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A B S T R A C T

Expert informants can be used as the principal information source in the modeling of socio-techno-economic
systems or problems to support planning, foresight and decision-making. Such modeling is theory-driven,
grounded in expert judgment and understanding, and can be contrasted with data-driven modeling approaches.
Several families of approaches exist to enable expert elicited systems modeling with varying input information
requirements and analytical ambitions.

This paper proposes a novel modeling language and computational process, which combines aspects from
various other approaches in an attempt to create a flexible and practical systems modeling approach based on
expert elicitation. It is intended to have high fitness in modeling of systems that lack statistical data and exhibit
low quantifiability of important system characteristics. AXIOM is positioned against Bayesian networks, cross-
impact analysis, structural analysis, and morphological analysis. The modeling language and computational
process are illustrated with a small example model. A software implementation is also presented.

1. Introduction

This paper proposes a novel modeling language and computational
process, which combines aspects and analysis elements from various
other approaches in an attempt to create a flexible and practical sys-
tems modeling approach based on expert elicitation. Modeling systems
based on expert elicited inputs have potential in modeling systems that
are difficult to model based on statistical data. Traditionally the mod-
eling of systems has been strongly data-driven (Sokolowski and Banks,
2009), although a hybrid approach of augmenting data-driven models
with expert information (Choy et al., 2009; Ford and Sterman, 1997;
O’Hagan et al., 2006) has become more commonplace in modeling and
decision support activities. The reliance on statistical data limits the use
of models and modeling in research and decision-making, as a) only
systems and problems with good statistical data availability will be
modeled, b) only elements, aspects and properties of systems that are
easily quantified and have good data availability will be included in the
models, and c) generally, modeling will be considered as a possible
approach only in domains where data availability is good. The meth-
odological orientation of modeling towards easily quantifiable aspects
of reality may cause models, and the decision support that they offer,
become biased or limited in strategic scope and perspective. Involving
expert informants in the modeling process as an alternative input

source can help to account for critical considerations poorly covered by
statistical data (Choy et al., 2009; Ford and Sterman, 1997; James et al.,
2010; Kuhnert et al., 2010; O’Hagan et al., 2006).

A number of modeling and analysis techniques intended to be used
in conjunction with expert elicitation have been proposed since the late
1960’s, mainly in the futures studies and foresight domain, referred to
by the original authors as techniques for cross-impact analysis (Godet,
1976; Gordon and Hayward, 1968; Honton et al., 1984), structural
analysis (Godet et al., 1994; Linss and Fried, 2009), and morphological
analysis (Ritchey, 2006; Weimer-Jehle, 2006). Bayesian networks and
influence diagrams are a widely used decision support tool, and they
are often augmented with expert elicited knowledge (James et al.,
2010; Leonelli and Smith, 2015). While they are used in foresight ap-
plications (Bromley et al., 2005; Cinar and Kayakutlu, 2010; Culka,
2016), their use is less common, as their characteristics make them
somewhat impractical in systems modeling with high abstraction level
and high structural complexity.

AXIOM draws design features regarding the modeling language,
computational process and inference from several existing modeling
approaches with fitness to modeling systems or decision-making pro-
blems with expert-elicited model inputs. The design aim of AXIOM has
been to identify the most viable design features of existing approaches
for the expert elicited modeling niche, combine them in the same
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analytical framework, and expand on the ideas adopted in them to
further elevate the fitness for expert informant processes. The most
important of these approaches are Bayesian networks and influence
diagrams, the cross-impact approach by Gordon and Hayward and its
derivatives, and the BASICS approach. The characteristics of these
techniques are discussed and appraised in terms of fitness for expert
informant oriented modeling. AXIOM builds on and expands on many
of the ideas introduced by existing approaches, as discussed in Section 3
with the aim of providing better tooling for modeling based on expert
elicited inputs and making the formal modeling a more viable research
and analysis approach in domains that are difficult to model using other
modeling approaches.

This paper also discusses the main analytical orientations of expert
informant based modeling approaches, identifying structural, morpho-
logical and probabilistic orientations. In terms of analytical output,
AXIOM can produce outputs of all of the mentioned orientations, cov-
ering a great deal of the utilization area of other discussed modeling
approaches. The use of AXIOM in decision support, probabilistic in-
ference, as well as extraction of morphological and structural insights is
illustrated in Section 4.3 with a small example model. A software im-
plementation of the approach is freely available, and its development is
ongoing. The further development of the AXIOM framework and its
software implementation are discussed in Section 6.

2. Literature review

2.1. Systems thinking, modeling and simulation

System is defined (International Council on Systems Engineering
(INCOSE), 2017) as a “ collection of elements that together produce
results not obtainable by the elements alone ”: system parts work to-
gether. Systems thinking is geared towards understanding the systemic
phenomena: The individual parts of the system are known and under-
stood (they are “inputs” to the systems thinking), but their operation
together, as a system, and the result of this operation are less understood
and are the main object of interest in systems thinking (Checkland,
1999).

Systems thinking entails understanding a part of reality as a set of
components, which are abstractions of real-world objects and phe-
nomena (Checkland, 1999). The system as a whole can be described
with these more atomic abstractions, which are logically connected by
relationships of some kind. Practice of such systems thinking might lead
to a more formal representation of the system, often called a system
model (Sokolowski and Banks, 2009). The amount of information and
detail in the system representation, or model, varies greatly. The in-
formation content of the model determines what kind of higher-order
information can be extracted from the model, and what kind of insights
can be made available.

Modeling is therefore creating an approximation or abstraction of
the real world or a part of reality (Sokolowski and Banks, 2009). As
abstractions, models attempt to capture the essential parts of reality.
What is essential is determined dominantly by information needs, the
questions the model is supposed to answer. Models representing the
system with sufficient detail and formality can be used for simulation. If
a model represents the system, simulation represents the operation of
the system (Banks et al., 2005; Zeigler et al., 2000). Simulation has a
temporal aspect. The representation of the operation can mean a con-
tinuous-time representation, if sufficient details are available in the
model. On the other hand, the operation can also be represented as a
starting point and an end point. In this two-step description of the
operation of the system, a starting state is fed to a transformation and a
transitioned state is output as the “end” result.

Systems modeling is said to be strongly data-driven, meaning that
the formal descriptions or definitions of the relationships connecting
the model components are extracted from statistical data. These formal
descriptions are normally presented as mathematical equations relating

the model variables. Often techniques such as regression analysis are
used for parameterization of the relationships (Sokolowski and Banks,
2009). Even when the estimation of details of the relationships is based
on data, such model is still considered “a formal representation of a
theory” (Adèr, 2008). Data-driven modeling is fundamentally based on
theoretical-level understanding of the system rather than ‘hard’ em-
pirical evidence.

A common problem in systems modeling is data inavailability
(Sokolowski and Banks, 2009), due to difficulties in quantifying the
essential parts of the modeled system at the precision required by data-
driven modeling approaches or the costs of data acquisition. Data in-
availability limits modeling, both in application area of systems
thinking and modeling (as only systems with good data availability will
be modeled) and utility and reliability (as only system aspects for which
data is available will be included in the models). These limitations
might result in incomplete or biased models, which leave possibly
crucial aspects of the system unmodeled and unaccounted for. The
methodological limitations of modeling are reflected in the decision-
making process using the modeling results, as their strategic and policy
scope omits important considerations.

In some modeling domains, empirical data is an impossibility. For
instance, foresight-oriented modeling of socio-techno-economic sys-
tems has to account for changing or emerging system characteristics
that are not manifested in existing statistical data, as well as possible
occurrence of singular historical events for which no frequentist-type
data can exist. Historical data does not necessarily capture or reflect the
way the modeled system is changing, even when the change and the
dynamics involved might be well understood by experts of the modeled
system.

Data-driven modeling is often called mathematical modeling, and
thus contrasted with modeling approaches emphasizing an intuitive-
logical way of describing the properties of the modeled systems.
Underpinning the mathematicity of modeling can lead to a false im-
pression of the model being based on a solid mathematical foundation:
in the minds of the model users, the irrefutability of mathematics lends
itself to the outputs of the model. However, in data-driven modeling,
the fundamental choices about the model structure and logic are made
not based on some axiomatic mathematical principles or empirical
evidence but theory, expertise, intuition, or even guesswork. The the-
oretical foundation of models and simulations can sometimes be ob-
scured by their claimed mathematicity. Often this theoretical founda-
tion of the model is laid out in a rather informal and unstructured way,
by a small modeling team or just one single person doing the modeling,
and the foundation and theoretical choices made are not explicated.
Given the high technical expertise requirement of data-driven modeling
approaches the model-building team might consist of experts of the
modeling approach, instead of experts of the modeled domain.

The theory-based structure of causalities and dependencies of
models built using the data-driven approach is often nontransparent.
Understanding the logical structure of the models might require good
understanding of the underlying mathematics. Even with such ex-
pertise, understanding the structure might often be laborious. This
cognitive cost of examining and understanding the model will often
make the models “black boxes” whose output is used without good
grasp of the logical structure underlying the model: from a user per-
spective, the general causal logic of the model might remain unclear.

The expert informant-based approach to modeling, or expert elici-
tation of model inputs, is an alternative to data-driven modeling (James
et al., 2010; Pollino et al., 2007). Expert insight of the modeled system
may cover domains or system aspects for which data in the required
format for modeling does not exist, but which are still known at some
level of detail, enough to base the modeling on (Choy et al., 2009; Ford
and Sterman, 1997; Kuhnert et al., 2010). While the data-driven ap-
proaches can rely on expert inputs as well, expert elicitation is in sec-
ondary role, and not the methodological focus. The expert informant
oriented modeling approaches typically attempt to provide a modeling
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language more suitable for modeling the system with expert-sourced
information, rather than requiring the experts to directly specify
mathematical equations which relate the system components to each
other. This language should support the heuristic-logical mode of work,
and be natural in use of an expert-oriented modeling process. A suitable
modeling language relies on a less exact precision in description of the
model component relationships than what is typical in a data-driven
model, where the relationships can be parameterized on the basis of the
available empirical data, using techniques like regression analysis.
Several modeling languages aiming at enabling expert description of
systems have been proposed alongside various analytical methods.
These are discussed in Section 2.2. Specific methods of high relevance
to and methodological overlap with AXIOM are detailed in Section 3.
The modeling language will determine the level of detail and the nature
of information in the expert informant sourced system model. Given a
fairly simple modeling language, the system description may be rela-
tively transparent, in comparison to the system description of the data-
driven approaches. The nature of the information, in turn, determines
what kind of transformations can be done on it to extract some kind of
higher-order information from the model.

While modeling approaches with focus on expert informant sourced
data do exist, there are important improvements to be made to increase
both the fitness of the modeling language for expert elicitation working
mode of modeling, and the inference procedures used to extract ana-
lytical value from the model. Section 2.2 discusses a number of systems
modeling approaches with fitness for expert informant oriented mod-
eling and identifies their analytical aims. Section 2.3 assesses the design
options of these approaches, from the angle of fitness for modeling
based on expert elicitation. Section 3 gives a description of modeling
approaches with significant overlap with the AXIOM approach in some
dimension, explains the similarities and differences and presents the
argumentation for the design choices made in AXIOM. Several issues
identified in the review justify further methodological development in
the field. Section 4 presents the AXIOM modeling language and com-
putational process, as well as possible analytical outputs. The con-
tribution of this paper is methodological: it proposes a novel approach
for a specific systems modeling and simulation niche, with an above-
state-of-the-art fitness for the intended purpose. The language and the
analysis process is illustrated with an example model previously
(Honton et al., 1984; Weimer-Jehle, 2006) used to illustrate two other
modeling approaches. A free software implementation of the approach
is also presented.

2.2. Established expert informant oriented modeling approaches

Expert elicited systems modeling is practiced under several different
names or labels. These include cross-impact analysis (Godet et al.,
1991, 1994; Gordon and Hayward, 1968; Gordon, 1969, 1994; Honton
et al., 1984; Huss and Honton, 1987), structural analysis (Godet et al.,
1991, 1994; Linss and Fried, 2009, 2010; Panula-Ontto and Piirainen,
2018), morphological analysis (Ritchey, 2006; Weimer-Jehle, 2006),
cross-consistency analysis (Johansen, 2018) and Bayesian belief net-
works and influence diagrams, Bayesian decision support systems, or
Bayesian decision support systems (Baran and Jantunen, 2004; Bromley
et al., 2005; Ceric, 2016; Cinar and Kayakutlu, 2010; Kristensen and
Rasmussen, 2002; Kuikka and Varis, 1997; Lauría and Duchessi, 2006;
Leonelli and Smith, 2015). There are several documented modeling
approaches and associated computational processes within each men-
tioned branch of modeling. They have a great deal of conceptual and
functional overlap, but also important differences. All approaches (a)
utilize expert elicitation (b) in building a model representation of a real-
world system or decision-making problem, (c) that can be represented
as a graph, nodes as the system descriptors and edges describing their
relationships, (d) to be used in analysis of the system, inference or
decision support by means of a computational transformation on the
model.

