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Background. Adaptive expertise is a highly valued outcome of mathematics curricula.

One aspect of adaptive expertise with rational numbers is adaptive rational number

knowledge, which refers to the ability to integrate knowledge of numerical characteristics

and relations in solving novel tasks. Even among students with strong conceptual and

procedural knowledge of rational numbers, there are substantial individual differences in

adaptive rational number knowledge.

Aims. We aimed to examine how a wide range of domain-general and mathematically

specific skills and knowledge predicted different aspects of rational number knowledge,

including procedural, conceptual, and adaptive rational number knowledge.

Sample. 173 6th and 7th grade students from a school in the southeastern US (51%

female) participated in the study.

Methods. At three time points across 1.5 years, we measured students’ domain-

general and domain-specific skills and knowledge.We usedmultiple hierarchal regression

analysis to examine how these predictors related to rational number knowledge at the

third time point.

Result. Prior knowledge of rational numbers, general mathematical calculation knowl-

edge, and spontaneous focusing on multiplicative relations (SFOR) tendency uniquely

predicted adaptive rational number knowledge, after taking into account domain-general

and mathematically specific skills and knowledge. Although conceptual knowledge of

rational numbers and general mathematical achievement also predicted later conceptual

and procedural knowledge of rational numbers, SFOR tendency did not.

Conclusion. Results suggest expanding investigations of mathematical development to

also explore different features of adaptive expertise as well as spontaneous mathematical

focusing tendencies.
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Rational number knowledge is crucial for work-life mathematics (Acme, 2011) and a

strong predictor of more advanced mathematical learning (Siegler et al., 2012). While

many previous studies have examined the developmental precursors of rational number

knowledge (Bailey, Siegler, & Geary, 2014; Bailey, Watts, Littlefield, & Geary, 2014;
Hansen, Jordan, & Carrique, 2015; McMullen, Brezovszky, et al., 2016; McMullen,

Hannula-Sormunen, & Lehtinen, 2014; Vukovic et al., 2014), these studies have mainly

had two main aims: (1) to determine which mathematical skills support learning rational

numbers (Vukovic et al., 2014) and (2) to identify warning signs for difficulties in learning

rational numbers (Hansen et al., 2015). However, little is known about the predictors of

advanced rational number knowledge, such as adaptive rational number knowledge.

Adaptive expertise in mathematics

Adaptive expertise, in contrast with routine expertise, is one feature of exceptional

mathematical thinking (Baroody, 2003; Hatano & Oura, 2003; Verschaffel, Luwel,

Torbeyns, & Van Dooren, 2009) and is a highly valued outcome of mathematics curricula

(Common Core State Standards Initiative, 2010; National Core Curriculum for Basic

Education, 2014). In contrast to routine expertise, adaptive expertise is typified by richly

connected procedural and conceptual knowledge that can be flexibly applied in novel

contexts (Baroody, 2003). The notion of adaptive expertise inmathematics education has
motivated research on, among other topics, flexibility with problem-solving strategies

(Baroody & Rosu, 2004; Verschaffel et al., 2009) and advanced arithmetic and numerical

knowledge (Markovits & Sowder, 1994; McMullen, Brezovszky, et al., 2016). Most

notably, procedural flexibility with whole number arithmetic (Siegler & Lemaire, 1997),

fractions (Fazio, DeWolf, & Siegler, 2016), and linear algebra (Schneider, Rittle-Johnson, &

Star, 2011) have been identified as behavioural manifestations of adaptive expertise.

Procedural flexibility is defined by an ability to switch between multiple strategies for

solving a particular task (Verschaffel et al., 2009).
Another behavioural manifestation of adaptive expertise, adaptive number knowl-

edge, is defined by the ability to integrate conceptual and procedural knowledge of

numerical characteristics and relations into solutions for novel tasks (McMullen,

Brezovszky, et al., 2016; McMullen, Hannula-Sormunen, Lehtinen, & Siegler, 2020).

Adaptive number knowledge describes the ability of students to recognise relevant

arithmetic and numerical relations between a given set of numbers (e.g., ½, 0.5, ¼, 0.25,

and 4) and integrate this knowledge in creating unique arithmetic sentences that equal a

target number (e.g., 1). For example, high levels of adaptive number knowledge are
supported by a rich understanding of the link betweenmagnitudes and the effects of each

arithmetic operation. This could take the form of recognising it is possible to calculate 1/4

using 1/2 (i.e.,½ 9 n = 1/4 is possible), if onemultiplies 1/2by anumber less than1, even

if 1/2 is larger than 1/4. Additionally, having strong knowledge of the relations between

fractions and decimals supported the creation of more solutions, especially those that

were mathematically equivalent—for example, knowing that since 0.5 is the same

magnitude at ½ both 1/2 + 1/2 and 0.5 + 0.5 are equal to 1.

