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Abstract

Insertions and deletions (indels) in human genomes are associated with a wide range of

phenotypes, including various clinical disorders. High-throughput, next generation sequenc-

ing (NGS) technologies enable the detection of short genetic variants, such as single nucle-

otide variants (SNVs) and indels. However, the variant calling accuracy for indels remains

considerably lower than for SNVs. Here we present a comparative study of the performance

of variant calling tools for indel calling, evaluated with a wide repertoire of NGS datasets.

While there is no single optimal tool to suit all circumstances, our results demonstrate that

the choice of variant calling tool greatly impacts the precision and recall of indel calling. Fur-

thermore, to reliably detect indels, it is essential to choose NGS technologies that offer a

long read length and high coverage coupled with specific variant calling tools.

Author summary

The development of next generation sequencing (NGS) technologies and computational

algorithms enabled the large scale, simultaneous detection of a wide range of genetic vari-

ants, such as single nucleotide variants as well as insertions and deletions (indels), which

may confer potential clinical significance. Recently, many studies have been conducted to

evaluate variant calling tools for indel calling. However, the optimal indel size range for

different variant calling tools remains unclear. A good benchmarking dataset for indel

calling evaluation should contain biologically representative high-confident indels with a

wide size range and preferably come from various sequencing settings. In this article, we

created a semi-simulated whole genome sequencing dataset where the sequencing data

were computationally generated. The indels in the semi-simulated genome were incorpo-

rated from a real human sample to represent biologically realistic indels and to avoid the

inclusion of variants due to potential technical sequencing errors. Furthermore, we used

three real-world NGS datasets generated by whole genome or targeted sequencing to fur-

ther evaluate our candidate tools. Our results demonstrated that variant calling tools vary
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greatly in calling different sizes of indels. Deletion calling and insertion calling also

showed differences among the tools. The sequencing settings in coverage and read length

also had a great impact on indel calling. Our results suggest that the accuracy of indel call-

ing was dependent on the combination of a variant calling tool, indel size range, and

sequencing settings.

Introduction

Next-generation sequencing (NGS) has developed rapidly in recent decades. Compared with

traditional Sanger capillary electrophoresis sequencing or other directed polymerase chain

reaction-based screening methods, it provides a more efficient and affordable way to detect

genomic variants in large scale [1–3]. NGS is widely used in research and in the clinic [4–7]

and consists of techniques to cover the whole genome, i.e., whole genome sequencing (WGS),

exome regions only, i.e., whole exome sequencing (WES), or certain genomic regions, i.e., tar-

geted gene panel sequencing.

High-throughput NGS enables researchers to simultaneously identify large numbers of sin-

gle nucleotide variants (SNVs) and insertions and deletions (indels), as well as other types of

genomic aberrations, such as inversions and translocations. Indels are the second most com-

mon variant type in the human genome after SNVs. They are also the most common type of

structural variants (SVs), defined as genomic variants > 50bp [8,9]. Indels have been impli-

cated in many diseases, such as Parkinson’s disease and cancers, thus their detection in the

human genome is significant for clinical research [4,10].

To date, a number of computational tools for variant calling from NGS data have been pub-

lished. They utilize different information such as concise idiosyncratic gapped alignment

report (CIGAR) strings from binary alignment map (BAM) files and build their underlying

algorithms based on paired-end sequencing reads, split-read, de novo sequence assembly,

gapped sequence alignment, or machine learning to detect indels. Paired-end reads methods,

based on paired-end sequencing, use discordantly mapped paired-end reads to identify indel

breakpoints, which are the junctions that define structurally variable genomic segments [11].

In essence, paired-end reads that are mapped further, or closer than the expected insert size in

the library, may indicate that an indel occurred between the alignments of the two paired-end

reads [11]. However, repeat regions in genomes, or SNVs near indel breakpoints, may influ-

ence the accuracy of indel calling results [11,12]. Methods based on split-read take reads that

span the breakpoint of an indel as evidence to identify the indel at a single nucleotide level

[13]. However, the short read length produced by NGS leads to even shorter split reads, which

limit the alignment and make it hard to obtain a sufficient read depth around the indel break-

point to confidently call an indel [12]. Sequence assembly methods include de novo sequence

assembly and local re-assembly. De novo sequence assembly assembles short reads into longer

contigs, enabling a fine-scale discovery of large indels, especially novel sequence insertions

[14,15]. Local re-assembly takes reads around a potential variant site with a reference sequence

to re-build a haplotype and then generates an accurate variant allele and the corresponding

genotype [16,17]. However, de novo sequence assembly methods require more computational

resources and are prone to assembly errors [12]. Gapped sequence alignment-based methods

use the alignment results from a gapped aligner, such as the Burrows-Wheeler Aligner (BWA)

[18], and apply probabilistic models to make indel calls [16,19]. The mapping conditions of

each base of reads from the input file provide evidence of indels. These methods require that

the indels are contained within a read with accurate mapping conditions from the read
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genome). The Genome in a Bottle NA24385 WES

dataset is available on https://www.nist.gov/

programs-projects/genome-bottle. The WES data

was downloaded using the Sequence Read Archive

(SRA) toolkit with accession SRX1453593. The

CHM1 cell line WGS dataset is available on https://

eichlerlab.gs.washington.edu/publications/chm1-

structural-variation/. The WGS data was

downloaded by using the SRA toolkit with the

accession SRX652547. All the bash scripts, python

scripts, and R scripts which were used to generate

results of this article are available at https://github.

com/elolab/semi-simulated_indel_dataset.

Targeted gene panel sequencing data used in this

article cannot be publicly accessed due to patient

confidentiality regulations. A permission for access

to the targeted gene panel sequencing data has to

be requested from the Turku Clinical Research

Centre (turkucrc@tyks.fi).
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alignment step [20]. These methods are sufficient for detecting small indels that are fully cov-

ered by a single read length but unsatisfactory for identifying indels longer than the read length

[20]. Currently, as each of these methods has its own limitations, many variant calling tools

use a combination of methods to detect a wider spectrum of indels [17,21]. Lately, machine

learning methods such as the random forest model and the deep convolutional neural network

have been applied in some of the variant calling tools to detect indels [22,23].

In recent years, many studies have been conducted to evaluate variant calling tools for indel

calling, but these studies have performed evaluations with only a limited selection of sequenc-

ing data types or have only covered a limited indel size range. Sandmann et al. evaluated eight

variant calling tools with both real and simulated non-matched targeted NGS data by evaluat-

ing the sensitivities, positive predictive values, F1 scores, and other metrics of tools for calling

SNVs and indels smaller than 50bp [24]. Supernat et al. compared three variant calling tools

with the WGS data of the well-known human individual NA12878 regarding variant calling

precision, recall, and F1 score in calling SNVs and short indels [25]. Zhao et al. evaluated three

variant calling tools with real and simulated human germline WGS data by comparing the pre-

cisions, recalls, and F1 scores of candidate tools with different genome contexts [26]. However,

these evaluation studies focused only on variant calling tools for calling small-size indels with a

certain type of NGS data, and the performance of tools for calling larger-size indels remains

unknown. For large indel calling evaluation, Pei et al. used 14 next-generation and third-gen-

eration sequencing datasets to evaluate the precision rates, recall rates, and computation costs

of 11 variant calling tools with both germline and somatic variant calling, but the effect of the

varying indel size was not evaluated [27]. Kosugi et al. comprehensively evaluated 69 SV detec-

tion algorithms for different types of SVs by testing the representative tools with five simulated

WGS datasets and a real WGS dataset for human individual NA12878 by using multiple evalu-

ation metrics [28]. Cameron et al. selected 10 SV calling tools to evaluate their precision-recall

rates, running times, concordances, and quality scores by using three real WGS datasets and in
silico datasets with different sequencing settings [29]. In those studies, comprehensive evalua-

tions of variant calling tools were performed but focused exclusively on SVs. The best perfor-

mance of variant calling tools for a certain size range of indels, such as indels around 50bp, still

remains unclear. Each algorithm uses different evidence from sequencing data to detect the

breakpoint of an indel. Therefore, the best-detectable indel size range of algorithms might

vary. It is important to determine the best-detectable indel size range of different tools with

different sequencing methods: a wrong selection may result in missed or false positive (FP)

detections.