The expert informant driven modeling processes can result in con-
ceptual models of low formality, for which there are no particular
computational transformations or inference mechanisms available.
Conceptual models, as well as the expert-driven process itself, can be
very useful in understanding the system, and can yield processual
benefits (Kelly et al., 2013) without any specific formal inference.
However, when the model representation of the system is at a sufficient
level of formality to analyze computationally, these approaches provide
some process of computation and inference to facilitate the analysis of
the models. The information content of the models determines what
kind of further computational transformations are available to extract
higher-order analytical information. Three distinct analytical orienta-
tions, not mutually exclusive, of expert informant oriented modeling
can be identified.

1. In the structural orientation, the focus is on the structure of the re-
lationship network. The aim is to form a picture of the systemic re-
lationships of the model variables, inferred from the description of
the direct relationships. The systemic relationship reflects the in-
direct or mediated influence between the variables, in addition to
the direct influence: the inference mechanism aims at revealing the
indirect relationships between the variables in some way. As the
indirect relationships are discovered, on the basis of the direct re-
lationships given as input, a new understanding of the relationships
emerges.
Analytical outputs of structural nature can be extracted from a
graphical model where nodes represent system components, events,
driving forces and trends, without necessarily having any additional
information, and edges (directed or undirected) represent direct re-
lationships of some kind, possibly having an indicator of magnitude
representing the strength of the relationship (relative to other re-
lationships in the model). Methods focusing on this utility are
MICMAC (Godet et al., 1991, 1994), ADVIAN (Linss and Fried,
2010), and EXIT (Panula-Ontto et al., 2018; Panula-Ontto and
Piirainen, 2018). Cognitive maps (Axelrod, 1976) and fuzzy cogni-
tive maps (Kosko, 1986) also have similar analysis aims, although
they are not typically identified as structural analysis approaches.

2. The morphological orientation aims at identifying logical, consistent
or probable system states, or reducing the total ‘problem space’ into
a smaller, internally consistent ‘solution space’ (Johansen, 2018). A
system state is a specific combination of states of the system de-
scriptors. A requirement for deriving morphological utility is that
the model contains information about the ‘agreement’ of the system
descriptors, so that system configurations where the states of system
descriptors are ‘harmonic’ may be identified. Hence, the nodes
should have state properties, such as a Boolean indicator of them
being true or false, or a discrete state (a single state out of a set of
possible states). Morphological information can also be inferred
from probabilistic information about the relationships of the model
components: Nodes may (Godet et al., 1994; Honton et al., 1984) or
may not (Rhyne, 1974; Ritchey, 2006; Weimer-Jehle, 2006) have
probability information about their possible states. The edges
should, at a minimum level, contain Boolean information of
“agreement” or consistency between the specific states of the model
nodes. Methods oriented morphologically include BASICS (Honton
et al., 1984), JL-algorithm (Luukkanen, 1994), general morpholo-
gical analysis (Ritchey, 2006), Field Anomaly Relaxation (Rhyne,
1974)), SMIC (Godet et al., 1991, 1994), and the cross-impact bal-
ances approach (Weimer-Jehle, 2006).

3. The probabilistic orientation aims at probabilistic inference about the
system, deriving the probability distributions for random variables
in the model, given a set of variables with an assumed value.
Probabilistic modeling orientation requires more input information
than structural or morphological orientation, as probabilities are
computed explicitly: The probabilistic conditionalities and de-
pendencies need to be described in a more specific way. The
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additional model information enables wider analytical possibilities.
The obvious disadvantage is that the modeling is more costly in
terms of time and effort. This can be a challenge for the modeling if
the access to expert informants is limited.
The probabilistic orientation offers the greatest degree of direct
decision support, as the effects of interventions can be observed
from the probability distributions of random variables capturing
some aspects of the system that are relevant for decision-making.
The analytical utility comes from using the model for examining the
systemic effects of events and developments, or strategic actions and
interventions. Probabilistic information can be coupled with utility
functions, which help in identifying the optimal intervention com-
bination maximizing utility or minimizing harm by some criteria.
Probabilistically oriented modeling techniques include Gordon-
Hayward cross-impact analysis (Gordon and Hayward, 1968;
Gordon, 1969, 1994), Bayesian networks and influence diagrams
(Baran and Jantunen, 2004; Kristensen and Rasmussen, 2002;
Kuikka and Varis, 1997; Lauría and Duchessi, 2006; Leonelli and
Smith, 2015), and AXIOM.

The various alternatives differ in terms of (a) the information con-
tent of the descriptors, (b) the way (and in what detail) interactions are
modeled, (c) the nature or interpretation of that interaction, (d) the
possibility to model the temporal dimension, and (e) whether cyclical
relationships are allowed. These features lead to the approaches being
of a certain (f) difficulty level for the expert informants used as the
information source, and a (g) focus on a specific analytical orientation.
The next subsection discusses these key design options of the various
established approaches, and considers their preferability and problems
in the context of modeling relying strongly on expert elicitation for
input data acquisition.

2.3. Motivation for further methodological development

Given the numerous documented approaches for creating graphical
system models by means of expert elicitation, what is the motivation for
developing new methods? A modeling approach with high fitness for
this specific purpose should have a modeling language which is generic,
but flexible and expressive, to enable model representation of all kinds
of systems and heterogenous system features. This flexibility should be
provided by a practical way for expressing the system characteristics,
which takes into account the expert informant resources, which are, in
practice, always limited. The ideal approach should also produce out-
puts from which all discussed analytical utilities can be extracted.
Against this ideal of a modeling approach with optimal fitness for ex-
pert-elicited systems modeling, a number of problems, for which the
AXIOM approach proposes solutions to, can be identified in the estab-
lished approaches.

1. Modeling power. The modeling languages of Gordon-Hayward
cross-impact analysis (Gordon, 1994), SMIC (Godet et al., 1994),
MICMAC (Godet et al., 1994), and ADVIAN (Linss and Fried, 2010)
only offer Boolean system descriptors, which represent events of or
hypotheses about the modeled system. A modeling language with
more modeling power allows system descriptors to have an arbitrary
number of possible states. This makes it possible to clearly model
system states that are mutually exclusive and exhaustive: such
system properties cannot be reliably modeled with binary de-
scriptors. System descriptors with an arbitrary number of possible
values enable a flexible way of modeling a real system at arbitrary
level of detail: Multivalued descriptors, used in Bayesian networks
and influence diagrams, BASICS, and AXIOM, can model, in prin-
ciple, any kind of system feature or property, from low-level and
atomic detail such as a number or a share, to a high-level descriptor
of the system, such as a subscenario describing a possible state of a
subsystem, packaging a great deal of information.

In most expert informant based systems modeling techniques dis-
cussed in Section 2.2, the modeling languages do not provide a way
to represent the temporal dimension of the model, meaning that the
system descriptors do not have a temporal position in relation to
each other. All system descriptors are thought to exist in the same
temporal space and are resolved “simultaneously” at the level of the
computational transformation performed on the model, details
varying by the specific technique. For several systems, the ability to
model passage of time and the temporal relationship between the
descriptors is highly desirable to create meaningful models. The
Bayesian network representation of systems (Choy et al., 2009;
Cowell et al., 2006; Kuhnert et al., 2010; Pollino et al., 2007) en-
ables modeling a temporal aspect, but in a structurally deterministic
way and with limited flexibility: the temporal logic of the model
could be said to be coupled with the model structure. AXIOM de-
scriptors have a timestep property that enables positioning the de-
scriptors in the temporal dimension in relation to each other with
arbitrary precision. A representation of time of relatively low pre-
cision is probably the best fit for expert informant oriented mod-
eling, but any level of precision is made possible in a simple way
with the timestep property.
Bayesian networks as graphical system models impose structural
limitations on the modeling of relationships, as Bayesian networks
are directed acyclic graphs: cyclic interaction is not allowed in
Bayesian network models. As the AXIOM transformation is based on
a Monte Carlo process and bidirectional interaction is therefore non-
problematic, this limitation to modeling power is eliminated.

2. Expression of interactions. For all models of the approaches dis-
cussed in this paper, the description of interaction between the
system descriptors is the most information-laden part of the model.
In terms of valuating the models, the expert informants used as data
source will spend most of their time describing the interactions. If
the experts are understood to be the primary source of input in-
formation for the model, the amount of detail they need to give as
input is a trade-off against the complexity of the model structure and
the time the experts have available for contemplating the valuation
of the interaction. The more information is needed to express the
details of the relationships between the system descriptors, the
smaller number of descriptors can be considered and the less time
there is to consider the relationships carefully, assuming that the
expert informant time is limited. In the approaches not dealing with
probabilities explicitly, the interactions are expressed in a simple
way, with Boolean indicators or magnitude indicators; this simpli-
city makes for easy model valuation, but analytically such models
can provide only structural and morphological utility.
Many approaches dealing with probabilities (Cowell et al., 2006;
Godet et al., 1994; Gordon and Hayward, 1968; Pollino et al., 2007)
require definition of a system conditional probabilities as a way to
express their interdependencies. Conditional probabilities allow for
expressing the descriptor interactions in a very detailed and exact
way, but they require much more time and effort from the expert
informants. In Gordon-Hayward cross-impact analysis (Gordon and
Hayward, 1968) and SMIC (Godet et al., 1994), the model valuators
define a conditional probability matrix which is in agreement with
the probability axioms. This is often a considerable effort, and in the
case of SMIC, Godet actually recommends (Godet et al., 1994) that
the number of descriptors does not exceed six. This heavily limits
the practical modeling power of cross-impact models of Gordon-
Hayward cross-impact analysis and SMIC: the system model must, to
remain feasible from valuation perspective, be very high-level and
abstract, limiting its value as a decision support tool. In models
based on Bayesian networks, conditional probabilities are expected
for a descriptor for the Cartesian product of the possible states of its
dependencies. If the probability distribution of the possible states of
a system descriptor with four states is dependent on five other de-
scriptors with four possible states, 4096 conditional probabilities
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should be defined for the dependent descriptor; in a complex system
with possibly hundreds of descriptors, a case of a descriptor being
dependent on ten other descriptors with four possible states each,
4,194,344 conditional probabilities would be required to fully de-
fine the dependence. In this sense, defining the model interactions as
conditional probabilities is not a minor nuisance that places a re-
quirement of more time being used in the modeling effort, but a
hard practical limit to the complexity of the model of interactions of
a system.
In the case of relying solely on expert informant valuation in mod-
eling, one must ask what is the realistic upper limit of precision for
expert informants when defining interactions of system descriptors
as conditional probabilities. If the valuations of expert informants
are assumed to be hazy, approximate quantifications, a compromise
between the precision of definition of interactions and speedy and
cognitively less expensive valuation process appears justified. An
alternative approach to the use of conditional probability tables in
description of probability-updating interactions between system
descriptors is to use references to probability updating functions. They
update the probabilities contextually, doing away with the need to
define full conditional probability tables. This approach is discussed
by Enzer (1972) and first adopted in the BASICS approach (Honton
et al., 1984). Later it has been used in the JL-algorithm (Luukkanen,
1994). AXIOM also uses this basic idea of simplifying the description
of probability updates, but expands on the idea. While describing
the interactions in a complex system model with a large number of
descriptors is still challenging, with the probability updating func-
tion reference approach the task becomes much more feasible: the
most complex describable relationship in a case of a four-state de-
scriptor dependent on ten other four-state descriptors, would re-
quire at most 204 valuations (normally less), contrasted to the
4,194,344 valuations required for description of the relationship
using conditional probabilities. Often a smaller number of valua-
tions would suffice in the updating function approach.
Providing a simplified way for expert informants to define the model
interactions increases the modeling power of the modeling language
in a very important way: it makes larger system models possible. If
the modeling approach heavily limits the size and complexity of the
model and the number of the descriptors, the model remains very
high-level and abstract. Analysis of such models remains abstract as
well. Modeling approach should support larger models as much as
possible, to enable modeling that can produce the most policy-re-
levant outputs. Emphasizing the fitness of the modeling language to
build large system models is also beneficial since systems modeling
is often the most interesting and useful when models are more ex-
tensive: surprising, counter-intuitive and interesting systemic,
emergent and higher-order interactions and long causal chains that
would be difficult to analyze intuitively can only exist in models that
have a relatively large number of system components represented.

