaced with “∃n ∈ N”. Then by definition,
positively expansive cellular automata and expansive cellular automata are ul-
timately expansive. Next examples show that ultimate expansivity covers cases
which expansivity and positive expansivity do not.

Example 3.1. A cellular automaton (AZ, F ) is nilpotent if there exists q ∈ A
and n ∈ N such that for every c ∈ AZ we have that Fn(c) = ωqω. Then st(F )
is a singleton and it follows that F is ultimately expansive.

There cannot be a reversible cellular automaton that would be ultimately
expansive but not expansive, as ultimate expansivity and reversibility together
are equivalent to expansivity. However there are surjective ultimately expansive
cellular automata which are neither expansive nor positively expansive:

Example 3.2. Let A = {0, 1} , σ : AZ → AZ be the shift map and X : AZ →
AZ be the two-sided XOR -cellular automaton, that is the cellular automaton
defined by Xloc : A[−1,1] → A, Xloc(abc) = a ⊕ c, where ⊕ denotes addition
modulo 2. The shift map σ is expansive, and so also ultimately expansive. The
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XOR -cellular automaton cannot be expansive as it is not reversible, however
it is positively expansive, and so also ultimately expansive. Consider the direct
product of these, that is the cellular automaton σ × X : AZ × AZ → AZ × AZ

defined by (σ × X )(c, e) = (σ(c),X (e)). This is neither expansive (not even
reversible) nor positively expansive (since σ is not). However, σ×X is ultimately
expansive.

The following lemma states the well-known consequence of compactness that
ultimate right-expansivity implies a deterministic local rule in the horizontal
direction of space-time diagrams.

Lemma 1. A cellular automaton (X,F ) is ultimately right-expansive if and
only if there exists m,n ∈ N such that for all space-time diagrams (c(j))j∈Z and
(e(j))j∈Z the following holds(

∀j ∈ {0, . . . , 2n} : c
(j)
[0,m) = e

(j)
[0,m)

)
=⇒ c(n)m = e(n)m . (3)

Proof. For a space-time diagram S = (s(i))i∈Z ∈ st(F ) we denote S(x,y) = s
(y)
x

and similarly we define SD for any subset D ⊆ Z2. Suppose the claim does not
hold so that we have a sequence of pairs of space-time diagrams (S(i), R(i))i∈N ∈
(st(F )× st(F ))N such that for every N ∈ N it holds that S(N)[−N,0]×[−N,N ] =
R(N)[−N,0]×[−N,N ] and S(N)(1,0) 6= R(N)(1,0). This sequence has a converging

subsequence (S(i), R(i))i∈I ; let (S,R) = ((s(i))i∈Z, (r
(i))i∈Z) ∈ st(F )×st(F ) be

the limit of this sequence. Now we have a counterexample to ultimate right-
expansivity: For any ε > 0 there exists k ∈ N such that ((σ−k(s(i)))i∈Z, (σ

−k(r(i)))i∈Z) ∈
st(F )× st(F ) contradicts the right-sided variant of (1).

In what follows we will consider configurations of (An)Z where n > 1, which
can lead to indexing issues. To avoid these issues we define for every n ∈
N \ {0}, i, j ∈ {0, . . . , n − 1} where i ≤ j projections πi : An → A and π[i,j] :
An → Aj−i+1 where πi(a0 · · · an−1) = ai and π[i,j](a0 · · · an−1) = ai · · · aj . We

also extend these to (An)Z cell-wise.
Let (X,F ) be a cellular automaton with radius r. The n-trace of F is defined

as

τn(F ) =
{
t ∈ (An)Z | ∃(c(i))i∈Z ∈ st(F ) : ∀j ∈ Z : tj = c

(j)
[0,n)

}
Notice that our traces are two-sided subshifts, which is in line with our defini-
tion of space-time diagrams: Traces are vertical stripes of space-time diagrams
(Figure 2).

Let (X,F ) be an ultimately right-expansive cellular automaton. Then the
lemma above says that we have m ∈ N such that we can define a cellular automa-

ton (τm(F ),
−→
F ) such that for every t ∈ τm(F ) we have that

−→
F (t) ∈ τm(F ) is the

unique configuration such that π[1,m)(t) = π[0,m−1)(
−→
F (t)) and the last column of

−→
F (t) is the column defined by (3) (Figure 1). Then {(π0(

−→
F i(t)))i∈N | t ∈ τm(F )}

is the set of right halves of st(F ).
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Figure 1: An ultimately right-expansive cellular automaton defines a cellular

automaton
−→
F which draws the (right halves) of the space-time diagrams. The

figure illustrates how
−→
F is defined; assuming that the grid has a valid space-

time diagram of F , then
−→
F maps the pattern in the light gray rectangle to the

pattern in the dark gray area.