In this study, we performed an indel calling evaluation with variant calling tools that repre-

sent different types of methods. We tested them with a variety of sequencing data types to dis-

cover the best indel calling size range and data type for each tool. This study uses both real

sequencing data and simulated sequencing data. Simulated sequencing data can produce an

accurate indel truth set, avoiding, as much as possible, any potential unmarked true positive

(TP) indels in truth set which may be marked as FP results from the detections of the tools dur-

ing evaluation. However, the production of simulated sequencing data, as in silico simulation

processes, underestimates the potential technical errors in real-world sample preparation and

sequencing steps [30]. Real-world sequencing data come from real experiments and are indis-

putably the ideal data for tool evaluation. However, to our knowledge, there are no real

sequencing data coupled with a truth set that cover a wide range of variable-sized indels with-

out technical bias, such as tools involving truth set generation, that would be suitable for our

evaluation. Therefore, this study used a semi-simulated WGS dataset which were adopted

from the HuRef genome data with four different sequencing settings to evaluate eight candi-

date tools with a wide size range of indels [31]. In addition, we also used the following three
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real-world sequencing datasets: Genome in a Bottle (GIAB) NA24385 WES data [32], CHM1

cell line WGS data [33], and targeted gene panel sequencing data to evaluate the performance

of tools for indel calling. Together with all the selected datasets, our study aimed to deliver an

unbiased and comprehensive evaluation of variant calling tools for indel calling.

Materials and methods

Ethics statement

The targeted gene panel sequencing dataset in this study was obtained from leukemia patients.

The dataset was analyzed anonymously. The study involving human participants was reviewed

and approved by the Ethics Committee of Turku University Hospital (approval no. 30/1802/

2019) and Turku Clinical Research Centre (approval no. T012/014/19).

Variant calling tools

For the evaluation, we selected the following eight widely used variant calling tools: DeepVar-

iant [23], DELLY [21], FermiKit [34], GATK HaplotypeCaller (GATK HC) [16], Pindel [12],

Platypus [17], Strelka2 [22], and VarScan [19], which all represent different underlying meth-

ods for indel calling (Table 1). Below, the main features of each tool are described:

DELLY. DELLY is a variant calling tool that is designed for SV discovery [21]. It uses

aligned reads in a sorted, indexed, and duplicate-marked BAM file as input. It outputs a binary

variant call file, which can easily be converted to a commonly used variant call format (VCF)

[35,36]. DELLY integrates a paired-end reads method and a split-read method with data from

different insert size libraries to call SVs at a single nucleotide resolution. DELLY can detect

multiple types of SVs, such as deletions, tandem duplications, inversions, translocations, and

medium-sized insertions, thus being able to call both large and medium-sized indels.

DeepVariant. DeepVariant is a variant calling software that makes use of a deep convolu-

tional neural network [23]. It is implemented as an analysis pipeline that takes aligned reads in a

BAM file as input with three steps of discovery and encoding of the candidate variants, genotyp-

ing using the neural network, and writing output in the VCF file. DeepVariant stacks so-called

inception modules, which have concatenated multiple convolution filters. Upon processing, the

output layer returns a probability distribution of genotypes for each candidate variant. The non-

reference sites are then assigned the most likely genotype and written into a VCF file. DeepVar-

iant supplies two trained models for WGS and WES data predictions. The WGS model was

trained on NA12878/HG001 and NA24631/HG005 samples, and the WES model was trained on

NA12878/HG001 and NA24631/HG005 samples in version 0.7, respectively.

FermiKit. FermiKit is a de novo sequence assembly-based variant calling pipeline for Illu-

mina whole-genome germline data [34]. It takes FASTQ files as input, assembles reads into

Table 1. Methodological strategies of the tools included in this study.

Variants Calling tools Paired-end reads Split reads Sequence assembly Gapped sequence alignment Machine learning

DeepVariant v0.7.1 X X

DELLY v0.7.9 X X

FermiKit v0.13 X

GATK HC v4.0.1.2 X X

Pindel v0.2.5.b9 X

Platypus v0.8.1.1 X X

Strelka2 v2.9.2 X X X

VarScan v2.4.3 X

https://doi.org/10.1371/journal.pcbi.1009269.t001
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contigs, and then maps them against a reference genome. It calls SNVs, short indels, and SVs

from the read alignment with error correction. FermiKit uses several built-in modules to per-

form error correction, de novo assembly and mapping and then parses the “pileup” output and

extracts alignment break points to call SNVs, short indels and SVs in VCF format

GATK HaplotypeCaller. GATK HC is a variant calling tool that calls germline SNVs and

indels via local re-assembly [16]. It first defines active regions from input BAM files that show

differences with reference sequences. These active regions indicate the evidence of variants by

using CIGAR information from BAM files such as mismatches, insertions, or deletions in the

mapped reads and the high base-quality soft clip reads. Then it splits reads from active regions

into k-mers to identify candidate haplotypes by re-assembling them with de-Bruijn-like

graphs. After that, a pair Hidden Markov Model (pair-HMM) is built with state transition

probabilities from the read base qualities to calculate the likelihood that each read was derived

from each haplotype. The haplotype likelihood of each read from the pair-HMM is used to cal-

culate raw genotype likelihoods using a Bayesian model. The genotype likelihoods are then

used to call raw variants, which are output in a VCF format.

Pindel. Pindel is a split-read-based pattern growth algorithm [37] that can detect the

breakpoints of large deletions and medium-sized insertions from BAM files of paired-end

short read sequencing data and report variants in VCF format with single nucleotide resolu-

tion [13]. Pindel first extracts the paired-end sequencing reads from the mapping results, keep-

ing the paired reads for which only one read can be mapped uniquely to the genome with no

mismatch and the other read cannot be mapped to the reference genome under a certain align-

ment score. The 30 end of the mapped read determines an anchor point. With the anchor

point, a sub-region from the direction of the unmapped read will be searched with a user-

defined maximum detection size. The 30 and 50 end fragments of the unmapped read will be

used by the pattern growth algorithm to search for possible unique substrings on a reference

genome within a certain size of a sub-region. The gap between the 30 and 50 end fragments of

the unmapped read is reported as an indel if at least two complete reads can be assembled with

possible substrings from both the 30 and 50 end fragments of unmapped reads.

