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Abstract
We compare the performance of four symplectic integration methods with leading order
symplectic corrector in simulations of the Solar System. These simulations cover 10 Gyr.
They are longer than the astrophysical predicted future of the present-day Solar System, thus
this work is mainly a study of the integration methods. For the outer Solar System simulation,
where the used stepsize was 100 days, the energy errors do not show any secular evolution.
The maximum errors show a dependence on the method. The simulations of the full Solar
System fromMercury, and including Pluto as a test particle, were calculatedwith a stepsize of
7 days. The energy errors behave somewhat differently having a small secular behavior. This
may due to the short timestep and the short period of the planet Mercury or some small round
off error produced by the code. Comparison of the eccentricity evolution’s within simulations
show that some planets are dynamically strongly coupled. Venus and Earth form a dynamical
pair, also Jupiter and Saturn form a dynamical pair. The FFT of the analysis of the simulations
suggests that all the giant planets form a single dynamical quadruple system. The orbit of
Mercury is possibly unstable. Each simulation is stopped when Mercury is expelled. All the
methods show similar results for times less than 30Myr in the way that the results for orbital
elements are same within plotting precision. Inclusion of Mercury in simulations shortens
the Solar System e-folding time to 3.3Myr. It is clear that chaos has a strong effect in the
evolution of orbital elements, especially eccentricities. This is easily seen in Mercury’s orbit
when the simulation time exceeds at least 30 Myr. Our low-order simulations seem to match
high-order methods over long timescales.

Keywords Solar System dynamics · Symplectic methods · Stability of Mercury

1 Introduction

We compare the performance of four different symplectic integration methods (Mikkola
and Palmer 2000). The integrations, using Jacobian coordinatesystem, were extended to the
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very long time of 10 billion years. The methods used were the basic Wisdom–Holman, the
Gaussian two-point formula, the alternating stepsize WH-method and the modified potential
method (WisdomandHolman1991;Mikkola andPalmer 2000). The leading order symplectic
corrector (Wisdom, Holman, Touma 1997; Mikkola and Palmer 2000) was used in these
models, except for theGaussianmethod because in that the leading order corrector expression
becomes zero.

The Solar System does not survive in reality for the whole simulation time due to the Sun
evolving into a red giant. We ignore the solar evolution and fix the Sun to present-day Sun.
We stop a simulation whenMercury instability occurs and it is ejected from the Solar System
or it collides with Venus or Earth.

Other studies of the long-termdynamical evolution of the solar systemhave been published
suggesting also a possibility in the instability in the orbit ofMercury (Ito and Tanikawa 2002),
(Batygin and Laughlin 2008; Mogavero and Laskar 2021) and (Laskar and Gastineau 2009).
These papers have applied other computational methods than ours. The aim in this paper is
not to compare our calculations to these simulations, but rather to compare the earlier named
four symplectic integrators only.

Our first attempt to investigate symplectic methods for the derivations of their results
and precision is discussed in Mikkola and Palmer (2000). We studied only these methods
although there are higher-order ones (Farrés et al. 2013; Rein et al. 2019).

For initial conditions,we used the initial setup ofDE234 (Standish 1991)whichwere given
for the time T DB = 2440400.5 = 1969 06 28.00 . Earlier Laskar (1994) investigated the
stability of the Solar System by using a large number of a little different initial conditions.We
found recently that the results were quite similar to our conclusions. In addition, Mogavero
and Laskar (2021) and Brown and Rein (2020) mentioned in these recent papers similar
results, although they were interested in the Solar System and not much in different methods.

2 Integrationmethods

The integration methods we use in the calculations are symplectic methods using alternating
stepsizewith amean step size noted by h. Having the samemean stepsize in all of themethods
causes them to evaluate perturbations equally frequently. The first method noted as 00 is the
basic Wisdom and Holman (1991) method. The method noted as 10 is the two-step method
(Mikkola and Palmer 2000), and 11 with a modified perturbation force (Wisdom, Holman,
Touma 1997). In the three cases above, the O(h2) errors are removed by the leading order
symplectic corrector (Mikkola and Palmer 2000; Wisdom, Holman, Touma 1997). Finally,
the method 20 uses the two point Gaussian stepsizes, which eliminates second-order O(h2)
errors.