3. Inference and analytical output. While the information available
in the models of approaches discussed in this paper might enable,
with changes to the computational process, the use of the model
information to answer several different questions about the modeled
system, many approaches do not discuss these ways of higher-order
information extraction in their documentation or make them
available in their software implementations. The versatility and
usefulness of the analytical outputs of the expert informant based
modeling approaches can thus be improved as well. The inference
capabilities of most approaches are oriented either structurally,
morphologically or probabilistically. As building system models are
an extensive and work-intensive effort, it would be desirable that
the approach could deliver outputs of all orientations, as is the case
with AXIOM.

3. Methodological influences and the methodological
contribution

As stated in the introduction, AXIOM builds upon the design choices
introduced in existing modeling approaches. The most important in-
fluences of AXIOM approach are, in order of importance, a) Bayesian
networks and influence diagrams (Cowell et al., 2006; Fienberg, 2006;
Jensen and Nielsen, 2007), b) the Gordon-Hayward cross-impact ana-
lysis (Gordon and Hayward, 1968; Gordon, 1969), and its later deri-
vative SMIC (Godet et al., 1991, 1994) and c) the BASICS approach
(Honton et al., 1984; Huss and Honton, 1987). These techniques are
discussed here in more detail to adequately position AXIOM against
them, explain what are their problematic aspects in expert informant
oriented modeling, and what is proposed in AXIOM to solve the iden-
tified issues.

From Bayesian networks and influence diagrams, AXIOM takes the
basic inference principles and the model of decision support use. In
comparison to Bayesian networks, the AXIOM modeling language
provides more freedom to the modeler, allowing cyclic interaction in
the modeling of causalities and a way to define the temporal structure
of the model with the timestep property of the statements, decoupling
the model temporal dimension from the structure of causal de-
pendencies. AXIOM also proposes analytical processes which are not
typically used in the case of Bayesian networks, but which can be found
in the cross-impact analysis, structural analysis and morphological
analysis tradition. From the Gordon-Hayward cross-impact analysis,
AXIOM takes the idea of evaluating the model in a Monte Carlo process,
but provides an easier and more feasible way for describing the
knowledge base of the expert informants, by means of updating func-
tions. The updating functions approach, in turn, is inspired by the
BASICS approach (Honton et al., 1984; Huss and Honton, 1987), and its
derivative JL-algorithm (Luukkanen, 1994). AXIOM significantly ex-
pands on the idea of BASICS updating functions. Other important in-
fluences are the above-discussed structural and morphological ap-
proaches, such as MICMAC (Godet et al., 1994), ADVIAN (Linss and
Fried, 2010), general morphological analysis (Ritchey, 2006), and
cross-impact balances approach (Weimer-Jehle, 2006). These ap-
proaches are technically quite far from AXIOM, but AXIOM design
enables performing analysis that result in insights of structural and
morphological nature, with a relatively low increase in conceptual
complexity in the modeling.

The contribution of this paper is the proposal for a new expert in-
formant based systems modeling approach. The design aim of the ap-
proach is to combine the best method design aspects of the older cross-
impact analysis tradition, also expanding on these ideas, and use the
hybrid approach for similar probabilistic inference and decision support
as Bayesian networks and influence diagrams are used, with an eye on
the feasibility of full expert elicitation in model parameterization, and
flexible and expressive modeling language. The AXIOM modeling lan-
guage and computational process are summarized in Section 4 and the
analytical possibilities are illustrated with an example system model in
Section 4.3.

3.1. Bayesian networks and influence diagrams

Bayesian belief networks are models for probabilistic causal rea-
soning (Cowell et al., 2006). They are widely used in scientific, in-
dustrial, and decision support applications. The basic use case for them
in decision support is inferring the change in the probability distribu-
tions of the states of the node descriptors in the network, when other
nodes are set to be in a known state, to represent a decision-making
context, or a set of assumptions to be tested for their effect on the
system. Alternatively changes can be made to the probability distribu-
tions of nodes of interest, to capture different assumptions about the
distribution and to observe the effects of those assumptions. The
probabilistic inference in a Bayesian network can be predictive, dealing
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with probability changes of effects given information about their
causes, but also diagnostic, inferring the likely causes based on the ob-
served effects (Lehikoinen, 2014).

The graphical representation of a Bayesian network is a directed
acyclic graph, which describes causal relationships denoted by directed
edges between variables or descriptors denoted by graph nodes. The
Bayesian network nodes are probabilistic random variables and can
represent almost any type of system properties. The random nodes can
represent mutually exclusive discrete states, but also continuous
quantitative system properties, and both types can be used in the same
model. For influence diagrams, a special case of Bayesian belief net-
work, also decision nodes and utility nodes are available as modeling
primitives (Jensen and Nielsen, 2007), representing alternative deci-
sions or policies. Decision nodes affect the probability distributions of
the random nodes. Utility nodes receive information from random or
decision nodes, and model the utility, harm, gain or cost of the states of
their dependencies: they represent the decision making criteria, against
which alternative decisions are assessed and compared against each
other. In a model that holds several decision nodes, optimization of
policy or interventions can be suggested by search of the combination
of decision alternatives maximizing the expected utility or minimizing
expected negative utility or harm (Jensen and Nielsen, 2007;
Lehikoinen, 2014).

The graph edges represent causal dependency relationships of the
head nodes on tail nodes, or as the Bayesian network is a directed
acyclic graph, dependency of child nodes on their parent nodes. The
relationships are numerically defined by populating the node-specific
conditional probability tables with conditional probability distribu-
tions. The parent nodes are causes and their child nodes are effects,
which can in turn be causes for other effects further down the causal
hierarchy. This distribution contains information on the probability of a
variable being in a certain state, dependent on the state of its causes.
For defining the dependencies numerically, several methods can be
applied: deterministic or probabilistic simulations (Dorner et al., 2007;
Rahikainen et al., 2014), using learning algorithms on empirical or
statistical data directly (Acid et al., 2004; Riggelsen, 2006), and expert
elicitation (James et al., 2010; Kuikka and Varis, 1997; O’Hagan et al.,
2006), or some combination of these. It is common to augment the
model information with expert informant elicited knowledge.

Modeling using Bayesian networks is well supported by software
implementations such as Netica (Norsys, Inc, 2004) and Hugin (Kjærulff
and Madsen, 2013) that enable versatile analytical outputs, well be-
yond the basic output of Bayesian probability updating in a graph given
some assumptions about the node states. Bayesian networks, however,
specifically in systems modeling relying chiefly on expert elicited in-
puts, can be problematic. The number of required inputs, in cases of
structurally complex models, easily becomes unmanageably high. As
the structural complexity of the dependencies in the model increases,
the amount of information required by the conditional probability table
representation of the relationships grows exponentially. The number of
conditional probabilities to be elicited for an effect e, in a case of n
dependencies for e, is ∏ ×

=
s c s e( ) ( )i

n
i1 , where s(ci) is the number of

possible states a specific cause ci can have, and s(e) is the number of
possible states of the dependent effect. An effect node with three pos-
sible states, and three dependencies, each also with three possible
states, requires 81 conditional probabilities to have its relationship
defined. While this number of values can be elicited from a determined
expert group, it is laborious, as the 81 values will only define the re-
lationship of one effect on its causes–and the model might have tens or
hundreds of such effects. 4-state node with 5 dependencies having 4
possible states each would require elicitation of 4096 conditional
probabilities. This is, with certainty, too much to ask even from the
most dedicated expert panel. Such dependency structures are, based on
the initial experiments of modeling with AXIOM, not uncommon in the
way an expert group might want to model a system.

In expert elicitation of probability tables, the dependency structure

of the model has to remain relatively simple to keep the number of
elicited values manageable. The elicitation can aim at extracting
parameters for probability distributions instead of the distributions
directly, and this may reduce the work load, but this approach is nor-
mally applicable only for continuous variables, or discretized con-
tinuous variables. For discrete distributions without a logical ordering,
probability updating signals implemented as updating functions as per
the BASICS approach (Honton et al., 1984) or AXIOM approach are a
possible, but apparently unutilized solution to reduce the elicitation
work load.

Unlike other approaches discussed in this work, a Bayesian network
graph is acyclic, thus the method does not allow modeling of cyclic
interaction. The temporal aspect of the system, in cases where the
system is modeled as a Bayesian network, is tightly coupled with the
graph structure: no ambiguity about the cause-effect relationship be-
tween nodes is allowed, and structural inference loops are not normally
possible. This imposes limitations on the expressive power of the model
in higher abstraction level modeling exercises, such as modeling of
societal, political or technological developments, typical in foresight.

AXIOM is, out of the approaches discussed in this chapter, con-
ceptually and functionally, while not technically, closest to Bayesian
networks. An AXIOM model could be approximated with a Bayesian
network by a) allowing graph cycles in the Bayesian model, b) replacing
the Bayesian updating logic with a Monte Carlo process, and c) de-
scribing the probabilistic effects of nodes on others by references to
updating functions, akin to BASICS or AXIOM, instead of conditional
probability tables. In this sense, AXIOM could be seen as a special case
of a Bayesian network, or to generalize into one. While full im-
plementation of AXIOM is not apparently possible with e.g. the Hugin
(Kjærulff and Madsen, 2013) or Netica (Norsys, Inc, 2004) software,
due to the limitations of the conditional statements that could be used
to approximate the AXIOM updating functions, a relatively similar
computation could, with great effort, be implemented within Hugin or
Netica. To the best of the author's knowledge, such approach has never
been used in the context of Bayesian networks. AXIOM explicitly aims
at providing similar inference capabilities as Bayesian networks,
making both predictive and diagnostic inference possible by means of
the AXIOM iteration objects, discussed and illustrated in Section 4.3.

AXIOM provides direct decision support use, similar to influence
diagrams, by use of the intervention statements in lieu of the decision
nodes of the influence diagrams, and using any AXIOM statements in
the model in a similar way utility nodes are treated in influence dia-
grams. The main difference is the modeling language, allowing causal
loops, the timestep property, and easier description of interactions.
Building and expanding on the updating functions approach adopted in
BASICS (Honton et al., 1984; Huss and Honton, 1987), AXIOM provides
a more feasible way to describe the expert knowledge base on the
probabilistic interactions between the states of the descriptors, as the
conditional probability table based description is replaced by a hazier
and more approximate, but dramatically easier description. Adopting
this approach means that the number of inputs to be elicited grows only
linearly as the dependency structure becomes more complex, whereas
in a Bayesian network, the growth is exponential. Extraction of analy-
tical outputs of structural or morphological nature can be performed
with Bayesian networks to a degree, although the meaningfulness of
such analysis is limited due to the acyclic nature of the Bayesian net-
work. AXIOM approach supports structural and morphological analysis
well, and the use of an AXIOM model for these purposes is illustrated in
Section 4.3.

3.2. Gordon-Hayward cross-impact analysis and SMIC

The early experiments with modeling the causal relationships on the
basis of expert elicited inputs in the context of futures studies and
foresight were performed in the late 1960’s (Gordon and Hayward,
1968; Gordon, 1969). The motivation for these modeling experiments
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was to be able to provide an auxiliary technique for forecasting and
foresight work done utilizing expert panels, especially the Delphi
technique. Gordon and Hayward (1968) called the approach aug-
menting the Delphi technique by incorporating consideration of the
interaction between the future events cross-impact analysis.

The next two decades saw a lot of discussion (Blackman, 1973;
Bloom, 1977; Brauers and Weber, 1988; Burns and Marcy, 1979;
Dalkey, 1971; Godet, 1976; Gordon and Hayward, 1968; Gordon, 1969;
Ishikawa et al., 1980; Jackson and Lawton, 1976; Kane, 1972; Kaya
et al., 1979; Martino and Chen, 1978; Mitroff and Turoff, 1976; Nováky
and Lóránt, 1978; Turoff, 1971) on the methodological details of
foresight-oriented cross-impact techniques and applications of, incre-
mental amendments to and methodological proposals inspired by the
cross-impact technique have been published with lower frequency since
(Agami et al., 2010; Bañuls and Turoff, 2011; Bañuls et al., 2013; Ceric,
2016; Choi et al., 2007; Godet et al., 1991, 1994; Gordon, 1994; Jeong
and Kim, 1997; Medina et al., 2015; Pagani, 2009; Thorleuchter et al.,
2010; Weimer-Jehle, 2006).