Platypus. Platypus is a haplotype-based variant caller with local sequence assembly in a

Bayesian statistical framework [17]. It uses BAM files as input and outputs VCF files. First, it

constructs candidate variants from the CIGAR strings of the BAM files, local re-assembly, and

external sources (VCF files provided by the user). Candidate variants are then assigned with

pre-defined priors at the generation stage, and candidate haplotypes are generated. The likeli-

hood of each haplotype is calculated with an HMM by aligning a read to the haplotype

sequence. Then, an expectation-maximization algorithm is applied to estimate the haplotype

frequency using a diploid genotype model. With the haplotype frequencies, the posterior sup-

ports for variants are calculated by comparing the likelihoods between all haplotypes, includ-

ing haplotypes that do not include a particular variant. Variants whose posterior support

exceeds a threshold and that pass a number of pre-defined filters are called.

Strelka2. Strelka2 is a variant calling method for small variants [22]. It takes a BAM file as

input and outputs a VCF file, and it is designed for both germline and somatic sequencing

applications. The germline mode workflow defines several parameters from sequencing data

and applies an indel error model to estimate the error rates of indels and SNVs. It first defines

active regions likely to have variants, and then uses alignments or local re-assembly of

sequencing reads to generate candidate haplotypes and variant alleles of these active regions.

Subsequently, candidate variants that passed the pre-defined filtering are phased and geno-

typed by reads re-alignment with a probability model. In the final step, Strelka2 applies pre-

trained supervised random forest models for SNVs and indels, which are trained on the

labelled data of the Platinum Genomes project [38] to improve variant calling precision.
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VarScan. VarScan takes a single mpileup file (text pileup file from BAM files) as input,

and outputs a VCF file [19]. It first scores and sorts the BAM file and discards reads that were

mapped ambiguously to multiple positions or with a low identity as well as unmapped reads

where the aligner failed to map anywhere in the genome. The uniquely mapped reads are used

to detect variants and determine the total number of reads that support each unique variant.

VarScan then filters each predicted variant by the overall coverage, number of supporting

reads, p-value, variant allele frequency, base quality, and the number of strands that are

observed in the predicted positions of the variants.

Datasets

To comprehensively evaluate the variant calling tools, we used both simulated sequencing data

and real sequencing data (Table 2). We created a semi-simulated dataset with four different

sequencing settings to extract a wide size range of indels from a real human sample, with

known indels available as truth sets. Additionally, we utilized three real datasets that repre-

sented different sequencing data types. The details of the datasets are described below.

The National Center for Biotechnology Information recommends variants larger than 50bp to

be submitted to dbVar, a database of human genomic structural variation, while variants less

than 50bp should be submitted to dbSNP, a database containing human SNVs, small indels, and

other types of small variants [39,40]. Based on this separation, small indel calls (< 50bp) and

large indel calls (� 50bp) from the real sequencing data were evaluated separately.

The semi-simulated WGS dataset covering a wide size range of indels with varying cov-

erages and read lengths. In order to simulate as realistic data as possible with precise and fair

indels for benchmarking purposes, we utilized HuRef genome data [31]. The original HuRef

dataset was generated by Sanger sequencing, and the variants were detected by Celera Assembler

[31]. The use of Sanger sequencing may potentially limit mapping issues caused by short

sequencing reads, and an independent variant calling method for our candidate tools makes

these data very suitable here. HuRef data also allowed us to reproduce a realistic dataset that

would capture the challenges of small indel and large indel calling in the human genome. If the

indels were to be inserted randomly across the genome it would underestimate the proportion of

indels located in ambiguous regions, where the indels may be represented in different positions

[41] (S1 and S2 Figs). Here, we reconstructed chromosome 1 and chromosome 2 of the HuRef

genome based on human reference genome hg19 via methods similar to [41,42] and inserted

indels of a real human individual into the corresponding position in a reference genome (S1

File). In addition, we reconstructed the semi-simulated genome with two different haplotypes by

randomly selecting variants from different size ranges and inserting them into only one of the

haplotypes as heterozygous variants or into both haplotypes as homozygous variants. In total,

43,066 insertions and 45,223 deletions were included in our evaluation study (S1 Table).

Table 2. The semi-simulated WGS sequencing and real sequencing datasets used in this study.

Data Read length Coverage Data content Usage Sequencing platform

Semi-simulated data 100bp 5× WGS data (chr1, chr2) Small and large indels Illumina HiSeq 2000

100bp 30× WGS data (chr1, chr2) Small and large indels Illumina HiSeq 2000

100bp 60× WGS data (chr1, chr2) Small and large indels Illumina HiSeq 2000

250bp 30× WGS data (chr1, chr2) Small and large indels Illumina MiSeq v3

GIAB NA24385 data 126bp 135× WES data Small indels (<50bp) Illumina HiSeq 2500

CHM1 cell line data 101bp 41× WGS data Large indels (�50bp) Illumina HiSeq PE-101

Targeted gene panel

sequencing data

150bp NextSeq: 2298× & MiSeq: 6651× Targeted sequencing data Clinical indels (3bp - 52bp) Miseq v3 or NextSeq 500 v2

https://doi.org/10.1371/journal.pcbi.1009269.t002
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We created simulated paired-end sequencing reads using the NGS read simulation tool

ART [43] with three different coverages of 5×, 30× and 60×. The read length of the simulated

paired-end sequencing data was 100bp. In addition, we created another simulated paired-end

sequencing dataset with 30× coverage and 250bp read length to compare how read length

would affect indel calling. For each dataset, the sequencing coverage was contributed by the

two haplotypes with an approximate ratio of 1:1, making it representative of a naturally diploid

sample (S1 File). The semi-simulated paired-end sequencing dataset is publicly available at

https://doi.org/10.5281/zenodo.5774300.

Genome in a Bottle NA24385 WES dataset for small indels (< 50bp). The GIAB

NA24385 dataset was used to assess the small indel calling of tools from the real sequencing data.

The GIAB datasets are considered as the gold standard among variant call sets. The high confi-

dence in their variants is achieved by integrating and curating several call sets produced using

competing sequencing platforms and variant calling tools. The variant datasets consist of seven

individuals, of which one individual from the trio of Ashkenazi Jews (NA24385/HG002) was

selected for this study [32]. The corresponding sequencing data were provided in a variety of con-

ditions and technologies; the NA24385 WES data from Oslo University Hospital were selected

for use in this study. Sequencing was performed on the Illumina HiSeq 2500 instrument, with the

Agilent SureSelect Human All Exon V5 capture kit, and yielded 150bp paired-end reads. The raw

135× sequencing data for GIAB NA24385 was downloaded using the Sequence Read Archive

(SRA) toolkit with accession SRX1453593 [44]. In total, 5,436 indels with sizes< 50bp were used

to represent the human individual small indels set and evaluate the tools in this study (S3 Fig).

CHM1 cell line WGS dataset for large indels (� 50 bp). The SV dataset of the CHM1

cell line was used to assess the large indel calling of tools from real sequencing data. The

CHM1 cell line is a haploid human hydatidiform mole lacking allelic variation [33]. The SV

dataset of the CHM1 cell line was produced by a single-molecule, real-time sequencing tech-

nology at a 54× sequencing coverage, which generated 18,467 indels between 50bp and

10,000bp that were used in our study (S4 Fig). All the sequence reads were aligned to GRCh37

using a modified version of the PacBio long read aligner and generated local assemblies by Cel-

era and Quiver. Next, the SVs of the CHM1 cell line were characterized systematically by a cus-

tom computational pipeline. The NGS short reads sequencing data of the CHM1 cell line were

produced on an Illumina HiSeq 2500 with 41× sequencing coverage and a 101bp read length

of paired-end reads. The raw sequencing data of the CHM1 cell line from the Illumina plat-

form was downloaded using the SRA toolkit with the accession SRX652547 [33].