Let us write the Hamiltonian as

H = K (p, r) + R(r), (1)

where K is the Keplerian part and R means the planet–planet attractions which perturb the
Keplerian motions. The p and r represent the impulse vectors and the radius vectors of the
planets. The order of magnitude of the perturbation is

O(R) ≈ ε,

where ε denotes the small perturbation acting on the Keplerian motions.
According to Mikkola and Palmer (2000), the Wisdom and Holman (1991) midpoint

method, the two-point Gaussian method and a higher-order scheme MWH can be described
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using a unified formalismwhere the perturbation evaluations are taken at intervals of (1±q)h.
If we write h1 = (1−q)h and h2 = (1+q)h then the algorithms can be explained as follows.

Let the operator ̂K(τ ) signify motion according to the Keplerian Hamiltonian, i.e., just
the Kepler motion and ̂R(τ ) the motion under the Hamiltonian R(r), which causes linear
motion of the velocities by the amount δv = −τ ∂R

∂r = τF. A double step can then be written
as

̂K(h1/2)̂R(h)̂K(h2)̂R(h)̂K(h1/2),

and longer integrations as

̂S = ̂K(h1/2)̂R(h)
(

̂K(h2)̂R(h)̂K(h1)
)n−2

̂K(h2)̂R(h)̂K(h1/2)), (2)

which represent integration over time (t) interval of �t = nh between outputs. When the
time interval between outputs (�t) is given, one must adjust the stepsize a little such that
the number of steps between outputs become an, often large, integer. The accuracy of the
results can be improved applying a symplectic corrector (Wisdom, Holman, Touma 1997).
According to Mikkola and Palmer (2000), the leading order corrector can be written as

δr = −h2C0F, (3)

δv = +h2C0Ḟ, (4)

where

C0 = 1

24
(1 − 3q(q + 2)), (5)

which removes the O(h2) error terms. The correctors are to be added to coordinates and
velocities at output, but they are not used to affect the integration. However, before starting
the integration one must find the values in other ways, i.e., one finds initial values that give
the true values after application of the correction. A simple explanation is as follows: Let q
contain the coordinates and momenta and c(q) be the symplectic corrector. At the starting
point, we must have

q + c(q) = q0,

where q0 is the correct starting point and q the quantities to be used in the computation. It is
easy to obtain q by iteration with the equation

q = q0 − c(q),

where one sets initially q0 for q and then repeats the iteration as many times as the result
changes. This is done only once and so the iteration is a minor effort.

The integration methods of type (2) give correct results for a surrogate Hamiltonian

Hs = H + a2(q)h2H2 + a4(q)h4H4 + a6(q)h6H6 + .., (6)

where H is the true Hamiltonian and the functions Hk can be derived from equation (2) using
the Baker–Campbell–Hausdorff equation (Yoshida 1990).

The error estimate of the method may thus be written as

Error ≈
∑

k=2,4,6,..

ak(q)hk Hk,
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where the coefficients ak(q) are

a2(q) = 1

24
(1 − 3q(q + 2)) (7)

a4(q) = − 1

5760
(15q(q + 2)(q(q + 2) − 6) + 7) (8)

a6(q) = 21q(q + 2)(q(q + 2)(q(q + 2) − 17) + 75) − 31

967680
. (9)

If we modify the potential by including its gradient:

˜R = R(r + 2χh2
∂R(r, t)

∂r
, t), (10)

or modify the force to approximate it as:

F(r + χh2F(r, t), t), (11)

where F = �R and

χ = (1 + 3q2)/12,

then we get improved precision.
We remove the leading contribution of the second-order terms having the order ε2h2 so

that there remains error O(ε3h2).
When the perturbation size can be written to be R ≈ ε the following list of the error terms

in the different methods can be symbolized as

Method 00 = Wisdom and Holman (1991) with symplectic corrector [WH].
q = 0, Error= O(εh4)

Method 10 = Modified Wisdom–Holman (Mikkola & Palmer (2000) [MWH].
a4(q) = 0 => q = 2

√

1 − 2
√
2/15 − 1,

Error= O(εh6) + O(ε2h2)

Method 11 = MWH with modified perturbation force.
=F(X) → F(X + χh2F(X))

χ = (1 + 3q2)/12, with q = 2
√

1 − 2
√
2/15 − 1 , as above.