Notice that if F is surjective and ultimately expansive then (X,F ) is a factor
of (τm(F ), σ) so h(X,F ) ≤ h(τm(F ), σ). On the other hand, let ψ : (Am)Z →
(Am)N be the map defined by ψ(· · · c−1c0c1 · · · ) = c0c1 · · · . Then (ψ(τm(F )), σ)
is a factor of (X,F ) so h(ψ(τm(F )), σ) ≤ h(X,F ). Since L(τm(F )) = L(ψ(τm(F )))
we have that h(τm(F ), σ) = h(ψ(τm(F )), σ) and so h(X,F ) = h(τm(F ), σ). If
(X,F ) is expansive, it is conjugate to (τm(F ), σ). If (X,F ) is positively expan-
sive, it is conjugate to (ψ(τm(F )), σ).

3.2 One-Sided Pseudo-Orbit Tracing Property

Next we consider pseudo-orbits for cellular automata. Let (X,F ) be a cellular
automaton with radius r. For every n ∈ N \ {0} we define a directed labeled
multigraph Gn(F ) = (Vn, En) as follows:

• The set of vertices is Vn = Ln(X).

• For every u ∈ Vn and x, y ∈ Lr(X) such that xuy ∈ Ln+2r(X) there is a

labeled edge u
xy−→ F (xuy) in En.

The graph Gn(F ) defines an SFT Cn(F ) ⊆ (An)Z where (u, v) ∈ (An)2 is for-
bidden if there is no edge u −→ v. The points of

⋃
n∈N\{0} Cn(F ) are essentially

the pseudo-orbits of F . From the definitions we get characterizations of chain-
transitive and chain-mixing cellular automata that are more convenient for us:
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Proposition 5. A cellular automaton (X,F ) is chain-transitive (chain-mixing)
if and only if Cn(F ) is transitive (mixing) for every n.

Proof.

(X,F ) is chain-transitive

⇐⇒ ∀ε > 0 : ∀c, e ∈ X : ∃c = c(0), . . . , c(n) = e ∈ X : d(F (c(i)), c(i+1)) < ε

⇐⇒ ∀k ∈ N : ∀c, e ∈ X : ∃c = c(0), . . . , c(n) = e ∈ X : F (c(i))[−k,k] = (c(i+1))[−k,k]

⇐⇒ ∀k ∈ N : Gk(F ) is strongly connected

⇐⇒ ∀k ∈ N : Ck(F ) is transitive.

If (X,F ) is chain-mixing Gk(F ) is not just strongly connected, but has the
property that there exists N ∈ N such that for every u, v ∈ Vk and l ∈ N such
that l ≥ N there exists a path of length l from u to v. Otherwise the proof is
essentially the same.

For m ∈ N \ {0} and every n, i, j ∈ N such that m + i + j = n we denote

iΣ
(m)
j (F ) = π[i,i+m)(Cn(F )). We write simply iΣ

(m)
j if the cellular automaton

considered is clear from the context. The subshifts iΣ
(m)
j are sofic as factors of

SFT’s. The elements of iΣ
(m)
j can be considered as columns of width m which

can be extended with i columns to the left and with j columns to the right
without introducing violations of the local rule of F . As Cn(F ) are pseudo-

orbits it is natural to call iΣ
(m)
j pseudo-traces (Figure 3).

Since pseudo-traces are non-empty and i+1Σ
(m)
j ⊆ iΣ

(m)
j we have, by the

finite intersection property, that ∞Σ
(m)
j =

⋂
k∈N kΣ

(m)
j is non-empty. Since

∞Σ
(m)
j is also closed and shift-invariant it is a subshift. In similar fashion we

define subshifts iΣ
(m)
∞ =

⋂
k∈N iΣ

(m)
k and ∞Σ

(m)
∞ =

⋂
k∈N kΣ

(m)
k . The following

proposition shows that τm(F ) = ∞Σ
(m)
∞ as is to be expected.

Proposition 6. Let (X,F ) be a cellular automaton. Then for every m ∈ N\{0}
it holds that τm(F ) = ∞Σ

(m)
∞ .

Proof. Let (X,F ) be a cellular automaton with radius r and let m ∈ N \ {0} be
arbitrary.

“⊆”: If t ∈ τm(F ) then any space-time diagram that contains t shows that

t ∈ kΣ
(m)
k for every k ∈ N.

“⊇”: It is enough to show that L
(⋂

k∈N kΣ
(m)
k

)
⊆ L(τm(F )). Suppose not,

i.e. that there exists u ∈ Ln(
⋂
k∈N kΣ

(m)
k ) \ Ln(τm(F )) for some n ∈ N. Let

U ={(v, w) ∈ Anr ×Anr | vu0w ∈ L2nr+m(X) and if we consider vu0w as an

element of A[−nr,m+nr) then F i(vu0w)[0,m) = ui for all i ∈ {0, . . . , n− 1}}.

Since u ∈ L(nrΣ
(m)
nr ) the set U is non-empty. Since u /∈ Ln(τm(F )) we have that

for all (v, w) ∈ U it holds that vu0w /∈ L(ΛF ) (the language of the limit set of

10



m

τm(F )

Figure 2: Traces are vertical stripes
of space-time diagrams.

mi j

iΣ
(m)
j

Cn(F )

Figure 3: Pseudo-orbits are con-
figurations where outside of the
stripes of width n we allow any-
thing. Pseudo-traces are factors of
pseudo-orbits in a natural way.