Targeted gene panel sequencing dataset. A total of eight targeted NGS datasets from

patients with either acute myeloid leukemia (AML), essential thrombocythemia (ET), or myelofi-

brosis (MF) were collected from Turku University Hospital (TYKS), Finland (S2 Table). A tar-

geted amplicon-based panel, the TruSight Myeloid Sequencing panel (Illumina, US), was used to

detect variants in diagnostic samples. The myeloid gene panel targets 54 genes with 568 ampli-

cons, ranging from 225bp to 275bp in length. The combined coverage for libraries was 141 kb.

For library preparation, 50 ng of DNA per sample was used, and the Illumina protocol was fol-

lowed. The samples were pooled in series of 8 to 24 to obtain sufficient sequencing depth and

2 × 150 cycle sequencing runs were performed on the Illumina platform (Miseq v3 chemistry or

NextSeq 500 v2 mid output chemistry). To analyze the quality of the sequencing run, the parame-

ters and data output from each run were compared against the specifications outlined by the

manufacturer (Illumina), as follows: cluster density (1200–1400 K/mm2 and 170–220 K/mm2 for

MiSeq and NextSeq, respectively); Q30 greater than 75% in both systems; and the total number

of reads passing the filter and the total data yield of the run were evaluated to approve the data of

the run. The average coverage of the amplicons in the data generated with the NextSeq 500 plat-

form was 22987× and for the MiSeq 6651×. As a truth set we used the somatic indels in genes
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CALR and CEBPA that were determined for diagnostic purposes in the Laboratory of Molecular

Hematology and Pathology, TYKS Laboratory Division, Turku, Finland. The 52bp deletions in

CALR exon 9 were analyzed with capillary electrophoresis after PCR amplification, as described

by [45]. The CEBPA indels ranging from 3bp to 36bp were determined as part of the diagnostic

testing in Labor für Leukämiediagnostik, Munich, as described by [46].

Evaluation criteria

We evaluated variant calling tools using their default running parameters, with some excep-

tions (S1 File). For data pre-processing such as sequencing reads alignment, we built a fixed

bioinformatics pipeline to deal with both semi-simulated and real sequencing data (S1 File).

For the evaluation of indel calling with the semi-simulated WGS dataset, we first filtered

out all the SNVs from each tool’s output, using vcftools [36] and only kept the indel results for

further evaluation. We considered a tool-detected indel call as a TP if 1) (position-match) the

indel position deviation of a tool-detected indel and a truth-indel was between ±10% of the

truth-indel size (the upper limit for position deviation was 50 bp); 2) (size-match) the size dif-

ference between a tool-detected indel and a truth-indel was < 25% of the size of the truth-

indel; 3) (genotype-match) the genotypes of a tool-detected indel and a truth-indel were con-

sistent. The tool-detected indels that failed to give genotype information were considered as

FPs. In our truth set, there were no multiallelic indels; if a tool called an indel as a multi-allelic

variant, the record was split as multiple records for each allele.

For the GIAB NA24385 WES datasets, we used hap.py (https://github.com/Illumina/hap.

py) to assess the evaluation results of each tool (S1 File). Hap.py is a VCF file comparison tool

for diploid samples, that can benchmark the variant calling results made by a variant calling

tool against a truth set [47].

For the CHM1 cell line WGS datasets, we defined a TP as a tool-detected, filter-passed

indel that has at least 20% overlap with a truth-indel via BEDtools [48] (S1 File). The criteria

were kept loose because previous studies [41,49] have reported that the variant calling method-

ology for CHM1 cell line WGS datasets has its own bias, which leads to a low concordance

between tool-detected indels and truth-indels (S1 File).

The performance of tools on the semi-simulated WGS dataset and GIAB NA24385 WES

datasets was evaluated by calculating precision rate, recall rate, and F1 score. The performance

of the tools on the CHM1 cell line WGS datasets was evaluated by calculating false discovery

rate (FDR) and sensitivity (recall). For clinical targeted gene panel sequencing data, due to the

limited number of indels validated by clinical methods, we manually checked the results of

each tool and summarized the results. For the semi-simulated WGS dataset and the CHM1

cell line WGS dataset, the indel calling was evaluated for different indel size ranges as right

half-open intervals.

Precision ¼
TP

TPþ FP
ð1Þ

Recall ¼
TP

TPþ FN
ð2Þ

F1 Score ¼ 2 �
Precision � Recall
Precisionþ Recall

ð3Þ

FDR ¼
FP

TPþ FP
ð4Þ
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Results

Evaluation of small indel (< 50bp) and large indel (� 50bp) calling using

the semi-simulated WGS dataset

We evaluated the tool-detected indels of each tool for different sequencing coverages and

read lengths with the semi-simulated dataset in five indel size ranges of 1bp – 20bp,

20bp – 50bp, 50bp – 200bp, 200bp – 500bp, and� 500bp (Figs 1 and 2 and S3 Table).

Although having good precision rates in general, the majority of tools had relatively low

recall rates with the 5× coverage sequencing data, especially FermiKit, whose recall rates of all

indel size ranges were below 0.01 (Figs 1A and 2A). With increasing sequencing coverage, the

recall rates and the F1 scores of the tools were improved, and the improvement from 5× to 30×
was more obvious than the improvement from 30× to 60× (Figs 1 and 2). Some very low recall

rates made precision rates fluctuate greatly, but overall, the precision rates of the tools showed

less differences than the recall rates between coverages (Figs 1 and 2). FermiKit benefited the

most with increasing coverages, which indicated it cannot work well with low coverage

sequencing data. With the 5× coverage sequencing data, the F1 scores of DeepVariant, GATK

HC, Pindel, Platypus, and Strelka2 for the indels in size range 1bp – 20bp were over 0.5, which

indicated that for gapped sequence alignment-based, split-read-based and machine learning-

based indel calling algorithms, the detections of indels smaller than 20bp might be more effec-

tive than indels larger than 20bp with low coverage sequencing data (Figs 1A and 2A). DELLY

and Pindel had F1 scores around 0.4 for deletions in size ranges 200bp – 500bp and� 500bp

with the 5× coverage sequencing data, which showed that DELLY and Pindel had relatively

good abilities to call large deletion with low coverage sequencing data. In general, Pindel had

the best performance with the 5× coverage sequencing data. From the F1 scores, the results

demonstrated that a higher sequencing coverage generates a better indel calling result (Figs 1

and 2).

For the assessment of how different read lengths affect indel calling, we evaluated the per-

formance of tools by using the 100bp read length and the 250bp read length sequencing data

with 30× coverage (Figs 1 and 2). We observed that the variant calling tools had wider detec-

tion ranges and better precision rates, recall rates and F1 scores with the 250bp read length

sequencing data than with the 100bp read length sequencing data with the same 30× coverage.