Recent evidence suggests the arithmetic sentence production task distinguishes
between (1) those studentswho can adapt their numerical knowledge to find success on a

novel task, indicating more adaptive expertise, (2) those who mostly rely on memorised

facts and procedures, indicating more routine expertise, and (3) those who have little

knowledge whatsoever (McMullen, Brezovszky, et al., 2017; McMullen et al., 2020).

Importantly, levels of procedural and conceptual knowledge were equally high among
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those with adaptive and routine expertise, indicating that adaptive number knowledge is

distinct from routine procedural and conceptual knowledge.

Adaptive expertise should be valuable for future learning (Baroody, 2003). Adaptive

number knowledge appears to be so, predicting algebra knowledge above and beyond
measures of procedural and conceptual knowledge (McMullen, Brezovszky, et al., 2017;

McMullen et al., 2020). Adaptive number knowledge may be supportive in recognising

crucial numerical relationswithin linear equations. For instance, in solving 3(x + 1) = 15,

recognising that dividing both sides of the equation by 3 is an advantageous first step (as

opposed to first distributing the three across x + 1).

Although there has been a serious effort to examine the nature of adaptive expertise in

school mathematics (Verschaffel et al., 2009), little is known about its developmental

foundations.Onemajor distinction betweendeveloping adaptive versus routine expertise
is a diversity of experiences in applying knowledge and skills (Feltovich, Spiro,&Coulson,

1997). Thus, it is likely that specific conditions for developing adaptive expertise are

needed. Echoing these calls for dynamic learning environments, Hatano (2003, p. xi)

argued that adaptive expertise requires an educational environment in which an

individual needs to meet ‘varied and changing demands’ rather than an environment, that

is, ‘oriented towards solving afixed class of problems skillfully’. In the typicalmathematics

classroom, it is not clear if many students will have the opportunity to be challenged with

varied and changing demands (Sievert, van den Ham, Niedermeyer, & Heinze, 2019).
Despite this, some students seem to develop adaptive expertise with rational numbers

(McMullen et al., 2020).

Developmental predictors of rational number knowledge

The developmental predictors of rational number knowledge have been extensively

explored in the past 10 years. However, the same predictors may not remain equally

important when examining adaptive expertise with rational numbers. Thus, in this study,
we aim to examine the predictors of adaptive, conceptual, and procedural rational

number knowledge.

Adaptive rational number knowledge was measured with the arithmetic sentence

production task with rational numbers. Conceptual and procedural knowledge were

measuredwith a selection of tasks that did not require the integration of multiple features

of rational number knowledge in solving a novel task. Instead, these tasks required the

typical application of isolated features of rational number knowledge, including

estimating the value of a given rational number, matching equivalent representations,
and estimating or calculating the outcome of a given arithmetic task. Previous evidence

suggests that adaptive rational number knowledgewas distinct from students’ conceptual

and procedural knowledge when measured by these tasks (McMullen et al., 2020).

Previous evidence suggests students with strong overall mathematical knowledge are

well poised to learn about rational numbers (Rinne, Ye, & Jordan, 2017; Van Hoof, 2015;

Van Hoof et al., 2016). More specifically, knowledge of whole numbers and prior rational

number knowledge predict later rational number knowledge (Bailey, Hansen, & Jordan,

2017; McMullen, Brezovszky, et al., 2017). Both routine procedural and conceptual
knowledge are expected to support adaptive expertise (Baroody, 2003). Thus, we expect

that general mathematical knowledge, especially prior rational number knowledge, will

have a strong predictive value for later rational number knowledge, including adaptive

rational number knowledge.
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Other domain-specific features of students may also play a role in the development of

rational number knowledge. Reasoning about spatial proportional relations (M€ohring,
Newcombe, Levine, & Frick, 2016) and multiplicative relations (McMullen, Brezovszky,

et al., 2016) have also been shown to be related to rational number knowledge. Spatial
reasoning is related to high-level performance in mathematics and other STEM domains

(Wai, Lubinski, & Benbow, 2009). Further, interest in mathematics is an important

contributor to success in maths (Eccles & Wigfield, 2002) and may be particularly

important for dispositional factors involved with adaptive expertise (Verschaffel et al.,

2009). Finally, non-verbal intelligence is also related to rational number knowledge and its

development (McMullen, Brezovszky, et al., 2016; Seethaler, Fuchs, Star, & Bryant, 2011).