F ). By compactness there exists l ∈ N such that vu0w for every (v, w) ∈ U is

already forbidden in F l(X). But since u ∈ L((n+l)rΣ
(m)
(n+l)r) there has to exist

(v, w) ∈ U such that vu0w ∈ L1(lrΣ
(m+2nr)
lr ) so that it does appear in F l(X),

thus reaching a contradiction.

Next we give a characterization of POTP for cellular automata.

Proposition 7. Let (X,F ) be a cellular automaton. The following are equiva-
lent:

i. F has POTP.

ii. For every m ∈ N \ {0} there exists n ∈ N such that τm(F ) = nΣ
(m)
n .

Proof. “i.⇒ ii.”: The POTP immediately implies that there exists n ∈ N such

that the middle columns of Cm+2n are τm(F ), i.e. that nΣ
(m)
n = τm(F ).

“ii. ⇒ i.”: If τm(F ) = nΣ
(m)
n then for pseudo-orbit x ∈ C2n+m there exists

an orbit (c(i))i∈Z such that (π[n,n+m)(c
(i)))i∈Z = π[n,n+m)(x).

From this it follows that if F has POTP then τn(F ) is sofic for every n, and
that if τn(F ) is an SFT for every n then F has POTP. These were already proved
by Kůrka in [2] where also counterexamples for the converses were provided.

According to propositions 6 and 7 we have that (X,F ) has POTP if and

only if for every m ∈ N \ {0} there exists n ∈ N such that nΣ
(m)
n = ∞Σ

(m)
∞ .

This leads to a natural definition of one-sided POTP: We say that F has the
left pseudo-orbit tracing property (left-POTP) if for every m there exists i, j

iΣ
(m)
j = ∞Σ

(m)
j .

11



The right pseudo-orbit tracing property (right-POTP) is defined analogously.
We see that for cellular automata over SFT’s this definition behaves as one-
sided variants are expected to:

Proposition 8. Let X be an SFT and (X,F ) a cellular automaton. Then
(X,F ) has POTP if and only if (X,F ) has left- and right-POTP.

Proof. “⇒”: Immediate from propositions 6 and 7.
“⇐”: It is enough to show that for large enough m it holds that there

exists n such that τm(F ) = nΣ
(m)
n . Let l be large enough so that there exists

a set of forbidden words S ⊆ Al such that X = XS and let m ≥ max{l, 2r}
where r is a radius of F . Then left- and right-POTP say that we have n such

that ∞Σ
(m)
n = nΣ

(m)
n = nΣ

(m)
∞ . Now consider t ∈ nΣ

(m)
n . It can be extended

infinitely to the left without introducing violations of the local rule of F , and
also to the right. If we take any valid extension to the left and glue it together
with any valid extension to the right, we will have a valid space-time diagram
since m was chosen large enough so that the patterns checking the validity of
the space-time diagram cannot see both sides of the stripe of width m. Thus

nΣ
(m)
n = τm(F ) and by Proposition 7 we are done.

The following proposition shows that memorylessness is a special case of
left-POTP.

Lemma 2. Let X be an SFT and (X,F ) be a memoryless surjective cellular
automaton. Then (X,F ) has left-POTP.

Proof. Let X be an SFT and l ∈ N such that there exists S ⊆ Al such that
X = XS . Let (X,F ) be a cellular automaton with neighborhood [0, r] where
r ∈ N. Let m ≥ max{l, r}. Take any configuration t ∈ Cm(F ) and a sequence
(ai)i∈Z ∈ AZ such that aiti ∈ Lm+1(X) for all i ∈ Z. There is no reason why
(aiti)i∈Z should be in Cm+1(F ), however we can construct a valid extension as

follows: For every j ∈ N define a new sequence (a
(j)
i )i∈Z by setting a

(j)
i = ai for

i < −j and the rest of the sequence is defined recursively by

a
(j)
−j = a−j and a

(j)
k+1 = Floc(a

(j)
k tk)0 for k ≥ −j.

Notice that by the choice of m we have that if x, y ∈ A, u, v ∈ Am, w ∈ Ar

such that xu ∈ Lm+1(X), uw ∈ Lm+r(X) and F (xu)0 = y, F (uw) = v, then
xuw ∈ Lm+r+1(X) (since m ≥ l) and F (xuw) = yv (since m ≥ r). Thus the

configuration (a
(j)
i ti)i∈Z looks like a valid configuration of Cm+1(F ) for all i ≥

−j. By compactness the sequence ((a
(j)
i )i∈Z)j∈N has a converging subsequence,

say ((a
(j)
i )i∈Z)j∈I where I ⊆ N is an infinite subset. Let (bi)i∈Z be the limit of

this subsequence. Now the configuration (biti)i∈Z ∈ Cm+1(F ) shows that t can
be extended to the left with one column. We can repeat the process and extend
t to the left as much as we will. This shows that for every n ∈ N we have that

0Σ
(n)
m = ∞Σ

(n)
m .
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Now the following corollary is immediate.

Corollary 1. Let X be an SFT. If (X,F ) is memoryless and surjective, then

τm(F ) =
⋂
i∈N 0Σ

(m)
i .