The techniques normally referred to as cross-impact analysis, and
relatively widely used, are the Gordon-Hayward cross-impact analysis
(Gordon and Hayward, 1968; Gordon, 1969, 1994), henceforth referred
to as GHCIA, and the SMIC approach by Godet et al. (1994). GHCIA and
SMIC are probabilistic binary descriptor cross-impact models. If they
are represented as graphs, their graph nodes are system descriptors,
presenting a hypothesis or a postulate about the state of the system in
the future, also called an event by Gordon (1994). This state is assigned
an initial or a priori probability of occurrence, which is the expert es-
timate of the probability of the hypothesis assuming no available in-
formation about the system, meaning that the states of the other de-
scriptors are unknown.

Represented graphically, graphs for both approaches are cyclic,
unlike a Bayesian network. The edges carry information about the oc-
currence probability of the head node hypothesis, conditional to the
occurrence of the tail node hypothesis. In the SMIC approach, the edges
additionally carry information about the occurrence probability of the
head node hypothesis, conditional to the non-occurrence of the tail
node hypothesis (Duperrin and Godet, 1975; Godet et al., 1994). In
GHCIA, the probability of the head hypothesis conditional to the non-
occurrence of tail hypothesis is inferred (Gordon, 1994).

The expert-elicited conditional probabilities are, in the case of
GHCIA, checked for compliance with the standard probability axioms.
The following conditions should be met:

1. ≤ ≤P i0 ( ) 1
2. ≤ ≤P i j0 ( | ) 1
3. ≤ ≤

− + P i j( | )P i P j
P j

P i
P j

( ) 1 ( )
( )

( )
( )

If the initial conditional probabilities do not fall within permissible
bounds, it is the task of the expert group to resolve the inconsistency by
changing either the conditional probabilities or the initial probability
valuations. In the case of SMIC, the software implementation features a
linear optimization function (Godet et al., 1994), which corrects the
initial expert-sourced valuations into permissible bounds, aiming to
keep the corrected valuations as close to the original expert valuations
as possible.

When the conditional probabilities have been defined, model eva-
luation can be performed. The evaluation process is a Monte Carlo
process, where truth values are assigned to model descriptors in
random order, according to the defined probabilities. When a descriptor
is assigned a truth value, the probabilities of other descriptors are up-
dated, using the odds ratio technique described by Gordon (1994).
When all descriptors have been evaluated, the system of the model has
a fully resolved state. This state can be thought of as a scenario. If a
binary descriptor occurs, or is in the state true, in the scenario, a counter
for its occurrences is incremented. The probabilities of the descriptors

are reset to the initial values. The evaluation is repeated a large number
of times.

The cross-impacted posterior probabilities are computed simply as
the occurrence frequency of descriptors in the set of generated sce-
narios. The posterior probabilities reflect the influence of the impact
network and aim at capturing the influence of longer impact chains. In
GHCIA, the recommended analytical process is to test various as-
sumptions with the model by changing the initial probability valua-
tions, for instance to simulate interventions. Different initial setups are
compared in terms of posterior probabilities. In the case of SMIC, the
aim is to identify the most probable scenarios for further examination
with other futures methods (Godet et al., 1994): the inference of SMIC
is morphological in nature, although it could relatively easily be used for
the same purpose as GHCIA. For a system model of n hypotheses, SMIC
outputs the probabilities for 2n scenarios, ordered by their probability.
Godet also recommends deriving an elasticity matrix for the variables
by means of performing sensitivity analysis on the initial probability
valuations of the variables.

As the interactions between the system components are expressed as
conditional probabilities, and these conditional probabilities need to
meet the above-stated conditions, the complexity of the system, mea-
sured by the number of descriptors, is recommended to be kept low:
Godet et al. (1994) recommend that the number of descriptors should
not exceed 6. Any real systems modeling effort struggles to describe the
system with such a limited number of descriptors, and the abstraction
level in the model easily remains very high. The BASICS-like probability
update strategy is a more viable solution for expert elicited modeling.
As the descriptors are binary, mutually exclusive states for system
components cannot be easily modeled, and an exhaustive state set
cannot be modeled at all. GHCIA and SMIC also have no built-in way to
express a time dimension in models: all the system descriptors exist in a
single “temporal space”. These features limit the modeling power
practicality, and usability of the approaches in systems modeling.

From the GHCIA and SMIC, AXIOM inherits the idea of performing
the model evaluation as a Monte Carlo process. The Monte Carlo pro-
cess of AXIOM is quite different from GHCIA and SMIC, as its logic is
influenced by the temporal relationship of the descriptors expressed
with the timestep properties, the use of intervention statements, and
possibly the non-simple updating functions, discussed under the de-
scription of the BASICS approach. In AXIOM, all the model evaluation
rounds can be saved in the iteration objects and used as the basis of
inference when the aim is to enable more complex probabilistic in-
ference similar to Bayesian networks and influence diagrams, or mor-
phological outputs. Compared to GHCIA and SMIC, AXIOM also offers a
more practical set of modeling primitives, as the AXIOM system de-
scriptors are multivalued, and they have a built-in way of being tem-
porally positioned against other descriptors with the timestep property.

3.3. The BASICS approach

An alternative approach to expressing the conditional probability
effects in a cross-impact model is modeling them with probability-up-
dating signals instead of plainly numerified conditional probabilities.
This type of approach has been discussed by Enzer (1972) and im-
plemented in the BASICS approach (Honton et al., 1984; Huss and
Honton, 1987) and later in the JL-algorithm (Luukkanen, 1994) with
incremental improvements.

In the BASICS modeling language, descriptors can have an arbitrary
number (greater than one) of possible states, which are assigned prior
probabilities, whose sum is equal to 1. The probability-changing in-
teractions that the model components have on each other are expressed
as references to probability updating functions. BASICS (Honton et al.,
1984; Huss and Honton, 1987) updating functions take a probability to
be updated as an argument and return an updated probability, altering
the descriptors' probabilities contextually: update by the same function
will result in a different amount of probability change in the influenced
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descriptor, depending on the value of the adjusted probability at the
time of the update. This makes the description of probabilistic influ-
ences in the model hazier and approximate, but also dramatically re-
duces the difficulty and workload of describing the relationships be-
tween the system components. This is especially relevant in system
models with a great number of descriptors and complex dependencies.
Expressing the relationships of the system components as references to
probability updating functions, such as ‘+ 3’ to indicate a positive
probability-changing impact, or ‘− 1’ to indicate a smaller negative
probability-changing impact, does away with the need to define con-
ditional probabilities, and instead offers a way to express the interac-
tions in an approximate way, but still keeping the quantified prob-
abilities, central for decision support use, in the analysis.

Compared to the approach where full conditional probability tables,
or GHCIA- or SMIC-like conditional probabilities satisfying the con-
straints defined for those approaches, are used to describe the causal
dependency of an effect descriptor on a cause descriptor, the prob-
ability updating function approach is an approximate and ‘hazy’ way to
quantitatively express the causal dependency. Similar dependency
structures can be expressed, but a degree of accuracy is lost. What is
gained is the easier way to describe the causal rules in the system, as the
experts who are elicited can, instead of specifying conditional prob-
abilities, invoke an appropriate probability update by referencing an
updating function by the name of that function.

An example set of BASICS-like updating functions is graphed in
Fig. 2. AXIOM also employs such updating functions. Updating func-
tions of AXIOM are intended to be more versatile than the updating
functions of BASICS, with the capability of both using other information
in the model than the current probability for mapping it to an updated
probability, and performing other updates to the model than simply
updating probability values, such as immediately compelling a de-
scriptor into a state and firing its updates instead of only updating
probability distributions.

BASICS does not employ a Monte Carlo process in its model eva-
luation, and doesn’t aim at producing a posterior probability distribution
for the states of the system descriptors. In some applications of BASICS
(Huss and Honton, 1987), posterior probabilities computed from the
configurations produced by the model evaluation rounds are displayed,
but it must be noted that the number of rounds performed in the BASICS
approach is insufficient to compute posterior probabilities in the same
sense as is done in Bayesian networks, GHCIA, or AXIOM. Instead,
BASICS employs a deterministic process, where the model is evaluated
twice for each possible state of all of its descriptors, assuming the state
in question to “be true” or occur, and in a different iteration to be
“false” or not occur. In the evaluation of descriptors, the most probable
state is selected, making the model evaluation deterministic. Each
model evaluation produces a set of descriptor states occurring in that
evaluation, and this set can be interpreted as a scenario. A model with
10 descriptors, with 3 states each, results in 10×3×2=60 scenarios
(Honton et al., 1984; Huss and Honton, 1987).

The motivation is to find scenarios that are “probable and con-
sistent” (Honton et al., 1984), in the light of the supplied prior prob-
abilities and interactions. The scenarios that emerge from multiple
different evaluations are interpreted to be probable and consistent,
warranting further study with other analytical techniques. In this sense,
the output produced by BASICS is analytically serving a similar purpose
as morphological analysis, discussed in Section 2.2. The information
content of the BASICS model enables a wider range of outputs, but these
possibilities are not documented or explored in the descriptions of the
BASICS approach. JL-algorithm is derived from BASICS, and proposes
changes to the model evaluation procedure to eliminate effects of the
ordering of the descriptors in the user input, as they are significant in
some of the BASICS approach implementations (Luukkanen, 1994).

BASICS and JL-algorithm make it possible to identify morphologi-
cally consistent scenarios. They do not support simulation-style use of
the model for testing the effect of interventions or other changes to the

system that can be observed from posterior probabilities. Posterior
probabilities could be made available for BASICS if the evaluation
process would be changed so that a sufficient number of evaluations
would be performed and the evaluation process would be changed to
probabilistic instead of the deterministic way. With these changes, the
BASICS approach would be closer to the AXIOM approach. The analy-
tical output, as the method is documented, is limited to the morpho-
logical output of identifying full system configurations that are prob-
able with the given description of prior probabilities and interactions,
inferred by the BASICS evaluation process.

From BASICS, AXIOM draws the basic idea of reducing the difficulty
of the description of probabilistic rules of the system with contextual
probability updates. AXIOM expands on the idea of updating functions
used in the BASICS approach and JL-algorithm. The BASICS updating
functions simply map a probability to an updated probability, and their
only input is the old probability. AXIOM updating functions close over
the entire model, and can use any information in it to map probabilities
to updated probabilities. The probability updates can be made depen-
dent on not only the occurrence of a single state in the model, but any
set of states, or even the current probability distributions of a descriptor
or a set of descriptors. This enables e.g. modeling of actor behavior, that
can be dependent on how likely some event or outcome appears at a
specific moment. This difference makes the AXIOM updating functions
much more expressive: they can be used to describe more complicated
dependencies than BASICS updating functions. Conditional logic, that is
possible to describe using conditional probability tables akin to
Bayesian networks, can be approximated with AXIOM updating func-
tions. Additionally, the AXIOM updates can do more than simply
change the probability distributions of the effect descriptors: The
AXIOM updates can fire actions in the model, such as immediately
setting a descriptor to a certain state, or some other change in the
model, such as removing impacts, changing the updating functions of
these impacts, or doing some other structural change in the model.

In terms of analytical outputs, AXIOM significantly widens the
possibilities of BASICS. The BASICS output is morphological. AXIOM
can deliver similar outputs, but it considerably expands the analysis of
BASICS to the direction of probabilistic inference and decision support
performed normally with Bayesian networks and influence diagrams.
AXIOM approach also supports extraction of structural outputs akin to
EXIT, MICMAC and ADVIAN, and fuzzy cognitive maps.

4. The AXIOM approach

AXIOM is a systems modeling approach designed for a specific niche
of systems modeling, modeling of chiefly non-technical, non-determi-
nistic systems with a complex interaction structure and with compo-
nents of heterogenous nature, such as social, technological, economical,
political or cultural components or driving forces. Components or
system aspects of this nature often have relatively low quantifiability
and data availability. Modeling such systems has to rely mostly on
expert informants as the data source for definition of the relationships
in the system, as there is not much statistical data to estimate the re-
lationship in the form of a mathematical equation, using statistical
modeling approaches such as regression analysis. The design of a
modeling approach for this niche has to aim for a modeling language
with high modeling power and fitness for use in expert elicitation, and a
computational process enabling versatile analytical outputs and the use
of the model to give as much information as possible of the modeled
system, to compensate for the effort of constructing such a model. The
modeling approaches discussed in Section 2.2 offer different solutions
to the relevant design questions, and these solutions are assessed
against the intended modeling use case requirements in Section 2.3 and
Section 3. The design choices of AXIOM are based on this argumenta-
tion.
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4.1. Modeling language

The modeling language, or the set of model building blocks of
AXIOM, used to describe a system and its interactions, consists of three
main primitives: statements, options and impacts. Fig. 1 presents an
entity-relationship model (Chen, 1988) of the AXIOM concepts.