Recent research on spontaneousmathematical focussing tendencies has revealed their

relevance for the development of formal mathematical skills (McMullen, Hannula-
Sormunen, Kainulainen, Kiili, & Lehtinen, 2019; Verschaffel et al., 2020; Wijns et al.,

2019). Previous studies have shown that students who have a higher tendency of

Spontaneous Focussing On multiplicative Relations (SFOR) in situations that are not

explicitly mathematical, such as I drank half the milk and I have three times as much

juice inmy glass, show greater improvement in rational number development than their

peers, even after taking into account non-verbal intelligence, mathematical achievement,

whole number magnitude knowledge and skills, and the ability to describe multiplicative

relations when explicitly guided to do so (McMullen, Brezovszky, et al., 2016, 2017;
McMullen, Hannula-Sormunen, & Lehtinen, 2017; Van Hoof et al., 2016). Dispositional

factors akin to SFOR tendency may be related to the development of adaptive expertise

(Torbeyns et al., 2009). For example, everyday situations may offer the varying demands

needed to develop adaptive expertise with mathematical knowledge (Feltovich et al.,

1997). However, it is necessary to first explicitly focus ones’ attention on the

mathematical features of everyday life to use them (Hannula & Lehtinen, 2005). Thus,

those students with a higher SFOR tendency may gain more experience applying their

knowledge of multiplicative relations, including rational numbers, in novel situations.
This increased exposure tomathematics in novel situationsmay support the development

of adaptive expertise with rational numbers.

Methods

Participants
Students from the sixth (Mean age = 12.7 years; Range = 11.8–13.8) and seventh (Mean

age = 13.7 years; Range = 13.1–14.9) grades of a school in the southeasternUnited States
(N = 173; 51% female) participated in the study. The population of the school was fairly

diverse; at the last measurement point 51% of the students were White, 28% African-

American, 11% Hispanic, and 5% Asian. As well, 43% of students were eligible for free or

reduced lunch. Students were enrolled in different mathematics classes ranging from

Maths 1 to Algebra and Geometry taught by nine different teachers. We accounted for

these variations in students enrollment by including a measure of overall mathematics
achievement. In order to mask the mathematical nature of the tasks (see below), students

were recruited and tested in their science classrooms and not in their maths classes. All

participants had parental permission to participate in the study and gave their assent

before participating. The ethical board of the first authors’ institution approved the study.

At the first measurement point (see Figure 1 for an overview), participants completed

measures of rational number conceptual knowledge, SFOR tendency, and multiplicative
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reasoning. At the second measurement point, participants completed measures of non-

verbal intelligence, spatial reasoning, general mathematical achievement, and mathemat-

ical interest. One year after this, at the last time point, participants completedmeasures of

rational number conceptual andprocedural knowledge and ameasure of adaptive rational

number knowledge. Anonymized data used in this study is available at https://osf.io/

m3uk9/

Predictor measures

SFOR tendency

At thefirstmeasurementpoint, SFORtendencywasmeasuredwithtwopicturedescription

tasks, each involving four items (McMullen, Brezovszky, et al., 2016). These tasks were

presented before any mention of mathematics and completed during science class.

Studentswere asked to describe situations that didnot explicitly call formathematics tobe

used, but where it could be. Since students were not instructed to pay attention to

mathematical relations in these tasks, anyuseof exactmultiplicative relationsfirst required
thestudents tospontaneously focusonmultiplicative relations.All itemswerepresented in

colour booklets, one item per page, with the pictures also projected onto a screen at the

front of the room. SFORmeasures can be accessed at https://osf.io/rnu2y/.

The teleportation task has been used previously as a measure of multiplicative SFOR

tendency (McMullen, Brezovszky, et al., 2016).1 Students were told that a teleportation

device was sending items to space colonies, but that the material changed en route. They

were first asked to: ‘describe in as many ways as possible’, how three sets of material

changed. For example, three blue cans, four blue milk cartons, and one basket of
blueberries changed into 9 red-orange cans, 12 red juice boxes, and 3 baskets of red

apples. There were many different ways to describe the changes (e.g., colour, shape,

exact number of objects), including by a commonmultiplicative factor (e.g.,multiplied by

three, divided by two). Next, a new set of the same items as in the previous trial, but in

different quantities, was presented. Students were asked to drawwhat they expectwould

arrive based onwhat happened ‘last time’. Students were told they could look back to the

previous page, and coloured pencils were available if they chose to use them. They

completed two sets of writing and drawing items on the teleportation task.
On the lunch task (Figure 2), studentswere shown images of two lunches side by side

on separate plates and asked to ‘describe in as manyways as possible how the lunches are

Figure 1. Overview of the testing procedure.