Proof. From Lemma 2 it follows that for large enough n we have 0Σ
(m)
n = nΣ

(m)
n ,

and so the claim follows from Proposition 6.

4 Surjective Ultimately Right-Expansive Cellu-
lar Automata are Chain-Transitive

Consider a cellular automaton (AZ, F ). Let P = {Ai}i∈{0,...,n−1} be a partition

of A. We say that F respects P at x ∈ AZ if for every k ∈ N there exists
j ∈ {0, 1, . . . , n − 1} such that F k(x) ∈ AZ

j . Let R be the set of all points
where F respects P . This is a subshift. Now we define a projection ι : A →
{0, 1, . . . , n − 1} by ι(a) = k if a ∈ Ak. Next we project the forward orbits
of configurations in R cell-wise using ι. According to the definition of R, each
row is constant after this mapping and so we can consider the projected forward
orbits as a one-sided one-dimensional subshift over the alphabet {0, 1, . . . , n−1}.
We will call this subshift the stripe shift defined by F and P and denote it by

ΞP (F ) = {t ∈ {0, . . . , n− 1}N | ∃x ∈ AZ : ∀i ∈ N : ∀j ∈ Z : ι(F i(x)j) = ti}.

A one-sided subshift X is called a stripe shift if there exists a cellular automaton
(AZ, F ) and a partition P of A such that ΞP (F ) = X.

In [18] we proved the following.

Lemma 3 ([18, Lemma 1]). The binary full shift {0, 1}N is not a stripe shift.

It is natural to ask which subshifts, if any, are stripe shifts. We notice that
at least every finite subshift is a stripe shift: this follows from the facts that
in finite subshifts every point is eventually periodic (i.e. of form uvω for some
finite words u, v) and that constant configurations (i.e. configurations where
every cell is in the same state) respect any partition. This also says that for any
cellular automaton and any partition of its state set the stripe shift defined is
non-empty. Next we give a bit more interesting example of a stripe shift.

Example 4.1. The infinite firing squad cellular automaton (BZ, G) presented
in [19] has the following property: There exists f ∈ B and (c(i))i∈Z ∈ st(G)

such that c(0) = ωfω and for all i ∈ Z \ {0} and j ∈ Z we have that c
(i)
j 6= f .

Now let P = {{f}, B \ {f}} as the partition of B and we see that the sunny
side up subshift X≤1 = {c ∈ {0, 1}N | c has at most one 1} is a stripe shift (it
is obvious that X≤1 ⊆ ΞP (G) and easy to see that ΞP (G) ⊆ X≤1).

Using the firing squad cellular automaton and Lemma 3 we can characterize
which sofic shifts are stripe shifts. Let us first prove that finite unions of stripe
shifts are stripe shifts.
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Proposition 9. Let X1, . . . , Xl be stripe shifts. Then X = ∪li=1Xi is a stripe
shift.

Proof. It is enough to show that the union of two stripe shifts is a stripe shift.
Let X and Y be stripe shifts and assume that X ∪Y ⊆ {0, 1, . . . , n−1}N is such
that every letter 0, 1, . . . , n − 1 appears in some configuration of X ∪ Y . Let
(AZ, F ) be a cellular automaton and {Ai}i∈{0,1,...,n−1} a collection of subsets
of A such that PA = {Ai | i ∈ {0, 1, . . . , n − 1}, Ai 6= ∅} is a partition of A
such that ΞPA

(F ) = X. Let (BZ, G), {Bi}i∈{0,1,...,n−1} and PB be defined in a
similar way so that ΞPB

(G) = Y . We can assume that A and B are disjoint.
Now let P = {Ai ∪ Bi}i∈{0,1,...,n−1}, which is a partition of A ∪ B (Ai and Bi
cannot both be empty for any i ∈ {0, 1, . . . , n − 1} since all letters appear in
X ∪ Y ). Our goal is to define a cellular automaton ((A ∪ B)Z, H) such that
ΞP (H) = X ∪ Y . We can assume that the local rules of (AZ, F ) and (BZ, G)
both have neighborhood [−r, r] for some r ∈ N \ {0}. Let a0 ∈ A0 ∪ B0 and
a1 ∈ A1∪B1 be some letters. The local rule Hloc is a map (A∪B)[−r,r] → A∪B
defined by

Hloc(x−r · · ·x−1x0x1 · · ·xr) =


Floc(x−r · · ·xr), if x−r · · ·xr ∈ A[−r,r]

Gloc(x−r · · ·xr), if x−r · · ·xr ∈ B[−r,r]

a0, if x0 ∈ A and x−1 or x1 in B

a1, otherwise

Clearly, from the first two lines, we have that X ∪ Y ⊆ ΞP (H). On the other
hand, if a configuration c ∈ (A ∪B)Z contains letters from both A and B then
the third and fourth lines guarantee that H(c) contains a0 and a1 so that H
does not respect P at c. Thus ΞP (H) = X ∪ Y .

Now we are ready to characterize the sofic stripe shifts.

Proposition 10. Let X be a sofic shift. If X has positive entropy then no
stripe shift can contain it, and complementarily, if X has zero entropy then it
is a stripe shift.

Proof. For sofic shifts, having positive entropy is equivalent to being uncount-
able. Let the number of letters that appear in X be n.