Statements represent components, driving forces and events of the
modeled system. They have a temporal position (possibly equal) in
relation to other statements in the model, called the timestep property.
Statements also have a set of options, which are the possible values of
the statement, or the (modeled) possible states of the system component
the statement represents. The options have a probability value, in-
dicating their likelihood to be assigned as the value of their respective
statement. The initial probability is called the prior or a priori prob-
ability; the prior probability values of options under the same statement
are estimated by the expert informants by assuming no available in-
formation about the system outside that particular statement. The op-
tions form a probability distribution, and the sum of probability values
of all the options of a statement must equal 1: options are mutually
exclusive, and thought to fully exhaust the range of possible states of
the modeled system component and fully occupy the probability space.

Impacts represent probabilistic causal relationships between the
system descriptors. Impacts are normally simple impacts, associated with
two options in different statements, the cause option and the effect
option. When the cause option is evaluated to be true, its effects are
fired or ‘take place’, changing the probability of the effect option, as
well as the probabilities of the complement options under the same
statement as the effect option. Impacts can also be non-simple, modeling
more complex dependencies, as discussed in Section 3.3, where several
cause options influence the effect option. When the model, during its

evaluation, arrives at a state where the causes of an impact are true, a
probability update (or some other update, such as a structural update)
takes place. At the model level, the action of updating probabilities or
doing other updates to the model is performed when the model state

Fig. 1. Entity-relationship model of AXIOM concepts. *a) Statement is evaluated to an option in a single configuration *b) A configuration in an iteration has a single
option for each statement in the model; the a posteriori probability of each option is the rate of occurrence of the option in configurations in the iteration. *c) An iteration
can have options as active interventions

Fig. 2. Seven simple AXIOM probability updating functions graphed. See also
Honton et al. (1984) for description of the BASICS updating functions.
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changes, meaning that new information about the system is available.
This is analogous to “ unfolding of the future” in reality: as events take
place or system components assume a specific state, the outlook of what
might happen next and with what likelihood changes as a result of
causalities and new information.

In the initial state of the model, the statements do not have a state,
only a probability distribution for their possible values, the options. The
evaluation of a statement consists of selecting one of the options of the
statement (according to the probability distribution), assigning it as the
state or value of the statement, and executing the impacts the selected
option has, if any. Each option has a likelihood of being selected equal
to its current probability value. The selected option is now thought to
‘occur’ or ‘be true’. It has a possibly empty set of impacts targeting other
options in other statements in the model. The impacts are now realized
and change the probabilities of their target options. The probabilities of
other options under the same statement as the target option are also
updated in order to preserve a valid probability distribution. If the
model has non-simple impacts with several conditions, the occurrence
of these conditions is checked when the model state changes, and the
updates are performed if conditions are met.

A simple impact is defined by its cause or source option, its effect or
target option and an updating function reference, similar to the ap-
proach adopted in BASICS (Honton et al., 1984). An AXIOM model has
a set of updating functions, that are referenced by impacts to describe
how the impact is meant to update the probability of the effect or target
option, or what other updates to perform, in the case of non-simple
impacts. Simple functions update the effect option probabilities con-
textually, mapping the current probability value to an updated value,
reflecting the probabilistic influence the impact has on them. The
probability updating functions have a domain of [0,1] and a codomain
of [0,1]. Additionally, simple updating functions are recommended to
(a) be symmetric about the line y=−x+1, (b) have the property y
(x0)< y(x1) when x0< x1, and (c) have the property y(x)> x if the
name of the function implies positive (probability-increasing) impact,
and the property y(x)< x if the name of the function implies negative
(probability-decreasing) impact. The purpose of describing relation-
ships in the model with updating functions is to circumvent the need to
define conditional probability tables (the rationale for this was dis-
cussed in Section 2.3). Instead, the effects of knowing that a specific
model descriptor is ‘true’ or that a part of the system is in a certain state
are delegated to a specific updating function. Seven simple probability
updating functions named ‘0’, ‘+1’, ‘+ 2’, ‘+ 3’, ‘− 1’, ‘− 2’, ‘− 3’, are
graphed in Fig. 2. Function “0" does not map any change to probability,
representing a neutral relationship; “+ 3" represents the greatest po-
sitive change to probability out of the presented functions; “− 1" re-
presents a modest negative probability change. This updating function
set enables modeling of probability effects as per the BASICS (Honton
et al., 1984) approach. Unlike BASICS, an AXIOM model can have as
many updating functions as are seen necessary to describe the re-
lationships in the model.

Compared to the updating functions in BASICS, an AXIOM updating
function can, instead of a probability update, force a statement im-
mediately into a state, consequently firing all the updates linked to that
state. Such an update would represent a deterministic relationship of a
model state on some other state. AXIOM updating functions also close
over the entire model and can use all information in the model, such as
current probabilities of any option in it, to determine the amount of
probability update. Such updating functions can, for instance, be used
to model actor behavior: The decision or behavior of an actor would be
represented by a statement or a set of statements in the model, and the
likelihood of an actor to make a specific decision can be made depen-
dent on the current probabilities of specific model states at the time the
decision is made. An important use for the non-simple updating func-
tions is modeling more complex dependencies than what can be mod-
eled by binary updating functions with a cause option and an effect
option. A probability update can be made conditional to several facts in

the system, such as the occurrence of a set of states instead of a single
state. In Bayesian networks, this type of dependency is expressed with
conditional probability tables, and in some cases modelers might want
to model such complex probabilistic dependencies. An AXIOM updating
function can be made dependent of several facts, making modeling such
more complex dependencies possible. Currently the AXIOM im-
plementation supports only simple impacts and simple updating func-
tions directly from input, but non-simple impacts and non-simple up-
dating functions can be implemented by any user by accessing the
freely available source code. The user interface will be expanded to
support the use of non-simple updates as the development of the im-
plementation proceeds.

4.2. Model evaluation

Inference in AXIOM is based on a Monte Carlo process of repeated
model evaluations. As illustrated by Fig. 1, a single model evaluation
results in a configuration, which is saved to an iteration object, and
several iterations with different initial setups make an iteration set. A
pseudocode description of the AXIOM model evaluation process, as well
as the computation of the iterations and iteration sets are presented in
Appendix A.

A model evaluation means resolving the state of the model, by
performing the evaluation of all the statements in the model. The order
of evaluation is, firstly dictated by the timestep values of statements,
and secondly random: statements with a lower timestep value are al-
ways evaluated before statements with a higher timestep value, and
statements with equal timestep value are evaluated in random order.
After the evaluation of all model statements, every descriptor has a
state and therefore the whole model has a state (the combination of
descriptor states emerged as a result of the evaluation): all options are
either true or false. This result is saved. The probabilities of options are
re-initialized to their prior probability values and a new model eva-
luation process is performed, again saving the result. The evaluation is
performed a large number of times: the default number of evaluations
in the AXIOM implementation is 106, but a higher number may be
necessary in complex models to yield accurate estimates of the posterior
probabilities. Each evaluation produces a configuration, a model state as
a combination of descriptor states, which can be thought of as a sce-
nario. The collection of configurations resulting from the Monte Carlo
process is called an iteration. It captures the system states that result
from a specific set of initial conditions.

From the iteration, it is possible to compute the a posteriori or pos-
terior probabilities of the options in the model by simply counting the
frequency of occurrence for each option. This posterior probability
value takes into account the systemic, emergent higher-order interac-
tions in the model. From the information content of the iteration, it is
also possible to compute probabilities for morphologies, partial system
states described by a specific set of options, by counting the frequency
of those option sets in the iteration. The iteration is a dataset in the
association rule learning sense, so the association rule learning concepts
and operations can be used in its analysis. The posterior probabilities of
single options, or option combinations (morphologies), are computed as
their support. Other association rule learning operations like confidence,
lift and conviction can also be computed from an iteration.

A major motivation for building system models is to gain the ability
to test the behavior of the system under different assumptions, and si-
mulate effects of changes to the system. Such changes can be prior
probability valuations, strengths of model impacts, the structure of
impacts, or structure of the model in terms of statements and options.
Once these changes to the model have been made, the Monte Carlo
process can be performed again, resulting in a new iteration. An itera-
tion set is a collection of iterations under different initial setups of the
model. The iterations in the iteration set are compared against each
other to reveal the effect of the changes made, or the differences of
outcomes between the setups.
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AXIOM provides an analytical convenience mechanism called in-
tervention statements to test the systemic effects of particular interven-
tions. Statements can be flagged as intervention statements, which will
then be treated specially in the model evaluation: intervention state-
ments will not be evaluated in the normal probabilistic way, but will
rather have a predefined state, already determined when the model
evaluation commences. The states of the intervention statements
change only between different iterations. Other details of the model
evaluation are the same: the impacts of the predetermined options of
the intervention statements take place when the intervention statement
is taken up for evaluation. When the model has flagged intervention
statements, an iteration set will automatically be generated with a
single iteration capturing the normal model evaluation results without
interventions and the rest of the iterations capturing each possible
combination of the options of the flagged intervention statements. The
function of intervention statements is that they can model policy ac-
tions, strategic options available to actors in the system or some other
aspect of the system which the analyst wants to test in different states:
intervention statements have the same function as decision nodes in
influence diagrams.

4.3. Example model and analysis of results

The AXIOM approach is illustrated with a system model presented
by Weimer-Jehle for demonstration of the cross-impact balances
(Weimer-Jehle, 2006) (CIB) approach, which in turn is amended from a
BASICS cross-impact model presented by Honton et al. (1984). The CIB
model describes a limited set of drivers for oil price and the interactions
between these forces and the oil price. The interactions are of direct
causal nature, so the original CIB model is suited to be transformed into
an AXIOM model. AXIOM model requires additional information of
initial probabilities of options, timestep property values for statements,
and probability updating functions, which have been added to the
model, based on the judgment of the author. As described by Weimer-
Jehle (2006), the model does not attempt to comprehensively represent
the system, but is meant to provide “an illustrative and manageable
frame for description of the method”. The model consists of five
statements, having 3 to 4 options each and 16 altogether, and their
directed probability-changing interactions, whose magnitudes are ex-
pressed with an integer in the range [− 3,+3]. The amended AXIOM
model with its statements and their timesteps, options and their initial
probabilities, and impact valuations in an impact matrix format, is
presented in Table 1. The impact magnitude indicators reference to the
simple updating functions presented in Fig. 2: during the model eva-
luation, the probabilities of options are adjusted according to the
function referenced in the impact matrix. In the table, row descriptors
are the impactors and the column descriptors the impacted items: the
impact valuation of option “<2%/yr” of statement “World GDP
growth” is + 2 and can be read from row 1, column 4 of the impact
matrix of Table 1.

To illustrate the modeling of temporal dimension, the statement
“Oil price” has been placed in temporal category 2, whereas all the
other statements are in category 1, and therefore resolved before the
state of the oil price. As a result, the impacts that the “Oil price”
statement is modeled to have never taken place in the example model,
as all the other statements have already been evaluated before oil price.
If additional statements with timestep 2 or higher would be added to
the model, oil price could influence them. Similarly, if the timestep
property of the oil price statement would be changed to 1, it would be
evaluated “simultaneously” with the other statements and would in-
fluence them.

The repeated model evaluation process described in Section 4.2
results in a set of model states, where each statement has a value (one of
its options), or configurations. This set of configurations is called an
iteration. Table 2 presents an iteration with 50 configurations, which are
displayed in columns, so that the value (option) of the statement in that

configuration is represented by a shaded cell. Each statement has been
evaluated into one of its options in each configuration. The posterior
probability for each of the options is calculated as the frequency of
occurrence in the iteration, and presented in the last column. The four
last rows of the table display the computation of probabilities of
morphologies, combinations of options.

By computing occurrence frequencies of options and morphologies,
possibly conditional to occurrence of other options and morphologies,
various questions related to morphological, structural and probabilistic
information needs can be posed to the model. These include the fol-
lowing:

• What is the probability of atomic subscenarios (options) after the
systemic effects have been accounted for?

• What are the probabilities of morphologies (specific combinations of
system states)?

• Which system states are logical, compatible and consistent, judged
by their frequent co-occurrence?

• What are, on the basis of the modeled direct relationships, the in-
direct, systemic relationships of the system descriptors?