The indel callings in size range� 50bp were remarkably improved. In general, compared with

30× coverage, 100bp read length sequencing data, the improvement of the tools’ performance

with 30× coverage, 250bp read length sequencing data were slightly better than the improve-

ment of the tools’ performance with 60× coverage, 100bp read length sequencing data (Figs

1B, 1C, 1D, 2B, 2C and 2D). The results indicated that above a certain sequencing coverage,

indel calling may benefit more by the increased read length than the increased coverage of

sequencing data. Although having low recall rates, DeepVariant, FermiKit, GATK HC, Platy-

pus and VarScan detected larger indels that they were not able to detect with 100bp read length

sequencing data.

From our results, we can see that tools with different algorithms showed different best vari-

ant calling size ranges. Taking the 30× coverage, 100bp read length sequencing data as an

example, for deletions in size range 1bp –20bp (Fig 1), DeepVariant, FermiKit, GATK HC,

Platypus, and Strelka2 had both precision rates and recall rates over 0.9. The precision rates

and recall rates of Pindel and VarScan for deletions in size range 1bp – 20bp were around 0.7.

DELLY only detected 98 TP deletions in size range 1bp – 20bp. For deletions in size range

20bp – 50bp, the recall rates decreased remarkably for the majority of the tools, while DELLY

started to detect deletions in this size range but with a low recall rate. FermiKit and Strelka2
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Fig 1. Precision rates, recall rates and F1 scores for tools’ deletion calling using the semi-simulated datasets. (A) 5× coverage, 100bp read length sequencing data. (B)

30× coverage, 100bp read length sequencing data. (C) 60× coverage, 100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

https://doi.org/10.1371/journal.pcbi.1009269.g001
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Fig 2. Precision rates, recall rates and F1 scores for tools’ insertion calling using the semi-simulated datasets. (A) 5× coverage, 100bp read length sequencing data. (B)

30× coverage, 100bp read length sequencing data. (C) 60× coverage, 100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

https://doi.org/10.1371/journal.pcbi.1009269.g002
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were the only two tools that had recall rates over 0.7 in this deletion size range. Except for Pin-

del and VarScan whose precision rates were low, the other tools all had precision rates over 0.9

for deletions in this size range. For deletions in size range 50bp – 200bp, a decrease was seen in

both precision rates and recall rates for all the tools. FermiKit had the best F1 score in this dele-

tion size range, being little over 0.4. Strelka2 and VarScan failed to detect any deletions longer

than 50bp. DELLY, Pindel, and Platypus were the only tools that detected deletions in size

ranges 200bp – 500bp and� 500bp; Pindel had the best precision rate, and DELLY had the

best recall rate. Platypus had relatively good precision rates to detect deletions in this size

range, but the recall rates were relatively low. For insertion calling with the 30× coverage,

100bp read length sequencing data (Fig 2), DeepVariant, FermiKit, GATK HC, Platypus, and

Strelka2 had precision rates and recall rates around 0.9 for insertions in size range 1bp – 20bp.

Pindel and VarScan had relatively low precision rates and recall rates, while DELLY only

detected 69 TP insertions in this size range. For insertions in size range 20bp – 50bp, a notable

decrease in recall rates was observed. Only FermiKit, GATK HC, and Strelka2 had recall rates

over 0.5. DELLY and Platypus had high precision rates but low recall rates for detecting inser-

tions in this size range, while DeepVariant and Pindel had both low precision rates and recall

rates. VarScan had a very low recall rate and only detected one TP insertion in this size range.

For insertions in size range 50bp – 200bp, all the tools performed poorly. Only FermiKit and

GATK HC had recall rates around 0.15, and all the other tools either had very low recall rates

or even failed to detect insertions in this size range. For insertions� 200bp, only DELLY

detected one TP insertion, while the other tools failed to detect any TP insertions in this size

range. In general, the tools performed better on deletion calling than insertion calling.

Previous research [50–53] has defined 50bp as the size border for SVs and small variants.

We observed, however, that within the 1bp – 50bp range, the indel calling results were not con-

sistent (Figs 3 and 4). For all the tools, there were notable decreases in the precision and recall

rates with the increases in indel sizes, except for DELLY, which failed to call indels in the size

range of 1bp -10bp. We further evaluated the size of tool-detected indels from DELLY and

found that DELLY only called indels� 15bp. Precision rates showed less decrease than recall

rates, except for Pindel and VarScan, whose precision rates decreased remarkably. For indels

in size ranges 1bp – 50bp, compared with 30× coverage, 100bp read length sequencing data,

the improvement of the tools’ performance with 30× coverage, 250bp read length sequencing

data were slightly better than the improvement of the tools’ performance with 60× coverage,

100bp read length sequencing data (Figs 3B, 3C, 3D, 4B, 4C and 4D). With indels< 50bp, we

observed that the performance of the tools on deletion calling was better than insertion calling.

In addition, we assessed the indel calling abilities of tools for medium size indels (30bp – 70bp)

which were not studied by previous research (S5 Fig). The results suggested that for medium

size indels, high coverage sequencing data is recommended. FermiKit and GATK HC were the

best two tools to call indels in this size range. Strelka2 also had a good precision, rate, recall

rate and F1 score, but it could not call any indel longer than 50bp. In general, compared with

higher sequencing coverages, the longer read length sequencing data provided better precision

rates and recall rates for longer indels sizes.

To further evaluate indel callings without genotypes taken into account, we relaxed our

evaluation criteria to include indels that passed both position-match and size-match but that

may have failed genotype-match (S6–S9 Figs). Without considering genotype-match, the pre-

cision rates and the recall rates of the tools were improved, especially for FermiKit, Pindel and

VarScan. Although FermiKit still failed with 5× coverage sequencing data, it was able to call

indels� 200bp and became the best tool to call insertions� 200bp with other semi-simulated

sequencing data. The precision rates and the recall rates of Pindel and VarScan were improved

with all settings of the semi-simulated datasets, which indicated that Pindel and VarScan
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detected many indels with correct positions and sizes but failed to detect indels with correct

genotypes.

The genotype information of variants is needed to make reliable interpretation in the clini-

cal setting. To further evaluate the performance of the tools with genotyping, we calculated the

homozygous and the heterozygous precisions with the semi-simulated WGS dataset (Fig 5). In

general, among the semi-simulated WGS dataset, the homozygous precision rates of tools

were higher than the heterozygous precision rates. The homozygous calls of the tools all had

good precision rates while the heterozygous calls of the tools showed differences. GATK HC

had the best heterozygous precision rates while VarScan had the worst heterozygous precision

Fig 3. Precision rates, recall rates and F1 scores of the tools for calling deletions< 50bp using the semi-simulated

datasets. (A) 5× coverage, 100bp read length sequencing data. (B) 30× coverage, 100bp read length sequencing data.

(C) 60× coverage, 100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

https://doi.org/10.1371/journal.pcbi.1009269.g003
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rates among the different datasets, except FermiKit which failed with 5× coverage sequencing

data. DeepVariant, DELLY, Pindel and VarScan had notable increase in heterozygous preci-

sion rates with increased sequencing coverage. Pindel and VarScan also had an increase in het-

erozygous precision rates with increased sequencing read length. Genotyping precisions of

small indels (S10 Fig) are higher than those of large indels (S11 Fig). We also calculated the

number of tool-detected indels marked as multiallelic indels or indels with non-valid genotype

(S4 Table). Some of these indels passed the position-match and size-match but failed with the

genotype-match. Due to the complexity of the human genome sequence, different tools may

have different representations of the same indel, and supporting reads around indel

Fig 4. Precision rates, recall rates and F1 scores of the tools for calling insertions< 50bp using the semi-simulated

datasets. (A) 5× coverage, 100bp read length sequencing data. (B) 30× coverage, 100bp read length sequencing data.