Suppose that X is an uncountable sofic shift and that (AZ, F ) is a cellular
automaton and P = {Ai}i∈{0,...,n−1} a partition such that X ⊆ ΞP (F ). Then

there exists u, v ∈ L(X) such that u0 6= v0 and {u, v}N ⊆ X. Let ũ = uv and
ṽ = vu, so that |ũ| = |ṽ|. Of course also {ũ, ṽ}N ⊆ X. Now let P ′ = {A′0, A′1}
be a partition of A such that P is a refinement of P ′ and ι−1(u0) ⊆ A′0 and
ι−1(v0) ⊆ A′1 (where ι is the projection A → {0, . . . , n − 1} according to the
partition P ). Now the stripe shift defined by F |ũ| and P ′ is {0, 1}N contradicting
Lemma 3.

Next let X be a countable sofic shift and let G be a labeled directed graph
such that the labels of the one-way infinite paths of G are the points of X.
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According to [20, Lemma 4.8.] we can assume that the connected compo-
nents (connected in the sense that if the directions are erased then the com-
ponent is a connected undirected graph) of G consist of some number of cycles
C(1), . . . , C(k) and paths P (1), . . . , P (k − 1) such that P (i) is path from C(i)
to C(i + 1). According to Proposition 9 we can assume that there is only one
connected component.

Denote the edge set of G by EG and define F1 : EG → EG so that if e has
unique follower edge in G then F1(e) is that edge, otherwise F1(e) is the the
follower edge which is on the same cycle as e (the only edges where the follower
is not unique are the ones on cycles where there is a choice to either continue
along the cycle or start along the path connecting to the next cycle). Similarly
we define F2 : EG → EG but F2 does the opposite choice than F1 in the edges
where there are two possible ways to continue. Let (BZ, G) be the firing squad
cellular automaton of Example 4.1. We define a cellular automaton ((EG ×
B × · · · ×B)Z, F ), where we have k − 1 copies of B, by F (c, e(1), . . . , e(k−1)) =
(c′, G(e(1)), . . . , G(e(k−1))) where

c′i =

{
F1(ci) if e

(j)
i 6= f for every j ∈ {1, 2, . . . , k − 1}

F2(ci) if e
(j)
i = f for some j ∈ {1, 2, . . . , k − 1}

.

Now X is the stripe shift defined by F and P = {Ex × B × · · · × B}x∈L1(X)

where Ex = {a ∈ EG | label of a is x}.

As remarked in the beginning of the proof, we could equally well formulate
the above proposition with the condition of X being uncountable. We used the
entropy condition instead since we have an example of an uncountable stripe
shift, and on the other hand since the proof of Lemma 3 seems to suggest that
positive entropy is impossible for stripe shifts in general.

While the stripe trace has certain interest in itself, we just need the above as
a technical detail in the proof of the following theorem. This theorem generalizes
[10, Corollary 4.3] where the cellular automaton is assumed to be reversible and
expansive both to the left and to the right.

Theorem 1. Let X be a mixing sofic shift. A surjective ultimately right-
expansive cellular automaton (X,F ) is chain-transitive.

Proof. Suppose (X,F ) is not chain-transitive. Then, by Proposition 5, there
exists m such that Gm(F ) is not strongly connected. We may assume that m

is large enough so that we have a cellular automaton (τm(F ),
−→
Fm) as defined

by Lemma 1. Let Gm(F )1, . . . ,Gm(F )k be the strongly connected components
of Gm(F ). There has to exist a strongly connected component which has no
arrows to other strongly connected components (if every connected component
could be left, there would have to exist a cycle which would visit two different
connected components, which is a contradiction); we may assume that Gm(F )1
is such. Let V1 ⊆ Lm(X) be the vertex set of Gm(F )1 and V c1 = Lm(X)\V1. We
denote with V1 and V c1 also the clopen sets of X which the vertex sets naturally
define. Since V1 has no arrows pointing outwards, we have that F (V1) ⊆ V1.
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Then according to Proposition 4 we have that F (V1) = V1 and F−1(V1) = V1.
According to F−1(V1) = V1 there are no arrows pointing from V c1 to V1 and so
F (V c1 ) ⊆ V c1 . Again, by Proposition 4, we have that F (V c1 ) = V c1 .

Define a partition P of Am as follows:

P1 = V1

P0 = Am \ V1,

and let ι : Am → {0, 1} be the projection defined by this partition. Of course
V c1 ⊆ P0. As we saw above Cm(F ) ⊆ PZ

0 ∪ PZ
1 . Then we also must have that

τm(F ) ⊆ PZ
0 ∪PZ

1 . Take one vertex u ∈ V1 = P1 and one v ∈ V c1 ⊆ P0. Since X
is a mixing sofic shift, we have K ∈ N and words wuu, wuv, wvv, wvu ∈ AK such
that

Y = {· · ·x−1wx−1x0
x0wx0x1

x1 · · · | xi ∈ {u, v} for all i ∈ Z} ⊆ X

Now extend (τm(F ),
−→
Fm) arbitrarily to a cellular automaton ((Am)Z,

−→
F ′m). But

now the stripe shift defined by
−→
F ′m and P would contain an uncountable sofic

shift: For x, y ∈ {u, v} define zx,y ∈ {0, 1}|u|+K−1 as

zx,y = ι
(
(xwxyy)[0,m)

)
ι
(
(xwxyy)[1,m+1)

)
· · · ι

(
(xwxyy)[|u|+K−1,m+|u|+K)

)
,

then

{i0zx0,y0i1zx1,y1 · · · |ij ∈ {0, 1} and ι(xj) = ij and

ι(yj) = ij+1 for all i, j ∈ N} ⊆ ΞP (
−→
F ′m).