• How will the system behave under a specific intervention or other
change? (predictive probabilistic inference)

• What are the likely causes of an effect? (diagnostic probabilistic
inference)

• What are the effects of combinations of interventions or changes?

• What are the strongest antecedents to specific system states?

• What are the outcomes of policies or strategies?

• What is the most preferable system state against some criteria?

• What are the most effective interventions to perform on the system
to reach that preferable state?

The morphology 1a ∧ 3a, meaning the combination of low world
GDP growth and strong world tensions, has a probability of 0.12. The
probability for morphology 5c ∨ 5d, where oil price is higher than 35$,
has a probability of 0.62. The third presented morphology (¬1c ∧¬2a),
a scenario where GDP growth is at most 3% annually and borrowing
policy of industrial countries is not high, has a probability of 0.42, and
the probability of that morphology occurring together with 5c ∨ 5d is
0.28. Used in this way, AXIOM delivers analytical outputs of the mor-
phological nature, comparable to the cross-impact balances approach
(Weimer-Jehle, 2006), SMIC approach (Godet et al., 1994), and BASICS
and JL-algorithm approaches (Honton et al., 1984; Luukkanen, 1994).
The 50 configurations presented Table 2 are obviously insufficient to
compute posterior probabilities accurately, and the table is presented
for illustration of how analytical outputs are derived from AXIOM
iteration objects. From a sufficiently large set of configurations, the
emergent, systemic characteristics of the model captured by the pos-
terior probabilities can be estimated accurately (or to the degree of
accuracy of the elicited inputs).

As the information content of an AXIOM iteration is like an asso-
ciation rule learning dataset, the association rule learning operations
can be utilized in its analysis (Hahsler et al., 2007; Piatetsky-Shapiro,
1991). Computing the a posteriori probability of a single option or a
more complex morphology is identical to computing the support of an
itemset. Confidence can be used to compute the conditional probabilities
of morphologies, given antecedent morphologies (Hahsler et al., 2007).
For instance, the confidence (¬ ∧ ¬ ⇒ ∨c a c d1 2 5 5 ) is the conditional
probability of high oil prices given non-high GDP growth and non-high
borrowing scenario. It is calculated as

= =
¬ ∧ ¬ ∧ ∨

¬ ∧ ¬
0.67c a c d

c a
SUPPORT(( 1 2 ) (5 5 ))

SUPPORT( 1 2 )
0.28
0.42 . Other association rule learning

operations, such as lift and conviction (Hahsler et al., 2007) can be used
to discover interesting and important relationships from the iteration
objects' data content.

By examining the subset of configurations where a specific option of
interest is “true”, or the evaluated state of its statement, it is possible to
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compute the posterior probabilities of other model options, conditional
to the presence of the system descriptor option of interest. By com-
paring these probabilities to the posterior probabilities computed from
the total set of configurations, the magnitude of systemic impacts of the
option of interest can be estimated as the difference. In a complex
system model with complicated interdependencies and extant long
causal impact chains, this systemic relationship might turn out to be
very different to the modeled direct relationship, as it also accounts for
all the indirect, mediated interaction of a system descriptor on another.
Table 3 shows an impact matrix, reporting the systemic effect of row
options on column options as the change in posterior probability con-
ditional to the guaranteed realization of the row option. The changes
that are within a margin of± 0.015 are highlighted in gray, as these
small differences result from the random component of the Monte carlo
process.

The posterior probability of option “Oil price: 35$–50$” is 0.434

overall, looking at the total set of configurations, but conditional to the
presence or actualization of option “OPEC cohesion: strong”, the
probability is elevated to 0.772, and the difference + 0.34 is presented
in the impact matrix of Table 3 as the amount of probability change the
systemic relationship of the impactor (row) descriptor has on the im-
pacted (column) descriptor. This systemic relationship might not be
directly observable from the model input data describing the direct
interactions. Obviously this tabulation could also be multidimensional,
showing the model options' posterior probabilities conditional to sev-
eral antecedent options simultaneously. Used in this way, AXIOM can
deliver analytical value of structural nature, comparable to MICMAC
(Godet et al., 1994), ADVIAN (Linss and Fried, 2010) and EXIT (Panula-
Ontto et al., 2018; Panula-Ontto and Piirainen, 2018) approaches.

Table 4 illustrates the use of AXIOM intervention statements and
presents the posterior probabilities of the model options in ten different
iterations, representing different assumptions about the system. The

Table 1
Example AXIOM model, adapted from Weimer-Jehle (2006).
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Table 2
An AXIOM iteration consisting of 50 configurations.

<2%/yr 1a 0.440
2-3%/yr 1b 0.240
>3%/yr 1c 0.320

high 2a 0.320
medium 2b 0.500

low 2c 0.180
strong 3a 0.140

moderate 3b 0.560
weak 3c 0.300

strong 4a 0.280
moderate 4b 0.300

weak 4c 0.420
<20$ 5a 0.060

20-35$ 5b 0.320
35-50$ 5c 0.580

>50$ 5d 0.040
0.120
0.620
0.420
0.280

¬1c ¬2a
(¬1c ¬2a) (5c 5d)

OPEC 
cohesion

Oil price

1a 3a
5c 5d

World GDP 
growth
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World 
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intervention statements are functionally similar to decision nodes of
influence diagrams. Statements ‘borrowing’ and ‘OPEC cohesion’ have
been flagged as intervention statements, so iterations in columns 6–14
display the posterior probabilities of model options under specific
combinations of options of the intervention statements. The initial prior
probabilities are presented in the fourth column (‘A priori’). The fifth
column (‘No intervention’) presents the cross-impacted a posteriori or
posterior probabilities in an iteration without active interventions.

The remaining columns present the posterior probabilities under
different combinations of options of the flagged intervention state-
ments: each of them captures the systemic effects of a specific

combination of a borrowing subscenario and a OPEC cohesion sub-
scenario. Column 6 (“Borrowing:high+OPEC:strong”) presents the
posterior probabilities assuming a high borrowing policy and a strong
OPEC cohesion; the last column presents the same information as-
suming a low borrowing policy and a weakly cohesive OPEC. The
modeling results would seem to suggest, for instance, that the like-
lihood of high global GDP growth is maximized by observing a policy of
low borrowing, and OPEC cohesion is insignificant for GDP growth (this
might be considered obvious already by looking at the input data of the
miniaturish example model, but observations of this nature are much
less obvious in a more complex model). In this way, AXIOM can be used

Table 3
Structural analysis using the AXIOM approach: Probability changes of options conditional to other model options.
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Probabilities of model options under different preconditions.
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for predictive probabilistic inference, comparable to Bayesian networks
and influence diagrams (Cowell et al., 2006; Lauría and Duchessi,
2006), or Gordon-Hayward cross-impact analysis (Gordon and
Hayward, 1968; Gordon, 1969), testing the system under different
conditions and policies, and comparing the results to other sets of
conditions.

A utility function can be defined to help identify preferable com-
binations of interventions or preferable scenarios overall. In this capa-
city, AXIOM can deliver similar outputs as an influence diagram. Any
AXIOM node can function akin to a utility node in an influence diagram,
with an appropriate utility function. A simple utility function can be
defined by assigning a utility valuation for all model options, as is done
in column 3 (“Utility valuation”) of Table 4. The unpreferability of an
option is expressed with negative utility valuation and preferability
with positive valuation. The utility score (in the last row of Table 4) is
then computed by multiplying the probability of an option with its
index and summing the values. The utility function could also be based
on probabilities of more complicated morphologies. Based on this
simple utility function, and the very subjective utility valuation of
subscenarios represented by the model options, the intervention com-
bination of low borrowing and moderate OPEC cohesion appears the
most optimal scenario.

The same information could be derived with association rule
learning operations, by only examining configurations where the in-
tervention statements have the desired option as their state, and com-
puting the posterior probabilities for other options from that subset of
configurations. The intervention statement functionality, however,
limits the number of required evaluations and enables easy comparison
of model outputs under different assumptions about the system, this
assumed, by the author, to be the typical use case for higher-order in-
formation extraction from an AXIOM model.

The inverse logic or diagnostic inference, or inferring the likely causes
given some observed effects, typical in Bayesian networks, can be
performed with AXIOM as well. The process is simply to generate a
sufficient number of configurations, select from those configurations
the ones where the observed effects under investigation occur, and
compute the posterior probabilities of causes from that set of config-
urations. Computationally this is inefficient in comparison to the di-
agnostic inference of Bayesian networks, but still completely feasible.

As the AXIOM iteration objects are itemsets, they can be used as
input for algorithms that learn Bayesian networks from such inputs: a
Bayesian network can be derived from AXIOM output. The resulting
Bayesian network can then be augmented with other Bayesian network
model components based on empirical or statistical data. This enables
combining expert-elicited modeling results and data-based modeling
results in the same analytical framework.

4.4. Software implementation

The software capable of performing the AXIOM transformation de-
scribed in Section 4.2 is freely available (Panula-Ontto, 2017). The
current implementation does not feature advanced association rule
learning functionalities, but can output data that can easily be analyzed
with, for example, free tools available for R environment, such as the
arules package (R Core Team, 2014). The main analysis functional-
ities, iteration sets and intervention statements, are available in the
AXIOM implementation. As mentioned in Section 4.1, the im-
plementation does not yet support addition of non-simple updating
functions directly from input, but this functionality will be added in the
future.

5. Discussion

This paper gave a review of the various modeling approaches based
on expert inputs, used in high abstraction level modeling of systems
with modeling challenges related to lack of statistical data and

exhibiting low quantifiability of important system characteristics.
Against the background of this review, the design choices of these ap-
proaches were assessed with their fitness to expert informant elicited
modeling process in mind. The identified design features with relatively
high fitness for this purpose have been the outset for the design of
AXIOM as a systems modeling approach. AXIOM proposes a combina-
tion of inference practices familiar from Bayesian networks and influ-
ence diagrams, and the best aspects of several techniques in the cross
impact analysis tradition. The aim is to provide a flexible and ex-
pressive modeling language suitable for use in modeling using expert
informants as the primary data source and versatile analysis facilities
covering probabilistic, structural and morphological analytical outputs
and insights.

Providing tools and techniques suitable for expert informant or-
iented systems modeling is important as it brings systems thinking and
enables modeling based research in study of systems that would be
difficult to model otherwise, using more traditional data driven tech-
niques. Having approaches for modeling of such systems and system
aspects adds important tools to modelers' toolbox and to decision sup-
port and planning activities. Expert informants as a data source enable
adding important considerations to models, possibly improving deci-
sion-making by expanding the scope of foresight, strategy and policy-
making. With suitable tools, systems modeling based on expert elicited
inputs is, from the technical expertise requirement standpoint, easier
than data-driven modeling. This may lower the threshold of using
modeling as a research approach in fields where modeling is less used.
Probabilistic models are also often more accessible and understandable
from a model user standpoint: The logical and causal structure and the
theoretical foundation of the model is very transparent compared to
many data-driven models.

Composing formal representations of real systems is challenging
regardless of what the used tools and approaches are, but the process is
useful at multiple levels when dealing with complex systems and ‘dia-
bolical’ decision-making contexts. The modeling itself, without any
computational techniques aimed at discovery of higher-order informa-
tion from the system model, partitions the expert-laden understanding
of the system and the theory of its internal dynamics into an abstracted
representation, useful in understanding the system and discussing its
features. The formality of the model enables generic computational
transformations that can reveal systemic and emergent properties of the
model which are difficult to observe intuitively, without inference
procedures.

6. Conclusions and future work

The development of the AXIOM approach and the software im-
plementation is ongoing. A high priority update to the implementation
is to add support for defining non-simple updating functions directly in
the user input. Currently the implementation has several sets of up-
dating functions, but defining new updating functions requires changes
to the source code.

The modeling language can be expanded in a number of ways. The
introduction of system descriptors representing continuous values is a
possibility: such modeling primitives are available in software im-
plementations of Bayesian networks and influence diagrams. While
continuous value descriptors would increase the modeling power
marginally, they are not strictly needed, as the same information can be
represented with discrete state descriptors, and they are easier for ex-
pert valuators of the model, as the probability changes, modeled ‘hazily’
using the updating function approach, could be argued to be more
predictable in their case.

Introducing ways to parameterize parts of an AXIOM model on the
basis of statistical data instead of expert elicitation is an interesting idea
and might widen the use sphere of the approach considerably, but such
parameterization might prove challenging to do in a justified way. A
more feasible approach to combine expert elicited modeling and data-
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driven approaches in the same framework is to perform the heavily
expert informant based parts of a systems modeling process with the
AXIOM approach, and use the AXIOM output in parameterization of a
Bayesian network, which can then be augmented with statistical data.