1Degrande, Verschaffel, & Van Dooren (2017) have applied the same task design with additive, multiplicative, and ambiguous
relations (i.e. either additive or multiplicative). Given the strong relation between multiplicative and fractional relations (M€ohring
et al., 2016), we examine only multiplicative relations.
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different from each other’. The lunches varied in the types and amounts of food on each

plate, including a common multiplicative relation. On a subsequent trial with the same

types of food in different amounts, students were asked to draw what they expected the

second plate to include based on the previous item. In total, students completed two trials

of the writing item and two trials of the drawing item on the lunch task.

SFOR tendency was calculated by combining scores from the teleportation and lunch

tasks. For the written description items, the total number of multiplicative relation
descriptions was calculated (e.g., ‘three times as many potatoes’ would be given one

point). For the drawn items, the number of items that were drawn using correct

multiplicative relations was calculated. Inter-rater reliability was high for two indepen-

dent coders’ scorings of 35 participants’ responses (Intraclass Correlation = .96).

Separate standardised scores for the written and drawn sub-scales were calculated and

added together to create an overall SFOR tendency score. Test–retest reliability, using
novel SFOR tests and testers at each time point, is acceptable (Spearman’s q = .80) for this

composite measure in previous studies (McMullen et al., 2019), and inter-item reliability
was acceptable for the eight items in this study (Cronbach’s a = .70).

Descriptive phrases

To account for differences in students’ overall descriptive fluency, the total number of

descriptive phrases, including all descriptions of colour, content, numbers, and non-

specific quantitative relations (e.g., more/less), were calculated for the four SFOR

description items. Reliability was acceptable across the four items (Cronbach’s a = .71).

Multiplicative reasoning

Todetermine the influence of the ability to recognise and describemultiplicative relations

when explicitly guided to do so (as opposed to spontaneously; Hannula & Lehtinen,

2005), after students completed all SFOR tasks at the first time point, theywere presented

the same items again with new instructions. They were given instructions to describe or

Figure 2. Example of Lunch task stimuli. Copyright CC-By Attribution 4.0 International. Originally

published at https://osf.io/ghx74/
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draw the multiplicative relations for each item (e.g., ‘describe how the packages were

divided’). One point was given for each correct multiplicative relation that was described

or drawn. Reliability of the number ofmultiplicative responseswas acceptable for all eight

items (Cronbach’s a = .71).

Rational number conceptual knowledge

At the firstmeasurement point, wemeasured two aspects of participants’ rational number

conceptual knowledge, knowledge of magnitudes of rational numbers, and operations

with rational numbers.

Rational number magnitude knowledge was assessed by a magnitude comparison

task (Stafylidou&Vosniadou, 2004; VanHoof, Janssen, Verschaffel, & VanDooren, 2015).
Participants were asked to ‘Circle the larger [fraction/decimal]. If the numbers are equal,

circle both’. Therewere six fraction comparison items (5/9 vs. 5/7; 2/3 vs. 3/5; 7/15 vs. 3/

4; 2/3 vs. 6/9; 2/5 vs. 2/7; 5/4 vs. 6/8) and six decimal comparison items (3.5407 vs. 3.65;

0.4 vs. 0.40; 0.38 vs. 0.6; 1.43 vs. 1.253; 7.08 vs. 7.7; 0.1 vs. 0.02). Answers were scored as

correct or incorrect, with the maximum score for the test being 12. Reliability was high

across the 12 items (Guttman’s Lambda = .74).

Rational number arithmetic operations knowledge was measured using six items

adapted from Van Hoof et al. (2015). Items tested students’ knowledge of the effects of
arithmetic operations with fractions and decimals (e.g., ‘Is the outcome of 50 9 1/2

smaller or larger than 50?’; ‘What is half of 1/8?’). All items were incongruent, such that

reasoning based on features of arithmetic with whole numbers would lead to incorrect

answers (e.g., Multiplication always makes a number bigger). Reliability was acceptable

for these items (Guttman’s Lambda = .74).

Non-verbal intelligence

At the second time point, Raven’s coloured ProgressiveMatrices (Raven, 1976)were used

as a measure of non-verbal intelligence. A total of 12 items (D1–D12) were used. Items

were scored as correct or incorrect, with amaximum score of 12. Reliability was good for

these items (Guttman’s Lambda = .77).