This contradicts Lemma 10.

Remark 1. In Theorem 1 mixing sofic shift X cannot be replaced by a transitive
sofic shift X: Take two (reversible) expansive cellular automata (AM, F ) and
(BM, G) where M = N or M = Z and A and B are disjoint. For convenience
assume that the local neighborhood is {−1, 0, 1} ∩M. Let X ⊆ (A ∪ B)M be
a transitive SFT defined by the set of forbidden patterns F = {xy | x, y ∈
A} ∪ {xy | x, y ∈ B}. Now define a cellular automaton (X,H) by a local rule
with neighborhood {−2, 0, 2} ∩ M. Within this neighborhood the local rule
sees letters only from A or only from B. This local neighborhood is mapped
according to F or G depending on whether the local rule sees letters from A
or from B. This (X,H) is expansive as (AM, F ) and (BM, G) are, but not
chain-transitive.

Theorem 1 has the following immediate corollary.

Corollary 2. Let X be a mixing sofic shift and let (X,F ) be a surjective ulti-
mately right-expansive cellular automaton. Then (X,F ) is chain-mixing and so

iΣ
(m)
j is a mixing sofic shift for every i, j ∈ N,m ∈ N \ {0}.
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Proof. Let us show that (Cn(F ), σk) is a transitive SFT for every k ∈ N \ {0}.
Then it will follow from Proposition 1 that (Cn(F ), σ) is a mixing SFT, and thus,
by Proposition 5, (X,F ) is chain-mixing. Let (u(i))i∈{0,1...,k−1}, (v

(i))i∈{0,1,...,k−1} ∈
Lk(Cn(F )). Since also (X,F k) is a surjective ultimately right-expansive cellu-
lar automaton, Theorem 1 and Proposition 5 imply that Cn(F k) is a transitive
SFT. Thus there exists an F k-pseudo-orbit through cylinders defined by u(k−1)

and v(0) in this order. Then we have an F -pseudo-orbit through the cylinders
u(k−1) and v(0) (in this order) such that the number of steps from u(k−1) to v(0)

is a multiple of k, and so we see that (Cn(F ), σk) is transitive.

The pseudo-traces iΣ
(m)
j are mixing sofic shifts as factors of mixing SFT’s.

5 Left-POTP and Ultimate Right-expansive Cel-
lular Automata Have Sofic Traces

We can now prove that surjective ultimately right-expansive cellular automaton
with left-POTP has POTP. Our proof is inspired by Taati’s proof that a cellular
automaton (over the full shift) which is reversible over its limit set is stable [21],
i.e. reaches the limit set in finite time (here τm(F ) corresponds to the limit set).

Theorem 2. Let X ⊆ AZ be a transitive SFT and let (X,F ) be a surjective ul-
timately right-expansive cellular automaton with left-POTP. Then F has POTP
and τm(F ) is a sofic shift for every m. If F is memoryless, then τm(F ) is an
SFT. Further, if X is a mixing SFT, then τm(F ) is mixing.

Proof. By Proposition 1 there exists n such that (X,σn) is a finite union of
disjoint mixing SFT’s. As F is a surjective cellular automaton, some power of
F is a cellular automaton when restricted to any of these mixing SFT’s. If this
power of F has POTP on each of these disjoint mixing SFT’s then the original
cellular automaton also has POTP. This is why it is enough to prove the claim
with the additional assumption of X being a mixing SFT. This same argument
has already been made in more detail in the end of Section 2 in [7] and in the
proof of [10, Theorem 5.5].

We have seen that LΣ
(m)
L is a sofic shift for every L,m ∈ N, and according

to Corollary 2 it is also transitive. We will show that for large enough L ∈ N it

holds that τm(F ) = LΣ
(m)
L .

Let l be large enough so that left-POTP says that lΣ
(m)
l = ∞Σ

(m)
l . Let

−→
Fm : τm(F )→ τm(F ) be the cellular automaton defined by the ultimate right-

expansivity of F . Let r be a radius of F and let r′ be a radius of
−→
Fm. Let

F = (Am)2r
′+1 \ L2r′+1(τm(F )), i.e. the words of length 2r′ + 1 that do not

appear in τm(F ). Now
−→
Fm can be extended to XF by using the same local rule of

radius r′; Let
−→
F denote the extension of

−→
Fm to XF . It does not necessarily hold

that
−→
F (XF ) ⊆ XF . Notice that since F is surjective we have that Lk(krΣ

(m)
kr ) =
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Lk(τm(F )) for every k ∈ N. In particular l′Σ
(m)
l′ ⊆ XF for every l′ ≥ (2r′+ 1)r.