Error is supposed to be smaller (of order ε2h4), but this is slower by a factor of 1.5 and
therefore often not used.Dividing the stepsize by 1.5 gives oftenmore additional accuracy
in other methods with the same computing time. According to Wisdom, Holman, Touma
(1997), the error may be written as
Error= O(εh6) + O(ε2h4)

Method 20 = Gaussian two-point formula.
a2(q) = 0, => q = 2/

√
3 − 1,

Error= O(εh4)

The leading order symplectic correctorwas used in all of thesemethods,with the exception
that in the Gaussian (20) method the corrector becomes equal to zero, since the corrector
coefficient is in fact a2(q) = 0, so (20) is an O(h4) algorithm without symplectic corrector.
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Fig. 1 Energy errors in outer Solar System integrations show the maximal values of the absolute values of
relative energy errors in million year segments over the 10 Gyr timescale
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Fig. 2 Evolution of log(|dr|) in the outer Solar System integrations. All the methods seem to give similar
result. The e-folding time is close to 13 Myrs

3 Outer solar system

Wecomputed first the results for the outer Solar Systemwith 100 days stepsize using Jacobian
coordinates. Figure 1 shows the maxima of the absolute values of the relative energy errors.

The errors fluctuate so densely that only maximal errors are shown. The maximal values
were computed over a million year segment in this 10 Gyr plot. The respective one million
year averages were in all cases under 10−10. One notes the effects of the used methods,
but the values in the figure tell mostly about the fluctuation of the errors and there is no
visible secular effect. The largest energy fluctuation is produced by the Gaussian method
(designated 20). Here also the MWH (designated 11) produces smallest energy errors as
expected. However, the small error value is partly due to the use of the symplectic corrector
which does not change the actual integration but only output.

The variational equation solutions grow exponentially even in the outer Solar System.
These are plotted in the Fig. 2. The system gives a 13 Myr e-folding time for the outer Solar
System. This e-folding time is much larger than the one obtained for the entire Solar System.
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Fig. 3 The effect of the Great Inequality (GI) in the eccentricities of Jupiter and Saturn. The GI is visible here
as the tiny fluctuation shown in this figure. The long wave is due to secular effects and it is clearly enormous
compared with the GI. The length of the long sinusoidal wave is 54000 years

The reason is the slow variation of that system while in the entire system there are much
higher frequencies which makes the true system more sensitive, in fact more chaotic. It is
clear that the different methods give very similar values for chaos, i.e., for the e-folding time
of the growth of the variational equation solutions.

When the outer Solar System dynamics is discussed it is common that the so-called ‘Great
Inequality’ (GI) resonance between Jupiter and Saturn motions is considered to be important.
This phenomenon is mainly visible in the main motions of the planets. However, Fig. 3 shows
the GI as a fast tiny fluctuation in the eccentricity values of Jupiter and Saturn. After all, it
seems to be an almost negligible effect on long timescales and thus may not affect the orbits
of the big planets very strongly. On the other hand, it has been found to affect the motion
of asteroids (Ferraz-Mello et al. 1998). The long wave in Fig. 3 has a length of about 54000
years and the height is about 0.1 in the eccentricity of Saturn. These values are much larger
and longer than those in the traditional (GI) and they are in fact the leading terms in the
secular system. Similar dynamical connections are visible between some other planets, see
Sect. 5.

4 Entire Solar System

The full Solar System from Mercury and including Pluto was calculated with a step size of
7 days with an output interval of 1000 years.