General mathematics achievement

At the second time point, students completed the Woodcock-Johnson III Calculation
Fluency sub-test (Woodcock et al., 2001), which included arithmetic and algebraic

computation items, as a general measure of their mathematical achievement. Only items

that did not include rational numbers were used as a measure of general mathematical

ability outside of rational number knowledge. In total, there were 23 items, for which

students were given one point per correct answer. Reliability for these items was

acceptable (Guttman’s Lambda = .68).

Spatial reasoning

At the second time point, the first twelve items of the Mental Rotations Test (Peters et al.,

1995) were used to assess students’ spatial reasoning. On this test, students are asked to

identify matching objects that have been rotated in space. Each item had two correct
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answers. Students were given one point for each correct answer, for a total of 24 possible

points. Reliability was acceptable for these items (Guttman’s Lambda = .62).

Interest in mathematics

At the second time point, students’ motivation to learn mathematics was measured

through three items formulated by Berger and Karabenick (2011) (‘I like math’, ‘I enjoy

doing math’, ‘Math is exciting to me’). Students rated themselves on 5-point Likert scales

ranging from ‘completely disagree’ (1 point) to ‘completely agree’ (5 points). Reliability

was excellent for these three items (Cronbach’s a = .92).

Outcome measures

At the third time point, we measured participants’ adaptive rational number knowledge,

rational number procedural knowledge, and rational number conceptual knowledge.

Outcome measures can be accessed at https://osf.io/rnu2y/.

Adaptive rational number knowledge

The arithmetic sentence production task with rational numbers was used to measure
adaptive rational number knowledge. The arithmetic sentence production task has been

shown to capture differences between routine and adaptive expertise with arithmetic

(McMullen et al., 2020). High-level performance on the task requires the integration of

conceptual and procedural knowledge in solving a novel task. In the task, students must

integrate their knowledge of rational number representations, magnitudes, and effects of

operations in coming up with procedural solutions to the novel task. As with the whole

number version of the task (McMullen, Brezovszky, et al., 2017), students were given

90 seconds to generate and write down as many mathematically correct arithmetic
sentences as possible that used subsets of five numbers and the four arithmetic operations

to produce a target number. Each of the four items included two pairs of equivalent

fractions and decimals (e.g., ½ and 0.5,¼ and 0.25) and a single whole number (e.g., 4) as

the numbers the students should make the target number (e.g., 1). Students could use

each number repeatedly; answers were counted as correct if they were mathematically

correct, only used the givennumbers, andwere not literal repetitions of a previous answer

(e.g., ½ + ½ was counted as correct even if the student previously answered 0.5 + 0.5).

Studentswere given one point for each correct arithmetic sentence theywrote. Reliability
was good (Cronbach’s a = .86).

Rational number conceptual knowledge

Three aspects of rational number conceptual knowledge weremeasured at the third time

point: knowledge of magnitudes of rational numbers, operations with rational numbers,

and representations of rational numbers.

Rational numbermagnitude knowledgewas assessed through two tasks: an ordering
task and anumber line estimation task (Schneider& Siegler, 2010; Stafylidou&Vosniadou,

2004; VanHoof et al., 2015). The ordering task included three fraction items (e.g., ‘Put the

numbers in order from smallest to largest’: 6/12; 5/7; 2/6) and three decimal items (e.g.,

‘Put the numbers in order from smallest to largest’: 5.89; 5.886; 6.5). Each itemwas scored
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as correct or incorrect with a maximum score of 6 for the test. Reliability was good

(Guttman’s Lambda = .72).

Number line estimationwas assessed on a 0–1number linewith four items (0.6, 1/5, 3/

7, and 0.42), and on a 0–5 number line with four other items (11/7, 3.7, 9/2, and 0.83).
Percent absolute error was used to measure accuracy on both number lines (Siegler et al.,

2009). Reliability was acceptable for these items (Cronbach’s a = .70). Scores on the

ordering and number line estimation tasks were independently standardised and summed

to create an overall measure of magnitude knowledge.

Rational number arithmetic operations knowledge was measured using a parallel

version of the six items adapted fromVan Hoof et al. (2015) used at the first measurement

point (e.g., ‘Is the outcome of 40 9 1/3 smaller or larger than 40?’; ‘What is half of 1/6?’).

Reliability was good for these items (Guttman’s Lambda = .79).
Rational number representation knowledgewas examined via an adapted version of

the Number Sets Test (Geary et al., 2009; 2010). Students had 1 min to identify as many

symbolic and non-symbolic representations as possible that equalled first ½ and then 0.9.