(C) 60× coverage, 100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

https://doi.org/10.1371/journal.pcbi.1009269.g004
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breakpoints may not be adequate, thus tools may make a mistake for indel genotyping. Deep-

Variant, FermiKit, GATK HC, Platypus, and Strelka2 had few multiallelic indels. Although

DELLY, Pindel, and VarScan had no tool-detected multiallelic indels, the reason might be that

tools could only give genotype information as either homozygous, heterozygous, or even non-

valid genotypes. In practice, it may limit for genotyping complex human variants. For indels

with non-valid genotypes, DeepVariant, DELLY, FermiKit, Pindel, and Platypus had several

such indels, while GATK HC, Strelka2, and VarScan had no such indels. GATK HC had less

tool-detected multiallelic indels than Strelka2 and better indel calling performance than VarS-

can. In general, GATK HC was the best tool for genotyping indels.

To better understand how the complexity of the genome sequence influences the FP results,

we gathered the FP results from the semi-simulated WGS dataset and annotated the FP indel

calls based on their locations by using the “Simple Repeats” (SR) track from the UCSC genome

browser via BEDtools. The results showed that indels located in SR regions contain a large pro-

portion of FP results, indicating that the breakpoint ambiguity caused by an SR region is the

main challenge for indel calling (Fig 6). For 5× coverage sequencing data, the low read depth

in indel breakpoints might be the main reason for the FPs. SR regions in the genome may

cause a misalignment of reads and lead to further inaccurate indel calling, such as wrong posi-

tions or sizes due to the breakpoint ambiguity [41]. The breakpoint ambiguity of indels in SR

regions may also cause incorrect allele frequency counting, thus leading to false genotype-level

results (S12 Fig).

Evaluation of small indel calling using GIAB NA24385 WES data

From the F1 scores of the tools with the semi-simulated WGS dataset, we selected the tools

that were suitable for small indel calling (DeepVariant, FermiKit, GATK HC, Pindel, Platypus,

Strelka2, and VarScan) for further evaluation with real sequencing data. The results in the

GIAB NA24385 WES data (Fig 7) from hap.py showed that DeepVariant had the best recall

rate and that DeepVariant, Strelka2, and GATK HC were the only tools with recall rates > 0.9.

Platypus had the best precision rate, followed by DeepVariant, both of which had precision

rates > 0.95. DeepVariant also had the best F1 score, followed by Strelka2, and GATK HC

each had an F1 score > 0.9. At the genotype-level prediction, VarScan performed worse than

the other tools, and Strelka2 had the best performance for genotyping (S5 Table). To our sur-

prise, FermiKit, which is primarily designed for WGS data, still had a relatively fair perfor-

mance, with a precision rate> 0.9 and a recall rate nearly 0.6. DeepVariant and Strelka2 had

Fig 5. Homozygous and heterozygous precisions of variant calling tools using the semi-simulated dataset. (A) 5×
coverage, 100bp read length sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage,

100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

https://doi.org/10.1371/journal.pcbi.1009269.g005
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higher F1 scores than the other tools with the GIAB NA24385 WES data, which may indicate

that machine learning tools have advantages of indel calling abilities over other indel callers.

Evaluation of large indel calling using CHM1 cell line WGS data

Because the CHM1 cell line is a human haploid hydatidiform mole, we chose the tools which

had ability to call indels� 50bp based on the position-match and size-match results of the

semi-simulated WGS dataset (DELLY, FermiKit, GATK HC, Platypus, and Pindel) and further

evaluated them with real sequencing data. We used our pre-defined criteria to evaluate the per-

formance of the tools on large indels of size ranges 50bp - 200bp, 200bp - 500bp and� 500bp

in the CHM1 cell line WGS data (Fig 8 and S6 Table). For deletions in size range

50bp – 200bp, FermiKit had the lowest FDR 0.26, together with GATK HC which FDR was

0.35, were the only two tools with FDR below 0.5. Pindel and GATK HC were the only two

tools which had sensitivity high than 0.1, even though the best sensitivity from Pindel was just

0.12. For deletions in size range 200bp – 500bp, FermiKit had the lowest FDR (0.06) but the

sensitivity was only around 0.1 (0.09). DELLY and Pindel had similar FDRs, both around 0.35,

but the sensitivity of Pindel was the best (0.32). For deletions� 500bp, Pindel had the best sen-

sitivity (0.26), followed by DELLY (0.23), but FDRs for all five tools were not good. For inser-

tions, all the tools performed badly, especially for insertions� 200bp. For insertions in size

range 50bp – 200bp, only FermiKit and GATK HC had FDRs lower than 0.5, but the best

Fig 6. The proportions of SR regions annotated FP indels of the tools with the semi-simulated dataset. (A) 5×
coverage, 100bp read length sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage,

100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data. The numbers on the top of

each bar are the total numbers of FP results called by each tool with corresponding sequencing data.

https://doi.org/10.1371/journal.pcbi.1009269.g006
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sensitivity was GATK HC still lower than 0.1 (0.07). Although the overall variant calling of the

tools only called limited numbers of indels, the performance of the tools on deletion calling

was generally better than on insertion calling, and the results with indels in size range 50bp -

200bp were generally better than the results with indels in size range� 200bp. Although

GATK HC was designed for small variant calling, but the results showed GATK HC had the

best performance with indels in size range 50bp – 200bp. Platypus had the worst performance

and only detected a limited number of deletions. Even though the criteria were loose, the con-

cordance of the predicted results from the tools and the CHM1 truth set was still remarkably

low. A possible reason for this is that variants in repeat regions can be called by CHM1 cell line

PacBio calls, but cannot be detected efficiently by Illumina short-read sequencing [49]. A pre-

vious study that used a CHM1 cell line dataset as a truth set also suggested that the truth set

might be missing variants [41].

Evaluation of indel calling using targeted gene panel sequencing dataset

We used amplicon-based clinical targeted gene panel sequencing dataset to further study the

indel calling ability of the tools to call indels ranging from 3bp to 52bp in a real-world clinical

cancer study (Table 3). The blood samples of leukemia patients were analyzed, where normal

tissue was not available. However, indels have been shown to have clinical relevance in leuke-

mia and such known, relatively common indels were included in this evaluation. Here, we

only used the germline mode of the variant calling tools and conducted indel calling in a non-

matched variant calling manner [54]. FermiKit is not designed for targeted sequencing data

analysis, so it was not included in this evaluation. The results show that despite the fact that no

tool detected the 22bp deletion of the CEBPA gene from sample 1 due to either misalignment

of sequencing reads or low allele fraction, DeepVariant, GATK HC, Pindel and Platypus suc-

cessfully detected all the rest of the known variants. DELLY and VarScan failed to detect two

3bp deletions of the CEBPA gene, and VarScan was the only tool that failed to detect one 36bp

deletion of the CEBPA gene. Strelka2 was the only tool that failed to detect four 52bp deletions

of the CALR gene.