4.1 Energy errors with the different methods

Figure 4 shows the energy errors (maxima over a million year intervals) in the different
simulations. One sees that three of the methods fail to continue at some point of time. This is
because Mercury becomes unstable in those simulations (most likely due to the chaos in the
system). Because the used codes integrated the Jacobian coordinates the entire simulation lost
precision when Mercury escaped causing a runaway effect in the energy error. The possible
instability of Mercury was suggested earlier by (Laskar and Gastineau 2009; Mogavero and
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Fig. 4 Maxima of the relative energy errors in the integrations of the entire system with different methods.
The curves represent the maxima of the errors in one million year segments. The system disruptions due to
Mercury’s instability are visible as energy runaway in the different integrations except simulation 10
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Fig. 5 Eccentricity of Mercury up to 35 Myr with different methods. We see same results within plotting
accuracy

Laskar 2021). The mean energy errors are less that 10−10, except close to the Mercury
discontinuities.

Here, the errors have clear secular effects. The small stepsize (7 days) makes the number
of steps big. That difference with the outer Solar System integrations is thus due to round-off
errors (or due to the surrogate Hamiltonian effects). However, it is likely that the reason for
secular error is in the programming of the code as found out by Rein and Tamayo (2015).
One notes that the first system disruption (with the (20) method) occurs near 3Gyr. In this
simulation, Mercury’s eccentricity grows to a large value at that time. Corresponding results
were also obtained byMogavero and Laskar (2021). As long as the system remains stable the
errors in the 20 integration are clearly largest like it was for the outer Solar System integration.
The 10 and 11 cases the errors are similar, but here 00 the basic WH method makes it most
accurately. The reason may be that in these alternating stepsize methods we must consider
the real stepsize to be = 2h except for the WH method where the steps are fixed = h.
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Fig. 6 Differences of the eccentricities of Mercury, with respect to their mean values, up to 60 Myr with all
the tested methods. The different methods are plotted in different colors
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Fig. 7 Maximal eccentricities of Mercury with different methods. Here, the maxima are taken over segments
of one million years. The initial 30 Myr time in which the orbital element evolution’s are equal with the
different methods is here essentially a negligible short interval

4.2 Mercury’s eccentricities

We used the eccentricity to characterize the effects of the instability in Mercury’s orbit.
Mercury’s eccentricities behave in the same way in all the simulations for over more than

30Myr (Fig. 5). One can see that the evaluations start to separate after about 30Myr. The dif-
ferent integration methods induce differences between the integrations, thus the exponential
divergence visible after 30 Myr is due to the chaotic nature of the dynamics.

The curves in Fig. 6 were obtained by first computing the mean values over the different
simulation results and then the difference of each simulation to the mean value. In that it
is easy to see that the results were almost the same up to the time of 30 Myr after which
the curves start separating slowly. However, the separation is so slow that in Fig. 5 it is still
difficult to see the differences.
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Fig. 8 Evolution of log(|dr|) in the entire Solar System integration. The e-folding time is about 3.3 Myr

The evolution of the eccentricities of Mercury in our different simulations is shown in
Fig. 7. Only the maximum values over one million year intervals and close approaches to
Venus are shown.

From this illustration, one can note that very long integrations indicate a behavior which
is clearly different from shorter simulations. The stability of the orbit of planet Mercury is
questionable. Not much can be concluded about the reasons for the possible instability of
Mercury’s orbit. It is anyway likely to be caused by high eccentricities and close approach
to Venus.

The stepsize of 7 days could be a reason too for the divergent calculations. That means
about 12.6 integration steps per Mercury’s period, but it should be sufficient for a period and
30 Myr long good behavior. One possible reason is that the surrogate Hamiltonians are a bit
different for the different methods, and symplectic integrations follow the orbits defined by
those Hamiltonians. Another likely reason is the chaos in the entire system (Laskar 1990).

4.3 Chaos time in the Solar System

The e-folding time of chaos in the Solar System has been traditionally estimated to be 6Myr
(Mikkola and Innanen 1995), but our results suggest that including Mercury shortens it to
about 3.3Myr. To obtain these results, our code was differentiated line by line, so we get
real correct results for the variations of the algorithm, as explained in Mikkola and Innanen
(1999).