Each item had 15 alternative answers, with nine and eight correct matches per item.

Correct answers added a point; incorrect answers deleted a point. Reliability was good for

these items (Cronbach’s a = .82).

Rational number procedural knowledge

Participants were asked to solve 12 fraction arithmetic problems (2/3 � 1/3; 4/7 � 1/2;

¾ 9 1/5; 8 ½ � 4 1/8; 5/7 � 1/2; 1/5 + 2/3; 7/8 + 2/8; 2 ¾ + 4 1/8; 2 6/7 + 5 1/2; 5/

8 � 3/8; 3 2/3 � 3/4; 3/5 9 1/5) and 12 decimal arithmetic problems (1.05 9 0.2;

0.71 � 0.4; 0.11 + 0.7; 5.29 � 4.2; 3.4 + 1.02; 0.38 � 0.14; 0.4 + 0.2; 0.9 � 0.3;

0.4 9 0.52; 0.111 9 0.097; 3.06 9 5.3; 0.84 � 0.4). Answers were scored as correct

or incorrect, with the maximum score for the test being 24. Reliability was good for these

items (Guttman’s Lambda = .86).

Analysis

At the first measurement point, an equally weighted composite score of rational number

conceptual knowledge was created by separately standardising scores from the

comparison and operations tasks and calculating the average scores of these standardised

values. At the third measurement point, ordering, number line estimation, representa-

tions, and operation tasks were combined to create a composite rational number
conceptual knowledge score using the same procedure.

To examine the predictors of rational number knowledge, a series of linear regressions

were estimated with adaptive, conceptual, and procedural rational number knowledge

used as the dependent variables. Multi-collinearity indices were acceptable for all

independent variables (tolerances > 0.44, VIFs < 2.2). Explanatory powerwas examined

by inputting eachpredictor or set of predictors as the last step to calculate the change inR2

that was unique to that (set of) predictor(s). The domain general abilities of descriptive

phrases, non-verbal intelligence, and spatial reasoning were grouped as a single step. The
general mathematical predictor variables of mathematical achievement, maths interest,

and multiplicative reasoning were grouped. Rational number conceptual knowledge at

Time 1 and SFOR tendency were separately added as their own steps.
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Results

Predicting rational number knowledge
Table 1 reports the means, standard deviations, and correlation matrix for all measures.

All predictor variables were at least moderately related to an aspect of rational number

knowledge and were therefore included in the regression models.

Overall, 47% of the variance in adaptive rational number knowledge was explained by

the predictors included in the regression model, with 64% and 52% of conceptual and

procedural knowledge explained, respectively (Table 2). The domain-general predictors

of the number of descriptive phrases, non-verbal intelligence, and spatial reasoning did

not explain any unique variance in adaptive, conceptual, or procedural rational number
knowledge, after controlling for domain-specific skills and abilities. These results further

previous evidence that domain-specific prior knowledge is an important feature of

mathematical development.

After taking into account domain general predictors, rational number knowledge, and

SFOR tendency, the general mathematical predictors of maths interest, mathematical

achievement, andmultiplicative reasoning collectively explained between 5% of variance

in adaptive and conceptual rational number knowledge and 11%of variance in procedural

rational number knowledge. Mathematical achievement one year prior was a unique
predictor of adaptive, conceptual, and procedural rational number knowledge one year

later. Multiplicative reasoning was a unique predictor of conceptual and procedural

rational number knowledge one year later, but not adaptive rational number knowledge.

Maths interest did not uniquely predict rational number knowledge one year later. Thus,

in total, prior mathematical achievement is unsurprisingly revealed as an important

predictor of later rational number knowledge. Aswell,multiplicative reasoning appears to

be somewhat important for later routine rational number knowledge of concepts and

procedures.
Prior rational number conceptual knowledge measured at Time 1 uniquely explained

3%of variance in adaptive andprocedural rational number knowledge and11%of variance

in conceptual knowledgemeasured at Time 3.While the unique predictive power of prior

rational number knowledge was fairly limited for adaptive and procedural knowledge,

these results further confirm the importance of prior knowledge in mathematical

development.

Finally, after taking into account domain-general, general maths predictors, and

rational number conceptual knowledge, SFOR tendency one year prior explained an
additional 3% variance in adaptive rational number knowledge, but no additional variance

in conceptual and procedural knowledge of rational numbers. These results reveal, for the

first time, how SFOR tendency is a unique predictor of adaptive rational number

knowledge.