Fig 7. Indel calling evaluation results for variant calling tools with GIAB NA24385 WES data. The evaluation

results were calculated using hap.py. The table below shows the values of the precision rates, recall rates, and F1 scores

of each tool.

https://doi.org/10.1371/journal.pcbi.1009269.g007
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Computational costs

We measured the running times and maximum memory usages of tools, based on one of the

semi-simulated WGS data with 30× coverage and 250bp read length (Fig 9). All the indel call-

ing processes, including read alignment and variant calling, were performed on a computer

cluster managed by the free, open-source Simple Linux Utility for Resource Management. For

each task we assigned 24 cores (2 GHz AMD EPYC Processor), with 32G memory on the com-

puter cluster.

Fig 8. Indel calling results for variant calling tools with CHM1 cell line sequencing data. (A) The FDRs and sensitivities of deletion calls in size range 50bp – 200bp. (B)

The FDRs and sensitivities of insertion calls in size range 50bp – 200bp. (C) The FDRs and sensitivities of deletion calls in size range 200bp – 500bp. (D) The FDRs and

sensitivities of insertion calls in size range 200bp – 500bp. (E) The FDRs and sensitivities of deletion calls in size range� 500bp. (F) The FDRs and sensitivities of insertion

calls in size range� 500bp. The number of FPs and the number tool-detected indels are listed above FDRs. The number of TPs and the number of indels in truth set are

listed above sensitivities.

https://doi.org/10.1371/journal.pcbi.1009269.g008
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Table 3. Indel calling results for the selected tools with targeted gene panel sequencing dataset of leukaemia patients.

Samples Genes Variants DeepVariant DELLY GATK HC Pindel Platypus Strelka2 VarScan

Sample 1 CEBPA 3bp insertion Y N Y Y Y Y N

CEBPA 22bp deletion N N N N N N N

Sample 2 CALR 52bp deletion Y Y Y Y Y N Y

Sample 3 CALR 52bp deletion Y Y Y Y Y N Y

Sample 4 CALR 52bp deletion Y Y Y Y Y N Y

Sample 5 CALR 52bp deletion Y Y Y Y Y N Y

Sample 6 CEBPA 24bp insertion Y Y Y Y Y Y Y

Sample 7 CEBPA 36bp deletion Y Y Y Y Y Y N

CEBPA 25bp deletion Y Y Y Y Y Y Y

Sample 8 CEBPA 3bp insertion Y N Y Y Y Y N

For each sample there are one or more indel varying from 3bp to 52bp either in CEBPA or CALR. We manually evaluated the variant calling tools’ results with our truth

set. A successful call is marked with "Y", a failed call is marked with "N".

https://doi.org/10.1371/journal.pcbi.1009269.t003

Fig 9. The running times and the maximum memory usages of variant calling tools. A) Total CPU times of each

variant calling tool with 30× coverage, 250bp read length semi-simulated sequencing data. The total CPU time of pre-

processing included aligning the sequencing reads into the BAM file. Tool total CPU time included analyzing the input

BAM file into the output VCF format result. (B) Maximum memory usage of each variant calling tool with 30×
coverage, 250bp read length semi-simulated sequencing data. Maximum memory of pre-processing included aligning

the sequencing reads into the BAM file. Tool maximum memory usage included analyzing the input BAM file into the

output VCF format result. Because FermiKit is a de novo assembly algorithm-based variant calling tool, which took

sequencing reads as input, it did not require pre-processing.

https://doi.org/10.1371/journal.pcbi.1009269.g009
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To save time and fully use the high-performance computational resources, parallelization is

an important option for variant calling tools. Tools that are designed with a parallelization

option are able to assign multiple CPUs to some steps of the data processing (DeepVariant,

FermiKit, GATK HC, Pindel, Platypus and Strelka2). Tools without a parallelization option

can only utilize one CPU to process the data (DELLY and VarScan). From the results (Fig 9),

Platypus was the fastest tool, while Pindel was the slowest. Platypus used the least memory,

while FermiKit required the most. The high memory consumption of FermiKit is explained by

the reads alignment step that is included in the tool execution. The total utilized memory of

FermiKit was lower than the memory consumption of the data pre-processing which produced

the sorted and indexed BAM files as input for the other tools.

Discussion

In this study, we evaluated eight variant calling tools for the indel calling of different indel size

ranges from different types of NGS data. The tools represented different underlying algorithms

including paired-end reads, split-read, de novo sequence assembly, gapped sequence align-

ment, and/or machine learning-based methods. The tools were tested using four different

datasets with varying read coverages, read lengths and indel size ranges and that were pro-

duced with either the Illumina HiSeq 2000, HiSeq 2500, MiSeq v3, HiSeq PE-101 or NextSeq

500 v2 sequencing platforms. The semi-simulated WGS dataset with three different coverages

(5×, 30×, and 60×) and two different read lengths (100bp and 250bp) included small indels

and large indels from 1bp to 5000bp. Since to our knowledge there is no single unbiased real

world benchmarking dataset that would cover both small and large indels, we chose to use

three real-world datasets that represented WGS, WES and targeted gene panel sequencing

data that together, cover small and large indels.

Our results demonstrated that the indel calling results vary greatly between indels depend-

ing on the size of the indels and the properties of the sequencing data. Deep convolutional neu-

ral network and random forest model-based tools, DeepVariant and Strelka2, demonstrated

superior performance with small indel calling. However, their optimum indel call size range

was limited to< 50bp. Split-read and paired-end reads-based algorithms (DELLY and Pindel)

could detect the breakpoints of deletions efficiently from the mapping information of sequenc-

ing reads. Although the precision rates and recall rates of large deletion callings were relatively

lower than those of small deletion callings, these tools were best for deletion calling with vari-

ous types of sequencing data. The de novo sequence assembly-based tool, FermiKit, had the

best performance for large insertion calling. Due to the read length limitation of NGS, the de
novo sequence assembly algorithm could still be the best algorithm for detecting large novel

insertions in human genomes with WGS data even though the performance of large insertion

calling was not as good as that of small insertion calling. The local re-assembly methods

(GATK HC and Platypus) were good for genotype-level indel calling. With the re-assembling

of reads around indels, the context of variants could be better discovered, thus achieving

greater genotype-level accuracies. Based on the F1 scores (S7 Table), the recommended variant

calling tools for different sizes of indels, and different sequencing types are shown in Table 4.

Table 4. Recommended variant calling tools for different sized indels and sequencing types.

Data Small indels (< 50bp) Large indels (� 50bp)

WGS (5×) DeepVariant, Platypus, Strelka2 DELLY, Pindel (only deletions)

WGS (30×,60×) GATK HC, Platypus, Strelka2 DELLY, FermiKit, Pindel

WES (135×) DeepVariant, GATK HC, Strelka2 Not evaluated

https://doi.org/10.1371/journal.pcbi.1009269.t004
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We evaluated the indel calling abilities and running times of our candidate tools. In addi-

tion, we also dissected the source of the FP indel calls. From our results, it can be seen that the

majority of the FP calls came from SR regions, which may be due to the ambiguous sequence

patterns around SR regions. Putative problems include the misalignment and inconsistent

representation of variants in mapping and variant calling steps, respectively. Nonetheless, we

still may have underestimated the influence of SR regions because the difficulties of sequencing

SR regions for sequencing platforms are not easily reproduced in our semi-simulated WGS

dataset. In real sequencing data, even though the difficulties of sequencing error-prone regions

can be reproduced, it is still difficult for different callers to reach a consensus with short reads,

thus these regions are generally excluded from the confidence regions of high-confidence vari-

ant calls, such as [55]. Furthermore, in our semi-simulated WGS dataset, we shifted all the

indels in the truth set to the left-most positions before the indel calling processes because we

considered any post-normalization steps with tool-detected indels such as left-aligning to be

an extra burden for users; moreover, some tools may gain an extra advantage and thus make

the evaluation unfair for the other tools. Even though we tried to avoid any inconsistent repre-

sentation of indels by left-aligning all the indels in our truth set, it still might be that we under-

estimated the complexity of the human genome and further efforts would be required to

investigate the ambiguity of indels in human genome. Our semi-simulated genome repre-

sented the actual distribution of the indels in the human genome with the fact that the number

of large indels is smaller than that of small indels. Further efforts would be required to create

comprehensive datasets for large indel calling benchmarking.