As can be seen in Fig. 8, all the different methods in our simulations give the same
result for the e-folding time. This suggests that the resulting value is correct. One cannot see
any increase of log(|dr|) near the times when Mercury escapes, but this may be due to the
1000 year output interval. The close approach with Venus may have happened in shorter time
and lead to escape (which may be partly due to integration errors during the close approach).
Only in one of the methods, in the MWH (i.e., 10) Mercury stays circling the Sun for the
entire integration up to 10 Gyears. The fact that the e-folding time is only 3.3 Myr, tells that
chaos in the Solar System is stronger than estimated in the past.
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Fig. 9 Eccentricities of Venus and Earth in the beginning. These complicated curves are obviously results
from several sinusoidal waves. The lengths were estimated to be about 422700, 211374, 123972 and 95728
years (See Sect. 6)
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Fig. 10 Eccentricities of Venus and Earth in the end of simulation
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Fig. 11 Eccentricities of Jupiter and Saturn in the beginning. Clearly, these two planets form a kind of
dynamical double just as Venus and Earth. The major waves here have about constant length, i.e., about 5400
years like in Fig. 3
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Fig. 12 Eccentricities of Jupiter and Saturn in the end of simulation. Clearly, the dynamical behavior has
remained the same during the whole 10 Gyr simulation
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Fig. 13 Eccentricities of Uranus and Neptune in the beginning. Even here one can see resonant like behavior,
although it is not as clear as in the other cases.Whendetermined using themaximumsof theUranus eccentricity,
the length of the major wave was obtained to be 1.03 million years

5 Coupling of planets

Figures 9 and 10 show the evolution of the eccentricities of Venus and Earth in the first and
the last million years of the 10 billion year integration. It is clear that Venus and Earth are
dynamically coupled.

Figures 11 and 12 show the eccentricities of Jupiter and Saturn during the first and last
million years in the 10 Gyr integration, respectively. One can see that these planets are also
coupled dynamically over really long times.

As the figures starting fromFigs. 9, 10, 11, 12, 13 suggest the planet pairs seem to exchange
angular momenta, so that pairwise the sums of themomenta remain (at least almost) constant.
For Uranus–Neptune pair, the situation is not so clear and it may be that Jupiter and Saturn
affect those planets and that effect may be partly visible in the figures of the eccentricity
evolution.
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Fig. 14 Eccentricities of Uranus and Neptune in the end of simulation. Even here it seems that the dynamical
coupling continues over all times
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Fig. 15 The eccentricities of the Earth with the different methods

As one can see from Figs. 13 and 14, also the planets Uranus and Neptune form a pair
with same time eccentricity variations. It is possible that the outer planets form a quadru-
ple dynamic system. In Fig. 15, we demonstrate the clear phase separation in the different
integration methods. This seems to happen more clearly in shorter oscillations, but very long
ones survive for a longer time. The most likely reason for this behavior is that the surrogate
Hamiltonian (which really moves the system in the different integrations) is a bit different
in the various methods. The time interval in Fig. 15 is a million years after a billion years
integration. Here already the curves are different, although one may get an impression that
long (roughly half a million years) waves are still quite similar.

6 FFT results

Here, we present only a small part of our analyzing work. Due to the extensive amount of
results, presenting them entirely must be done in a separate publication. We compared the
four simulations 00, 10, 11 and 20. In the data, the time interval in coordinateswas 1000 years.
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Fig. 16 FFT analysis of Earth eccentricity by means of the different methods. Here, the obtained periods are
between 95,000 and 96,000 years

We analyzed this data for each of the simulations with FFTs using 220 = 1048576 points,
starting from point 524288, thus roughly covering the time interval from 0.5Gyr to 1.5Gyr.
The selections of the data have standard limits for the oscillatory periods to be investigated.

A signal is present in all outer planets at 54026.7± 1.4 years. Jupiter and Neptune are in
phase and Saturn and Uranus are in the opposite phase. Based on FFT phase determinations,
all four outer planets form a dynamic connected system. The errors presented here are the
deviations between outer planets periods determined from the FFTs.

A second strong signal 1108500 ± 500 years is shown in the eccentricities of all larger
planets. All the planets and the simulations are in phase here.

The inner planets Earth and Venus form a pair, they are almost locked to each other. The
similarity in the FFTs is obvious in Figs. 9 and 10. (Similar results were reported in Laskar
(1990, 1994).) Many periods are present in all the inner planets, such as the 4̃22000 year
period. A broad peak at 95000 period is also shown for all inner planets but it is weak for
Mercury.