Discussion

This study highlights a less common aim in examining individual differences in

mathematical development: the development of advanced mathematical skills. We

present the first evidence of what predicts adaptive rational number knowledge across a

year and a half period. Alongside general mathematical ability and prior rational number

knowledge, a disposition to spontaneously recognise and use multiplicative relations,

SFOR tendency, appears to support features of adaptive expertise with rational numbers.

However, unlike in previous studies (Van Hoof et al., 2016), this dispositional factor did
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not predict the routine features of rational number conceptual and procedural

knowledge. We discuss the implications of these findings for the development of

mathematical knowledge and mathematical instruction.

SFOR tendency and the development of adaptive expertise

These results extend our understanding of the development of adaptive expertise in

mathematics by providing the first evidence that spontaneous mathematical focussing

tendencies may be beneficial for the development of this highly valued, but rarely

achieved, outcome of mathematics instruction. In contrast with previous research that

found primary students’ SFOR tendency predicted their rational number conceptual

development (McMullen, Brezovszky, et al., 2016; Van Hoof et al., 2016), this study found
that, in lower secondary students, SFOR tendency predicted adaptive rational number

knowledge, but not rational number conceptual knowledge. This may be explained by

rational numbers not being as large a portion of the middle school curriculum as in

primary school, leading to different developmental patterns with routine knowledge,

which should be more closely tied to classroom instruction.

This study cannot explicitly determine if or how SFOR tendencymay contribute to the

development of adaptive rational number knowledge. However, previous research has

suggested that a higher SFOR tendency is presumed to contribute to more self-initiated
practice with mathematical, particularly explicit multiplicative, relations in everyday

situations (Lehtinen, Hannula-Sormunen, McMullen, & Gruber, 2017; McMullen et al.,

2019). More self-initiated practice with multiplicative reasoning in everyday situations

may have multiple benefits for learning about formal mathematics. Spontaneous

mathematical focussing tendencies, such as SFOR, have been found to influence and

predict formal mathematical learning over extended periods throughout schooling ages

(see McMullen et al., 2020 and Verschaffel et al., 2020 for recent reviews). Initially, self-

initiated practice may allow students to more easily consolidate various concrete
examples of mathematical objects into a more coherent and consistent concept

(Schwartz, Bransford, & Sears, 2005). For example, the benefit of SFOR tendency in late

primary school in the development of rational number conceptual knowledge (McMullen,

Hannula-Sormunen, Hannula-Sormunen, Laakkonen, & Lehtinen, 2016; Van Hoof et al.,

2016) may have been driven by those students with a higher SFOR tendency getting more

experience reasoning about the concept of half in their everyday lives. This extra practice

may provide benefits beyond their formal fraction instruction for their understanding of

rational number magnitudes.
At later stages, advanced knowledge of rational numbers may be better supported by

reasoning about mathematics in everyday experiences. The complexity and novelty of

reasoning about mathematics in everyday life are desirable features of learning

environments that are expected to support the development of high-level conceptual

knowledge and adaptive expertise (Feltovich et al., 1997; Hatano & Oura, 2003).

Mathematical features of everyday situations are inherently ill-defined and complex. There

is rarely one simple way to mathematically model the relations embedded in everyday

situations; the web of inputs, representations, and estimations required to reason
mathematically is complex. This is in direct contrast to the typical tasks required of

students in the mathematics classroom, which are often concise, well-structured, and

require little, if any, mathematical modelling, even when purportedly about everyday life

(Pongsakdi, 2017; Verschaffel, De Corte, & Lasure, 1994).

Predicting adaptive expertise 13



In line with the theory of adaptive expertise (Hatano & Oura, 2003), this learning

process does not result in simply gaining more knowledge from existing instruction;

instead, itmay reflect a qualitatively different disposition to exploremathematical content

and make explicit connections across topics. According to our results, the connection
between SFOR tendency and adaptive rational number knowledge is not explained by,

among other things, an interest in mathematics, overall mathematical achievement, prior

rational number knowledge, or non-verbal intelligence. This suggests that SFOR tendency

is not simply reflective of stronger skills or even a general disposition towards

mathematics. SFOR requires recognition that there is mathematics embedded in a

situation, that the mathematics is relational in nature, and that these relations are

multiplicative. This is certainly not a simple process, and it requires strong relational

reasoning and mathematical knowledge (McMullen, Brezovszky, et al., 2016). Nonethe-
less, the relation between SFOR tendency and adaptive rational number knowledge is not

entirely explained by the ability to reason with relational features, as indexed by

performance on the multiplicative reasoning tasks.