Let L ≥ max{l, (2r′ + 1)r}.
Claim:

−→
F (L+1Σ

(m)
L+1) = LΣ

(m)
L .

Proof: “⊆”: Let t(0) ∈ L+1Σ
(m)
L+1. Since t(0) is the central stripe of some

element in C2L+2+m(F ) there is a unique t(1) ∈ L+2Σ
(m)
L ⊆ LΣ

(m)
L , deter-

mined by the local rule of
−→
Fm, such that t(0,1) ∈ (Am+1)Z defined by

π[0,m)(t
(0,1)) = t(0) and π[1,m](t

(0,1)) = t(1)

is in L+1Σ
(m+1)
L . Then it has to be that

−→
F (t(0)) = t(1).

“⊇”: Now let t(1) ∈ LΣ
(m)
L . By left-POTP we have that t(1) ∈ L+2Σ

(m)
L ,

so that there exists t(0) ∈ L+1Σ
(m)
L+1 such that

−→
F (t(0)) = t(1).

Now we have that LΣ
(m)
L is a factor of L+1Σ

(m)
L+1, so the entropy of LΣ

(m)
L

is at most the entropy of L+1Σ
(m)
L+1 (Proposition 2). But we also have that

L+1Σ
(m)
L+1 ⊆ LΣ

(m)
L , and so L+1Σ

(m)
L+1 and LΣ

(m)
L have the same entropy. Accord-

ing to Proposition 3 we have that L+1Σ
(m)
L+1 = LΣ

(m)
L and so LΣ

(m)
L = ∞Σ

(m)
∞ .

Now F has POTP according to Proposition 7, and POTP always implies sofic-
ness of the trace subshifts.

Next let F be memoryless, i.e. it has a local neighborhood [0, r]. Ac-

cording to Corollary 1 we now have that 0Σ
(m)
k = τm(F ) for some k. Let

X
(j)
i denote the SFT of (Aj)Z defined by forbidding (Aj)i \ Li(τj(F )). Let

x ∈ X(m)
2r′k+2 be arbitrary and y ∈ (Am+k)Z be the unique configuration defined

by π[i,i+m)(y) =
−→
F i(x) for all i ∈ {0, 1, . . . , k}. Now π[0,m+1)(y) ∈ X(m+1)

2r′(k−1)+2

since x = π[0,m)(y) ∈ X
(m)
2r′k+2 and π[1,m)(y) is defined using the local rule

of
−→
Fm. We can repeat this for k times and we get that y ∈ X

(m+k)
2 , i.e.

y ∈ Cm+k(F ). But then, since 0Σ
(m)
k = τm(F ), we have that x ∈ τm(F ). Of

course τm(F ) ⊆ X(m)
2r′k+2 and so we are done.

Lastly, if X is mixing, then by Corollary 2 also τm(F ) is mixing.

Remark 2. Theorem 2 implies the following:

• If (AN, F ) is surjective and positively expansive, then τ(F ) is an SFT ([4,
Theorem 3.3]).

• If (AN, F ) is reversible and expansive, then τ(F ) is an SFT ([6, Theorem
1.3])

• If (X,F ), where X is a transitive SFT, is surjective, ultimately right-
expansive, memoryless, and chain-recurrent, then (X,F ) has POTP ([7,
Theorem 6.3 (i)], the last assumption is not actually needed, see introduc-
tion or the theorem above).
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6 Left-POTP or Right-Expansive Cellular Au-
tomata Can Have Non-Sofic Traces

Let X be a transitive SFT. We have seen that surjective ultimately right-
expansive cellular automaton (X,F ) with left-POTP has POTP. Especially this
means that right-expansive cellular automata with left-POTP have sofic traces.
In [18] we gave an example of a right-expansive cellular automaton over the full
shift (based on constructions in [22]) whose trace subshifts are non-sofic, which
then also cannot have POTP. Here we will give a reversible cellular automa-
ton over one-sided full shift with non-sofic traces, and so a reversible cellular
automaton with left-POTP and with non-sofic traces.

Let X ⊆ AZ be a subshift. The set of isolated points of X is

Iso(X) = {c ∈ X | ∃n ∈ N : [c−n · · · cn] ∩X = {c}}.

Lemma 4. If X ⊆ AZ is a sofic shift, then |Iso(X) ∩ Perσ(X)| <∞.

Proof. Suppose X is sofic but the intersection of its isolated and periodic points
is infinite. Let A be a finite state automaton that recognizes L(X); we can
assume a model where every state is accepting and every state has both incoming
and outgoing edges. Let {ci}i∈N ⊆ Iso(X) ∩ Perσ(X) be an infinite subset such
that if i 6= j then for all k it holds that σk(ci) 6= cj . For every i ∈ N let ui be
the shortest word such that ci = ωuωi . Since for every i any repetition of ui is
accepted, there has to exist a cycle in A whose labels read ui some number of
times. Let i, j ∈ N be arbitrary but different. Let Ai and Aj be cycles in A
whose labels read ui and uj (resp.) some number of times. The cycles Ai and
Aj must be separate in the sense that there cannot be a directed path from Ai
to Aj or from Aj to Ai, since otherwise there would exist a word w ∈ A+ such
that ωuiwu

ω
j or ωujwu

ω
i would be in X contradicting the isolation of ci. Having

an own separate cycle for infinitely many points contradicts the finiteness of
A.