A section of the FFTs is represented showing a log of amplitude squared as a function
of period for the Earth simulations only. It is clear from Figs. 16 and 17 that the FFT peaks
are broadened possibly due to slight instability in the oscillation periods which, when accu-
mulated by time, cause small phase difference in the eccentricity curves between the results
of the different integration methods. These results explain the fact that in Fig. 15 the curves
clearly have a different phase after a billion years, or in fact after 300Myr. These phenomena
may have an explanation in Hoang et al. (2021).

It is clear that the different simulations produce different results by about ±1%. The posi-
tion of the maximum of the peak period varies, and thus the internal frequency of oscillation,
yet the synchronicity of Venus and Earth remains in all the simulations.

7 Some curiosities in the dynamics of terrestrial planets.

In Fig. 18, the curves are not from the actual Solar System dynamics but point partly to
an earlier result published in Innanen et al. (1998), where the effect of various planets was
attempted to study. In those early times, it was normal to put the Sun and Mercury together
in their center of mass because it was assumed that Mercury is negligibly small. This short
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Fig. 17 Earth eccentricity with periodicity signals around 420,000 to 425,000 years
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Fig. 18 A curiosity in Venus orbit. If Mercury and Earth are removed the eccentricity of Venus increases up
to the value e = 0.6. If Mercury is included then the Venus eccentricity varies only little. Is this phenomenon
due to the coupling of Mercury with Venus and Earth orbits?

computation results here suggest that Mercury is far from being negligible. If the Earth was
neglected, the Venus eccentricity started growing to the large value of ≈ 0.6.

Here, we simply did not neglect Mercury (but the Earth was removed). The variations of
Mercury’s eccentricity became significantly smaller. This obviously suggests that Mercury
is not negligible in any Solar System simulations. This result is somewhat curious.

8 Discussion and conclusions

First, the outer Solar System was calculated with a 100 days step. No secular trends are
observable in the energy plots of the four symplectic analysis methods over 109 years. The
e-folding time is 13 Myr.

In computing the entire Solar System, we used 7 days stepsize, for Mercury this means
about 12.6 steps/period. The energy error in the method that made it up to 10Gyr, with
altogether 5.2× 1011 integration steps, causes apparently enough roundoff errors to produce
some secular error. The energy error is anyway only dE/E = 2. ∗ 10−21 per step, which
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is surprisingly small. It is not clear if any of the used methods are preferable. The basic
Wisdom–Holman method seems to be satisfactory, in fact it produced smallest energy error
as long as Mercury remained stable. Thus, a side result was the confirmation of the possible
instability of the orbit of Mercury. This happened in three of the methods and only in one
case the planetary system survived the big time of 1010 years. One notes that the system
becomes unstable at intervals of about 3 Gyr. Although this happens in different methods, it
probably means that this chaotic system has almost unstable situations at those intervals, and
the different methods make it unstable at one or another of those situations. The e-folding
time of the divergence of energies is 3 Myrs.

In all four methods, the orbital elements behave in the same way within the plotting
precision for about 30 Myr. The differences in longer times are likely due to the surrogate
Hamiltonians which are somewhat different in these methods.

Venus and Earth form a couple, Jupiter and Saturn also form a couple, and based on
the FFT analysis Uranus and Neptune are included in the dynamically quadruple system.
Mercury is clearly unstable according to our simulation and this was earlier found out by
Laskar (2008); Laskar and Gastineau (2009) and Batygin et al. (2015). This is the case at
least in simulations without general relativity terms.

Final remarks

1. All the methods seem to work quite well. Same results for 30 Myr. The differences in
the stability of planet Mercury proves nothing about the methods, but is likely a property
of the Solar System, i.e., chaos.

2. In systems with long e-folding times, like in the outer Solar System, the analytical error
estimates are correct at least in the sense that errors behave according to the O(hn)
estimates. This is true at least in our simulations.

3. In systems with eccentric orbits and short periods, like the entire Solar System, it is not
so clear if the higher-order methods are any better. This may be because it is customary
to use as long a stepsize as possible to save computing time.