Implications for instruction

SFOR tendency itself does not appear to be a fixed trait, that is, innate to an individual.

Instead, it appears possible to increase students’ SFOR tendency by modelling the
recognition and use of multiplicative relations in everyday situations (McMullen et al.,

2019). These activities have been found to improve primary school students’ multiplica-

tive reasoning and lead to long-term gains in fraction conceptual knowledge (M€a€att€a,
Hannula-Sormunen, Halme, & McMullen, in press). However, it is not clear if enhancing

students’ tendency to recognise and use multiplicative relations in their everyday lives

would improve their adaptive expertise with rational numbers.

Nonetheless, efforts to support the development of adaptive expertise with rational

numbers should be encouraged and this study provides some evidence that improving
spontaneous mathematical focussing tendencies may be one way to do so. Traditional

instruction may not be enough to support the widespread development of adaptive

expertise (Feltovich et al., 1997). Even those students with high prior knowledge

rarely develop features of adaptive expertise without explicit opportunities to do so

(Sievert et al., 2019). Previous studies have shown that comparisons between multiple

problem solving strategies are one important key to the development of adaptive

expertise (Rittle-Johnson & Star, 2009). More recently, evidence from game-based

learning environments suggests that giving students the opportunity for playful
exploration of the relations between numerical characteristics and arithmetic

operations is a promising avenue for promoting adaptive expertise (Brezovszky

et al., 2019; K€arki et al., in press; Yu & Denham, 2021). Expanding these activities to

involve also everyday features of students’ surroundings using realistic scenarios and

everyday objects may promote their spontaneous use of multiplicative reasoning also

outside of the training tasks. If this leads to increased self-initiated practice with

multiplicative reasoning, as has been found possible with young children’s tendency of

spontaneous focussing on numerosity (Hannula-Sormunen, Lehtinen, & R€as€anen,
2020), similar gains in rational number knowledge, including adaptive expertise, may

be possible.
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Limitations and future directions

The main limitation of this study is both SFOR tendency and adaptive rational number

knowledge are only measured with a single task type. SFOR tendency is mainly assessed

via picture description and drawing tasks, without much evidence of actual spontaneous
focussing in real-world situations. The contrived scenarios presented to the students in

the teleportation and lunch tasks are not direct measures of what theymay do in everyday

situations.However, this studydoes improve onprevious SFORmeasures by including the

lunch task, with more authentic real-world stimuli that are rich in non-mathematical

features and are not as highly structured (cf. Degrande, Verschaffel, & VanDooren, 2017).

Although this limitation limits the ability to directly test the hypothesis that it is self-

initiated practice that drives the relation between SFOR tendency and adaptive expertise

with rational numbers, the recognition that this relation remains even after controlling for
awealth of potential confounds suggests that a causal relation is plausible (Bailey, Duncan,

Watts, Clements, & Sarama, 2018). Nonetheless, expanding the measures of both SFOR

tendency and adaptive rational number knowledge would be crucial for future studies.

As well, the lack of direct evidence of the causality of the relation between SFOR

tendency and adaptive expertise with rational numbers requires temperance in drawing

conclusions from the present study. In particular, there is no evidence of the proposed

causal mechanism, an increase in self-initiated practice supported by SFOR. However, the

underlying relation appears unlikely to be caused by a confounding common cause, such
as mathematical interest or achievement or underlying cognitive abilities such as non-

verbal intelligence. Nonetheless, an RCT that could directly examine the causal relation

between SFOR tendency and rational number development would still be valuable,

especially in determining any potential causal mechanism.

Finally, this study included participants from a single school. While there was a large

amount of diversity in themathematics courses the students took during the study period,

it is possible that a single educational setting does not capture an appropriate level of

variation in the features of learning environments that influence the development of
adaptive expertise. Future studies should increase the number of schools included and

also aim to take into account teacher and curricular influences on the development of

adaptive expertise (Sievert et al., 2019) through, for example, multi-level modelling.

Conclusions

These findings further our understanding of the development of adaptive expertise and

the role spontaneous mathematical focussing tendencies may play in this development.
The notion of adaptive expertise suggests that students should be able to flexibly and

adaptively apply their knowledge in novel situations. Students with a higher tendency to

recognise the relevance of mathematical features of their environment may have an

advantage over their peers in developing adaptive expertise. Analyses of rational numbers

should bebroadened to include tasks, such as the ones used tomeasure SFORand adaptive

number knowledge in this study, which are not usually part of classroom instruction.
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