The development of the software implementation from an ease-of-
use perspective is probably more important for the adoption of the
method than incremental modeling language expansions. Currently the
implementation has no graphical user interface: the model is fed to the
computer program in a text file. While the current implementation is
completely sufficient to perform the analyses presented in this paper,
creating a graphical user interface would lower the adoption barrier

considerably.
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Appendix A. Pseudocode description of the AXIOM model evaluation

This appendix presents the pseudocode detailing the computational procedure of evaluating an AXIOM model and generating iterations and
iteration sets. Algorithm 1 presents the process of model evaluation.
Algorithm 1. AXIOM model evaluation.

The model statements are evaluated in the order determined by their timestep properties. Statements with equal timestep property values are
evaluated in random order. Simple probability updates, tied to a single cause, are performed in the statement evaluation procedure. When the model
state changes, the non-simple impacts whose conditions are true are executed in random order, and removed after their execution. After a non-simple
update, the model validity (mainly the probability distributions of option sets of statements) is checked. A non-simple update may resolve several
statements of the model, so these state changes are updated to the configuration being created in the model evaluation. The non-simple update may
also make conditions of other non-simple impacts true, so the list of non-simple impacts is repopulated after a state change.
Algorithm 2. AXIOM statement evaluation.

The statement evaluation procedure (Algorithm 2) a) assigns a state for the statement, and b) for each simple impact the assigned state has, calls
the procedure to effectuate the impact. The intervention statements have a predefined state in the model being evaluated, so they are simply assigned
that predefined state; other statements are evaluated to one of their possible options according to the adjusted probability distribution of the
statement's options. Impacts are placed in random order (shuffled) before being executed; this is to eliminate the effect the impact order might have
on model evaluation results over the course of multiple model evaluations.
Algorithm 3. AXIOM simple probability update.
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The procedure of a simple impact execution is presented in Algorithm 3. The probability of the effect option of the impact is updated according to
the probability updating function pointed by the impact. The probabilities of the other options under the same statement as the targeted option are
updated as well, to ensure the sum of the probabilities of the option set remains equal to 1. The complement probability of the updated probability of
the effect option is divided to the other options so that each option's share of the new complement probability remains equal to their share of the old
complement probability.
Algorithm 4. AXIOM iteration computation.

The computation of an iteration (Algorithm 4) simply consists of performing the model evaluation multiple times and saving the resulting
configurations to the iteration. The model structure, valuation and its active interventions are reset before each model evaluation during the
computation of an iteration.
Algorithm 5. AXIOM iteration set computation.

The iteration set computation (Algorithm 5) consists of computing a single iteration without active interventions, and an iteration for each
possible combination of options of the intervention statements.

References

Acid, S., de Campos, L.M., Fernandez-Luna, J.M., Rodriguez, S., Rodriguez, J.M., Salcedo,
J.L., 2004. A comparison of learning algorithms for Bayesian networks: a case study
based on data from an emergency medical service. Bayesian Networks in
Biomedicince and Health-Care. Artif. Intell. Med. 30 (3), 215–232. http://www.
sciencedirect.com/science/article/pii/S0933365703001325https://doi.org/10.
1016/j.artmed.2003.11.002.

Adèr, H.J., 2008. Advising on Research Methods: A Consultant's Companion. Johannes
van Kessel Publishing.

Agami, N., Saleh, M., El-Shishiny, H., 2010. A fuzzy logic based trend impact analysis
method. Technol. Forecast. Soc. Chang. 77 (7), 1051–1060. https://doi.org/10.1016/
j.techfore.2010.04.009.

Axelrod, R.M., 1976. Structure of Decision: The Cognitive Maps of Political Elites.
Princeton University Press. http://www.jstor.org/stable/j.ctt13x0vw3.

Banks, J., Carson, J., Nelson, B., Nicol, D., 2005. Discrete-Event System Simulation.
Pearson.

Bañuls, V.A., Turoff, M., 2011. Scenario construction via Delphi and cross-impact ana-
lysis. Technol. Forecast. Soc. Chang. 78 (9), 1579–1602. https://doi.org/10.1016/j.
techfore.2011.03.014.

Bañuls, V.A., Turoff, M., Hiltz, S.R., 2013. Collaborative scenario modeling in emergency
management through cross-impact. Technol. Forecast. Soc. Chang. 80 (9),
1756–1774. https://doi.org/10.1016/j.techfore.2012.11.007.

Baran, E., Jantunen, T., 2004. Stakeholder consultation for Bayesian decision support
systems in environmental management. 37–1. Forest 27 (35.6).

Blackman, A., 1973. A cross-impact model applicable to forecasts for long-range planning.
Technol. Forecast. Soc. Chang. 5 (3), 233–242. https://doi.org/10.1016/0040-
1625(73)90002-4.

Bloom, M.F., 1977. Time-dependent event cross-impact analysis: results from a new
model. Technol. Forecast. Soc. Chang. 10 (2), 181–201. https://doi.org/10.1016/
0040-1625(77)90044-0.

Brauers, J., Weber, M., 1988. A new method of scenario analysis for strategic planning. J.
Forecast. 7 (1), 31–47. https://doi.org/10.1002/for.3980070104.

Bromley, J., Jackson, N.A., Clymer, O., Giacomello, A.M., Jensen, F.V., 2005. The use of
hugin® to develop Bayesian networks as an aid to integrated water resource planning.
Environ. Model Softw. 20 (2), 231–242.

Burns, J.R., Marcy, W.M., 1979. Causality: its characterization in system dynamics and
KSIM models of socioeconomic systems. Technol. Forecast. Soc. Chang. 14 (4),
387–398. https://doi.org/10.1016/0040-1625(79)90036-2.

Ceric, A., 2016. Analysis of interactions between it and organisational resources in a
manufacturing organisation using cross-impact analysis. J. Enterp. Inf. Manag. 29 (4),
589–611. https://doi.org/10.1108/JEIM-04-2015-0027.

Checkland, P., 1999. Systems Thinking, Systems Practice. Wiley.
Chen, P.P.-S., 1988. The entity-relationship model-toward a unified view of data. In:

Readings in Artificial Intelligence and Databases. Elsevier, pp. 98–111.
Choi, C., Kim, S., Park, Y., 2007. A patent-based cross impact analysis for quantitative

estimation of technological impact: the case of information and communication
technology. Technol. Forecast. Soc. Chang. 74 (8), 1296–1314. https://doi.org/10.
1016/j.techfore.2006.10.008.

Choy, S.L., O’Leary, R., Mengersen, K., 2009. Elicitation by design in ecology: using expert
opinion to inform priors for Bayesian statistical models. Ecology 90 (1), 265–277.

Cinar, D., Kayakutlu, G., 2010. Scenario analysis using Bayesian networks: a case study in
energy sector. Knowl.-Based Syst. 23 (3), 267–276. http://www.sciencedirect.com/
science/article/pii/S0950705110000110https://doi.org/10.1016/j.knosys.2010.01.
009.

Cowell, R.G., Dawid, P., Lauritzen, S.L., Spiegelhalter, D.J., 2006. Probabilistic Networks
and Expert Systems: Exact Computational Methods for Bayesian Networks. Springer
Science & Business Media.

Culka, M., 2016. Uncertainty analysis using Bayesian model averaging: a case study of
input variables to energy models and inference to associated uncertainties of energy
scenarios. Energy Sustain. Soc. 6 (1), 7. https://doi.org/10.1186/s13705-016-
0073-0.

Dalkey, N.C., 1971. An elementary cross-impact model. Technol. Forecast. Soc. Chang. 3,
341–351. https://doi.org/10.1016/s0040-1625(71)80022-7.

Dorner, S., Shi, J., Swayne, D., 2007. Multi-objective modelling and decision support
using a Bayesian network approximation to a non-point source pollution model.
Environ. Model Softw. 22 (2), 211–222. https://www.sciencedirect.com/science/
article/pii/S1364815205001817https://doi.org/10.1016/J.ENVSOFT.2005.07.020.

Duperrin, J., Godet, M., 1975. SMIC 74–a method for constructing and ranking scenarios.
Futures 7 (4), 302–312. http://www.sciencedirect.com/science/article/pii/
0016328775900488https://doi.org/10.1016/0016-3287(75)90048-8.

Enzer, S., 1972. Cross-impact techniques in technology assessment. “Updating functions
idea presented”. Futures 4 (1), 30–51. https://doi.org/10.1016/0016-3287(72)
90023-7.

Fienberg, S.E., 2006. When did Bayesian inference become “Bayesian”? Bayesian Anal. 1
(1), 1–40. http://projecteuclid.org/euclid.ba/1340371071https://doi.org/10.1214/
06-BA101.

Ford, D.N., Sterman, J.D., 1997. Expert knowledge elicitation to improve formal and
mental models. Syst. Dyn. Rev. 14 (4), 309–340. https://doi.org/10.1002/(SICI)
1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5.

Godet, M., 1976. Scenarios of air transport development to 1990 by SMIC 74-a new cross-
impact method. Technol. Forecast. Soc. Chang. 9 (3), 279–288. https://doi.org/10.
1016/0040-1625(76)90012-3.

Godet, M., Bourse, F., Chapuy, P., Menant, I., 1991. Futures Studies: A Tool-box for
Problem Solving. In: Futuribles (series). GERPA Prospective.

Godet, M., Coates, J.F., Unesco, 1994. From Anticipation to Action: A Handbook of
Strategic Prospective. Future-Oriented Studies. UNESCO Publishing.

Gordon, T., Hayward, H., 1968. Initial experiments with the cross impact matrix method
of forecasting. Futures 1 (2), 100–116. https://doi.org/10.1016/S0016-3287(68)
80003-5.

Gordon, T.J., 1969. Cross-impact matrices: an illustration of their use for policy analysis.
Futures 1 (6), 527–531.

Gordon, T.J., 1994. Cross impact method. In: Tech. Rep. United Nations University

J. Panula-Ontto Technological Forecasting & Social Change xxx (xxxx) xxx–xxx

16

http://www.sciencedirect.com/science/article/pii/S0933365703001325
http://www.sciencedirect.com/science/article/pii/S0933365703001325
https://doi.org/10.1016/j.artmed.2003.11.002
https://doi.org/10.1016/j.artmed.2003.11.002
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0010
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0010
https://doi.org/10.1016/j.techfore.2010.04.009
https://doi.org/10.1016/j.techfore.2010.04.009
http://www.jstor.org/stable/j.ctt13x0vw3
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0025
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0025
https://doi.org/10.1016/j.techfore.2011.03.014
https://doi.org/10.1016/j.techfore.2011.03.014
https://doi.org/10.1016/j.techfore.2012.11.007
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0040
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0040
https://doi.org/10.1016/0040-1625(73)90002-4
https://doi.org/10.1016/0040-1625(73)90002-4
https://doi.org/10.1016/0040-1625(77)90044-0
https://doi.org/10.1016/0040-1625(77)90044-0
https://doi.org/10.1002/for.3980070104
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0060
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0060
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0060
https://doi.org/10.1016/0040-1625(79)90036-2
https://doi.org/10.1108/JEIM-04-2015-0027
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0075
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0080
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0080
https://doi.org/10.1016/j.techfore.2006.10.008
https://doi.org/10.1016/j.techfore.2006.10.008
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0090
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0090
http://www.sciencedirect.com/science/article/pii/S0950705110000110
http://www.sciencedirect.com/science/article/pii/S0950705110000110
https://doi.org/10.1016/j.knosys.2010.01.009
https://doi.org/10.1016/j.knosys.2010.01.009
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0100
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0100
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0100
https://doi.org/10.1186/s13705-016-0073-0
https://doi.org/10.1186/s13705-016-0073-0
https://doi.org/10.1016/s0040-1625(71)80022-7
https://www.sciencedirect.com/science/article/pii/S1364815205001817
https://www.sciencedirect.com/science/article/pii/S1364815205001817
https://doi.org/10.1016/J.ENVSOFT.2005.07.020
http://www.sciencedirect.com/science/article/pii/0016328775900488
http://www.sciencedirect.com/science/article/pii/0016328775900488
https://doi.org/10.1016/0016-3287(75)90048-8
https://doi.org/10.1016/0016-3287(72)90023-7
https://doi.org/10.1016/0016-3287(72)90023-7
http://projecteuclid.org/euclid.ba/1340371071
https://doi.org/10.1214/06-BA101
https://doi.org/10.1214/06-BA101
https://doi.org/10.1002/(SICI)1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1099-1727(199824)14:4<309::AID-SDR154>3.0.CO;2-5
https://doi.org/10.1016/0040-1625(76)90012-3
https://doi.org/10.1016/0040-1625(76)90012-3
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0145
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0145
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0150
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0150
https://doi.org/10.1016/S0016-3287(68)80003-5
https://doi.org/10.1016/S0016-3287(68)80003-5
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0160
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0160
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0165


Millennium Project.
Hahsler, M., Grün, B., Hornik, K., 2007. Introduction to arules-mining association rules

and frequent item sets. SIGKDD Explor. 2 (4), 1–28.
Honton, E.J., Stacey, G.S., Millett, S.M., 1984. Future Scenarios: The BASICS

Computational Method. Economics and Policy Analysis Occasional Paper. Battelle
Columbus Division.