4. It seems that the basic WH-method is very useful, even one of the best because it has
essentially stepsize = h, while in all the other methods the stepsize is= 2h. In any case,
the WH method is good and simplest among all methods.

5. The planet pairs Venus and Earth, Jupiter and Saturn form a dynamical couple and very
likely with Uranus and Neptune.

6. Mercury’s orbit is unstable as found out in earlier studies.

Funding Open Access funding provided by University of Turku (UTU) including Turku University Central
Hospital.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


20 Page 16 of 16 S. Mikkola, H. J. Lehto

References

Batygin, K., Morbidelli, A., Holman, M.J.: Chaotic disintegration of the inner solar system. Astrophys. J.
799,(2015)

Batygin, K., Laughlin, G.: On the dynamical stability of the solar system. Astrophys. J. 683, 1207–1216 (2008)
Brown, G., Rein, H.: A repository of vanilla long-term integrations of the solar system. Res. Notes Am. Astron.

Soc. 4(12), 221 (2020)
Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators

for the Solar System. Celest. Mech. Dyn. Astron. 116, 141–174 (2013)
Ferraz-Moll, S., Michtchenko, T.A., Roig, F.: Astron. J. 116, 1491 (1998)
Hoang, N.H., Mogavero, F., Laskar, J.: Chaotic diffusion of the fundamental frequencies in the Solar System.

Astron. Astrophys. 654, A156 (2021)
Innanen, K., Mikkola, S., Wiegert, P.: The Earth-Moon system and the dynamical stability of the inner solar

system. Astron. J. 116, 2055–2057 (1998)
Ito, T., Tanikawa, K.: Long-term integrations iand stability of planetary orbits in our solar system. Mon. Not.

R. Astron. Soc. 336, 483–500 (2002)
Laskar, J.: The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus

88, 266–291 (1990)
Laskar, J.: Large-scale chaos in the solar system. Astron. Astrophys. 287, L9–L12 (1994)
Laskar, J.: Chaotic diffusion in the solar system. Icarus 196, 1–15 (2008)
Laskar, J., Gastineau, M.: Existence of collisional trajectories of Mercury, Mars and Venus with the Earth.

Nature 459, 817–819 (2009)
Mikkola, S., Innanen, K.: Solar system chaos and the distribution of asteroid orbits. Mon. Not. R. Astron. Soc.

277, 497–501 (1995)
Mikkola, S., Innanen, K.: Symplectic tangent map for planetary motions. Celest. Mech. Dyn. Astron. 74,

59–67 (1999)
Mikkola, S., Palmer, P.: Simple derivation of symplectic integrators with first order correctors. Cel. Mech.

Dyn. Astr. 77, 305–317 (2000)
Mogavero, F., Laskar, J.: Long-term dynamics of the solar system inner planets. Astron. Astrophys. 655, A1

(2021)
Rein, H., Tamayo, D.: WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman inte-

grator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376–388 (2015)
Rein, H., Brown, G., Tamayo, D.: On the accuracy of symplectic integrators for secularly evolving planetary

systems. Mon. Not. R. Astron. Soc. 490, 5122–5133 (2019)
Standish, M.: The JPL Planetary Ephemerides, DE234/LE234, JPL Interoffice Memorandum 314.6-1348 Jet

Propulsion Laboratory, U.S.A., (1991)
Wisdom, J., Holman, M., Touma, J.: Symplectic Correctors. In Proceedings of the Integration Methods in

Classical Mechanics Meeting, Waterloo, October 14–18, 1993, Fields Institute Communications 10, p.
217 (1997)

Wisdom, J., Holman, M.: Symplectic maps for the N-body problem. Astron. J. 102, 1520–1538 (1991)
Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Overlong simulations of the solar system dynamics with two alternating step-lengths
	Abstract
	1 Introduction
	2 Integration methods
	3 Outer solar system
	4 Entire Solar System
	4.1 Energy errors with the different methods
	4.2 Mercury's eccentricities
	4.3 Chaos time in the Solar System

	5 Coupling of planets
	6 FFT results
	7 Some curiosities in the dynamics of terrestrial planets.
	8 Discussion and conclusions
	Final remarks

	References