In our evaluation, the majority of the tools were implemented with default parameters, and

only minor changes were introduced when necessary. It is possible that the tools would benefit

from optimized parameters to obtain more accurate results [56], but default parameters are

the general starting point for tool usage and allow an equivalent assessment of the performance

of the tools. Moreover, optimization requires the modification of all possible combinations of

the parameters, which is time-consuming and impractical [57]. Datasets may require different

combinations of parameters, which makes it even more of a challenge to attain the universal

best combination. Experienced users may have prior knowledge of how to optimize the tools,

based on their data properties to obtain the best performance. In this study, we considered that

a user would use a given tool with its default parameters.

In general, higher coverage led to better results. The recall rates improved from 5× to 30×,

then to 60×, especially for large indels. Fang et al. [58] suggested that 60× is the suitable

sequencing coverage for WGS data from the HiSeq platform, however, in our study, we discov-

ered that with the improved algorithms of indel calling methods in recent years, 30× sequenc-

ing coverage is also suitable in indel calling based on the performance of the tools. Our study

showed no large differences in indel calling between 30× and 60× sequencing coverage data.

Longer read length sequencing data was shown to help to call larger indels more accurately. In

addition, longer read lengths may also contribute to alignment quality enabling more precise

indel breakpoint detections. In our evaluation it was shown that indel calling for small size

indels (< 50bp) was improved when machine learning-based methods were applied. Although

the precision and recall were still not quite on the same level as for the SNVs, the indel calling

concerning small indels (< 50bp) was assuring. For large indels, de novo assembly method was

the best for calling large insertions, and split-read methods and paired-end reads methods

were best for calling large deletions. In general, the genotyping abilities of tools for small indels

were better than those for large indels. Future methodological development may benefit from

improved machine learning models trained for large indel calling and should also integrate

other methods such as de novo assembly methods to call both small and large indels with pre-

cise positions, sizes, and genotypes. The potential influence and features of library preparation,
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sample handling, and sequencing platform should also be considered in tool development.

There is also room for further indel calling tool development for detection of large somatic

indels when sequencing data is only available from a tumor sample.

Supporting information

S1 Fig. An example of ambiguous variant. A deletion of “CA” was mutated in a simple repeat

region with repeated pattern “CA”. In the truth set, the deletion was represented with left-align

manner, but in tool prediction, the deletion was represented with right-align manner. These

inconsistent representations caused a same single variant reported with different positions, ref-

erence alleles and alternative alleles, further causing trouble for evaluation.

(TIF)

S2 Fig. Distribution of 10bp deletions by their positional ambiguities. The red bars repre-

sent HuRef genome deletions and the blue bars represent deletions that were inserted at ran-

dom sites.

(TIF)

S3 Fig. Indel size distribution of Genome in a Bottle NA24385 WES dataset.

(TIFF)

S4 Fig. Indel size distribution of CHM1 cell line WGS dataset between 50bp – 10000bp.

The proportion of deletions and insertions are marked as blue and green, respectively.

(TIFF)

S5 Fig. Precision rates, recall rates and F1 scores of the tools for indels 30bp – 70bp using

the semi-simulated datasets. (A) 5× coverage, 100bp read length sequencing data. (B) 30×
coverage, 100bp read length sequencing data. (C) 60× coverage, 100bp read length sequencing

data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)

S6 Fig. Precision rates, recall rates and F1 scores of the tools evaluated without genotype-

match for deletions using the semi-simulated datasets. (A) 5× coverage, 100bp read length

sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage,

100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)

S7 Fig. Precision rates, recall rates and F1 scores of the tools evaluated without genotype-

match for insertions using the semi-simulated datasets. (A) 5× coverage, 100bp read length

sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage,

100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)

S8 Fig. Precision rates, recall rates and F1 scores of the tools evaluated without genotype-

match for deletions < 50bp using the semi-simulated datasets. (A) 5× coverage, 100bp read

length sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× cover-

age, 100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)

S9 Fig. Precision rates, recall rates and F1 scores of the tools evaluated without genotype-

match for insertions< 50bp using the semi-simulated datasets. (A) 5× coverage, 100bp read

length sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage,

100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)
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S10 Fig. Homozygous and heterozygous precisions of variant calling tools using the semi-

simulated datasets for small indels (< 50bp). (A) 5× coverage, 100bp read length sequencing

data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage, 100bp read

length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)

S11 Fig. Homozygous precisions and heterozygous of precisions variant calling tools using

the semi-simulated datasets for large indels (� 50bp). (A) 5× coverage, 100bp read length

sequencing data. (B) 30× coverage, 100bp read length sequencing data. (C) 60× coverage,

100bp read length sequencing data. (D) 30× coverage, 250bp read length sequencing data.

(TIF)

S12 Fig. Example of false genotyping caused by ambiguous regions. A homozygous deletion

“chr1:878906 CTTT! C” was overlapped with 22 repeated “T” from chr1:878907-878928.

The read that fully covered the repeat region had a 3bp gap in the CIGAR section of the BAM

file. The read in which only the head or tail overlapped with the repeat region preferred to

shorten its head or tail to omit the gap, based on the alignment algorithm. Simply counting the

numbers of alleles at this site may lead to a low allele frequency, which then causes the tool to

make a mistake and call a homozygous deletion a heterozygous one.

(TIF)

S1 Table. Indel size distribution of the semi-simulated WGS dataset used for tool evalua-

tion. Deletions and insertions are shown separately with different size ranges.

(XLSX)

S2 Table. The characteristics of indels in targeted gene panel sequencing dataset.

(XLSX)

S3 Table. The TPs, FPs, FNs, precision rates, recall rates and F1 scores of variant calling

tool for all size ranges of deletions and insertions with the semi-simulated sequencing

datasets.

(XLSX)

S4 Table. Multiallelic tool-detected indels and non-valid genotype indel calls of variant

calling results with semi-simulated sequencing datasets. The values are total numbers of

tool-detected indels of each type. The values in brackets are numbers of indels which passed

position-match and size-match but failed with genotype-match.

(XLSX)

S5 Table. Evaluation results of variant calling tools with GIAB NA24385 WES data. Sum-

mary evaluation results of variant calling tools with GIAB NA24358 WES data. Evaluation

results were generated by hap.py.

(XLSX)

S6 Table. The TPs, FPs, FNs, FDRs, and sensitivities of variant calling tools with CHM1

cell line WGS data.

(XLSX)

S7 Table. The TPs, FPs, FNs, precision rates, recall rates and F1 scores of variant calling

tools for small and large indels with the semi-simulated sequencing datasets.

(XLSX)
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