We defined traces for two-sided cellular automata but the definition is essen-
tially the same for one-sided cellular automata: For one-sided cellular automaton
(X,F ) the m-trace of F is

τm(F ) = {t ∈ (Am)Z | ∃(c(i))i∈Z ∈ st(F ) : ∀i ∈ Z : ti = c
(i)
[0,m)}.

Now we are ready to present a reversible one-sided cellular automaton with
non-sofic traces.

Proposition 11. There exists a reversible one-sided cellular automaton whose
traces are non-sofic.

Proof. Let (AN, F ) be a cellular automaton where A = {0, 1, 2, 3} and Floc :
A[0,1] → A is defined by Floc(ab) = ρb(a) for permutations (in cycle notation
with 1-cycles included):

ρ0 = ρ2 = (0)(12)(3), ρ1 = ρ3 = (012)(3).
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Figure 4: Word 202k+11 forces the word 202k−11 next to it. Eventually this leads
to the word 201. Next to this there can only be a 3. Since 3’s are fixed, the
whole column is a constant 3. This uniquely determines the column containing
202k+11 and forces it to be periodic.

This is a reversible cellular automaton, since the permutations π0 = π1 =
(0)(12)(3) and π2 = π3 = (021)(3) can be verified to define the inverse of F .
For more on one-sided reversible cellular automata defined in this way see [23].
We will show that τ1(F ) is non-sofic, it is then easy to see that also τm(F ) for
any m > 1 is non-sofic. Notice that when considered visually, the words in
L(τ1(F )) are vertical.

First notice that 3 is always mapped to 3 so that every c ∈ τ1(F ) is either
ω3ω or has no appearances of the letter 3. Notice also that if there is a column
ω3ω in a space-time diagram of (AN, F ) then every column to the left of it has to
be periodic. This can be seen, for example, by noticing that ρ3 can be extended
into a permutation ρ3,n : An → An for any n by ρ3,n(u) = F (u3) where u ∈ An.
Now since 3 is fixed, the two-way infinite sequences (ρi3,n(u))i∈Z are precisely
the elements of τn(F ) obtained by fixing 3 into the cell n. Now the order of the
permutation ρ3,n gives an upper bound for the period of the nth column to the
left of ω3ω.

The following fact is not difficult to see, and is explained in detail in [18,
Example 1]:

• If 20l1 ∈ L(τ1(F )) where l ∈ N\{0, 1} then the only word that can appear
in a space-time diagram to the right of it is 20l−21 (“to the right” here
means that the words are aligned so that 2 in 20l−21 is one step right and
one step down from the 2 in 20l1).

Next we will show that for every k ∈ N the word 202k+11 does appear in τ1(F )
and that it uniquely determines the (periodic) configuration it appears in (refer
to Figure 4). That 202k+11 appears in τ1(F ) can be verified by considering
the zeroth column of the space-time diagram generated by 0k+13x ∈ AN where
x ∈ AN is arbitrary; the word 202k+11 will appear in the zeroth column between

20



time steps −k − 1 and k + 1. Now consider a space-time diagram where the
word 202k+11 appears in the zeroth column. By the fact mentioned above, the
only word that can appear k steps to the right of 202k+11 is 201. The only
letter which maps 0 to 1 when going forwards in time and 0 to 2 when going
backwards in time is 3. Thus the next column to the right must have a 3 in it.
As was reasoned above, this implies that the column containing 202k+11 must
be periodic. Notice that the configuration that 202k+11 appears in was uniquely
determined, which means it is isolated. Now τ1(F ) has infinitely many isolated
periodic points, and thus, according to Lemma 4, it cannot be sofic.

Since any memoryless cellular automaton over a full shift has left-POTP we
have the following.

Corollary 3. There exists a reversible cellular automaton over a full shift with
left-POTP whose trace is non-sofic.

7 Conclusion

The following list summarizes what we can say about cellular automata having
various combinations of one-sided POTP and expansivity.

• If surjective (X,F ), where X is an SFT, has both left- and right-POTP,
then F has POTP, and so the trace of F is sofic (from definitions and
Proposition 8).

• If surjective (X,F ), where X is a transitive SFT, has left-POTP and is
ultimately right-expansive, then F has POTP, and so the trace of F is
sofic (Theorem 2).

• If reversible (AZ, F ) is right-expansive, then the trace of F is not neces-
sarily sofic, and so F does not necessarily have POTP ([18, Proposition
7]).

• If reversible (AZ, F ) has left-POTP, then the trace of F is not necessarily
sofic, and so F does not necessarily have POTP (Proposition 11).

The big open question is, still, whether expansive cellular automata have the
pseudo-orbit tracing property, or equivalently whether expansive cellular au-
tomata are conjugate to SFT’s (conjectured for cellular automata over full shifts
by Kůrka [9, Conjecture 30.]).
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