Huss, W.R., Honton, E.J., 1987. Scenario planning-what style should you use? Long Range
Plan. 20 (4), 21–29. https://doi.org/10.1016/0024-6301(87)90152-X.

International Council on Systems Engineering (INCOSE), 2017. What is Systems
Engineering? nov. http://www.incose.org/AboutSE/WhatIsSE.

Ishikawa, M., Toda, M., Mori, S., Kaya, Y., 1980. An application of the extended cross
impact method to generating scenarios of social change in {J}apan. Technol.
Forecast. Soc. Chang. 18 (3), 217–233. https://doi.org/10.1016/0040-1625(80)
90024-4.

Jackson, J.E., Lawton, W.H., 1976. Some probability problems associated with cross-
impact analysis. Technol. Forecast. Soc. Chang. 8 (3). https://doi.org/10.1016/0040-
1625(76)90004-4.

James, A., Choy, S.L., Mengersen, K., 2010, jan, jan. Elicitator: an expert elicitation tool
for regression in ecology. Environ. Model Softw. 25 (1), 129–145. https://www.
sciencedirect.com/science/article/pii/S1364815209001704https://doi.org/10.
1016/J.ENVSOFT.2009.07.003.

Jensen, F.V., Nielsen, T.D., 2007. Bayesian Networks and Decision Graphs. Springer, pp.
447.

Jeong, G.H., Kim, S.H., 1997. A qualitative cross-impact approach to find the key tech-
nology. Technol. Forecast. Soc. Chang. 55 (3), 203–214. https://doi.org/10.1016/
s0040-1625(96)00209-0.

Johansen, I., 2018. Scenario modelling with morphological analysis. Technol. Forecast.
Soc. Chang. 126, 116–125. http://www.sciencedirect.com/science/article/pii/
S004016251730656Xhttps://doi.org/10.1016/j.techfore.2017.05.016.

Kane, J., 1972. A primer for a new cross-impact language - KSIM. Technol. Forecast. Soc.
Chang. 4 (2), 129–142. https://doi.org/10.1016/0040-1625(72)90010-8.

Kaya, Y., Ishikawa, M., Mori, S., 1979. A revised cross-impact method and its applications
to the forecast of urban transportation technology. Technol. Forecast. Soc. Chang. 14
(3), 243–257. https://doi.org/10.1016/0040-1625(79)90080-5.

Kelly, R.A., Jakeman, A.J., Barreteau, O., Borsuk, M.E., ElSawah, S., Hamilton, S.H.,
Henriksen, H.J., Kuikka, S., Maier, H.R., Rizzoli, A.E., van Delden, H., Voinov, A.A.,
2013. Selecting among five common modelling approaches for integrated environ-
mental assessment and management. Environ. Model Softw. 47, 159–181. http://
www.sciencedirect.com/science/article/pii/S1364815213001151https://doi.org/
10.1016/j.envsoft.2013.05.005.

Kjærulff, U.B., Madsen, A.L., 2013. Bayesian Networks and Influence Diagrams: A Guide
to Construction and Analysis. Springer New York.

Kosko, B., 1986. Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24 (1), 65–75. https://
www.sciencedirect.com/science/article/pii/S0020737386800402https://doi.org/
10.1016/S0020-7373(86)80040-2.

Kristensen, K., Rasmussen, I.A., 2002. The use of a Bayesian network in the design of a
decision support system for growing malting barley without use of pesticides.
Comput. Electron. Agric. 33 (3), 197–217.

Kuhnert, P.M., Martin, T.G., Griffiths, S.P., 2010. A guide to eliciting and using expert
knowledge in Bayesian ecological models. Ecol. Lett. 13 (7), 900–914.

Kuikka, S., Varis, O., 1997. Uncertainties of climatic change impacts in Finnish water-
sheds: a Bayesian network analysis of expert knowledge. Boreal Environ. Res. 2 (1),
109–128.

Lauría, E.J., Duchessi, P.J., 2006. A Bayesian belief network for it implementation deci-
sion support. Decis. Support. Syst. 42 (3), 1573–1588.

Lehikoinen, A., 2014. Bayesian Network Applications for Environmental Risk Assessment
(Ph.D. thesis). University of Helsinki.

Leonelli, M., Smith, J.Q., 2015. Bayesian decision support for complex systems with many
distributed experts. Ann. Oper. Res. 235 (1), 517–542. https://doi.org/10.1007/
s10479-015-1957-7.

Linss, V., Fried, A., 2009. Advanced impact analysis: the ADVIAN method-an enhanced
approach for the analysis of impact strengths with the consideration of indirect re-
lations. In: Tech. rep. Chemnitz University of Technology.

Linss, V., Fried, A., 2010. The ADVIAN classification-a new classification approach for the
rating of impact factors. Technol. Forecast. Soc. Chang. 77 (1), 110–119.

Luukkanen, J., 1994. Role of Planning Philosophy in Energy Policy Formulation (Ph.D.
Thesis). Tampere University of Technology.

Martino, J.P., Chen, K.-L., 1978. Cluster analysis of cross impact model scenarios.
Technol. Forecast. Soc. Chang. 12 (1), 61–71. https://doi.org/10.1016/0040-
1625(78)90035-5.

Medina, E., Arce, R.D., Mahía, R., 2015. Barriers to the investment in the concentrated
solar power sector in Morocco: a foresight approach using the cross impact analysis

for a large number of events. Futures 71, 36–56. https://doi.org/10.1016/j.futures.
2015.06.005.

Mitroff, I.I., Turoff, M., 1976. On the distance between cross-impact models: a set of
metric measures for cross-impact analysis. Technol. Forecast. Soc. Chang. 8 (3),
275–283. https://doi.org/10.1016/0040-1625(76)90005-6.

Norsys, Inc, 2004. Netica. Bayesian Network Computer Software. . http://www.norsys.
com.

Nováky, E., Lóránt, K., 1978. A method for the analysis of interrelationships between
mutually connected events: a cross-impact method. Technol. Forecast. Soc. Chang. 12
(2–3), 201–212. https://doi.org/10.1016/0040-1625(78)90056-2.

O’Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J.R., Garthwaite, P.H., Jenkinson, D.J.,
Oakley, J.E., Rakow, T., 2006. Uncertain Judgements: Eliciting Experts' Probabilities.
John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/0470033312.

Pagani, M., 2009. Roadmapping 3G mobile TV: strategic thinking and scenario planning
through repeated cross-impact handling. Technol. Forecast. Soc. Chang. 76 (3),
382–395. https://doi.org/10.1016/j.techfore.2008.07.003.

Panula-Ontto, J., 2017. AXIOM: Advanced Cross-Impact Option Method. https://github.
com/jmpaon/AXIOM.

Panula-Ontto, J., Luukkanen, J., Kaivo-oja, J., O’Mahony, T., Vehmas, J., Valkealahti, S.,
Björkqvist, T., Korpela, T., Järventausta, P., Majanne, Y., Kojo, M., Aalto, P., Harsia,
P., Kallioharju, K., Holttinen, H., Repo, S., 2018. Cross-impact analysis of Finnish
electricity system with increased renewables: long-run energy policy challenges in
balancing supply and consumption. Energy Policy 118, 504–513. https://www.
sciencedirect.com/science/article/pii/S0301421518302246https://doi.org/10.
1016/J.ENPOL.2018.04.009.

Panula-Ontto, J., Piirainen, K., 2018. EXIT: an alternative approach for structural cross-
impact modeling and analysis. Technol. Forecast. Soc. Chang. https://www.
sciencedirect.com/science/article/pii/S004016251731644Xhttps://doi.org/10.
1016/J.TECHFORE.2018.06.046.

Piatetsky-Shapiro, G., 1991. Discovery, analysis, and presentation of strong rules. Knowl.
Discov. Databases 229–238. https://ci.nii.ac.jp/naid/10000000985/en/.

Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., Hart, B.T., 2007. Parameterisation
and evaluation of a Bayesian network for use in an ecological risk assessment.
Environ. Model Softw. 22 (8), 1140–1152.

Core Team, R., 2014. R: A Language and Environment for Statistical Computing. Package
“arules”. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-
project.org/.

Rahikainen, M., Helle, I., Haapasaari, P., Oinonen, S., Kuikka, S., Vanhatalo, J.,
Mäntyniemi, S., Hoviniemi, K.-M., 2014. Toward integrative management advice of
water quality, oil spills, and fishery in the Gulf of Finland: a Bayesian approach.
AMBIO 43 (1), 115–123. https://doi.org/10.1007/s13280-013-0482-7.

Rhyne, R., 1974. Technological forecasting within alternative whole futures projections.
Technol. Forecast. Soc. Chang. 6, 133–162. http://www.sciencedirect.com/science/
article/pii/0040162574900146https://doi.org/10.1016/0040-1625(74)90014-6.

Riggelsen, C., 2006, may, may. Learning parameters of Bayesian networks from in-
complete data via importance sampling. Int. J. Approx. Reason. 42 (1-2), 69–83.
https://www.sciencedirect.com/science/article/pii/S0888613X05000654https://
doi.org/10.1016/J.IJAR.2005.10.005.

Ritchey, T., 2006. Problem structuring using computer-aided morphological analysis. J.
Oper. Res. Soc. 57 (7), 792–801. https://doi.org/10.1057/palgrave.jors.2602177.

Sokolowski, J.A., Banks, C.M., 2009. Principles of Modeling and Simulation: A
Multidisciplinary Approach. Wiley. https://books.google.fi/books?id=
wOOikQEACAAJ.

Thorleuchter, D., den Poel, D.V., Prinzie, A., 2010, sep, sep. A compared R&D-based and
patent-based cross impact analysis for identifying relationships between technolo-
gies. Technol. Forecast. Soc. Chang. 77 (7), 1037–1050. https://doi.org/10.1016/j.
techfore.2010.03.002.

Turoff, M., 1971. An alternative approach to cross impact analysis. Technol. Forecast.
Soc. Chang. 3, 309–339. https://doi.org/10.1016/s0040-1625(71)80021-5.

Weimer-Jehle, W., 2006. Cross-impact balances: a system-theoretical approach to cross-
impact analysis. Technol. Forecast. Soc. Chang. 73 (4), 334–361. https://doi.org/10.
1016/j.techfore.2005.06.005.

Zeigler, B.P., Praehofer, H., Kim, T.G., 2000. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic
Press.

Juha Panula-Ontto (M.Sc. (Computer Science), M.Sc.(Administrative studies)) is a re-
searcher at the University of Turku, Finland Futures Research Centre. His research is in
the field of environmental and energy economics, systems analysis, planning, foresight
and decision support, and simulation and modeling of social, technological and economic
systems.

J. Panula-Ontto Technological Forecasting & Social Change xxx (xxxx) xxx–xxx

17

http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0165
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0170
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0170
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0175
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0175
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0175
https://doi.org/10.1016/0024-6301(87)90152-X
http://www.incose.org/AboutSE/WhatIsSE
https://doi.org/10.1016/0040-1625(80)90024-4
https://doi.org/10.1016/0040-1625(80)90024-4
https://doi.org/10.1016/0040-1625(76)90004-4
https://doi.org/10.1016/0040-1625(76)90004-4
https://www.sciencedirect.com/science/article/pii/S1364815209001704
https://www.sciencedirect.com/science/article/pii/S1364815209001704
https://doi.org/10.1016/J.ENVSOFT.2009.07.003
https://doi.org/10.1016/J.ENVSOFT.2009.07.003
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0205
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0205
https://doi.org/10.1016/s0040-1625(96)00209-0
https://doi.org/10.1016/s0040-1625(96)00209-0
http://www.sciencedirect.com/science/article/pii/S004016251730656X
http://www.sciencedirect.com/science/article/pii/S004016251730656X
https://doi.org/10.1016/j.techfore.2017.05.016
https://doi.org/10.1016/0040-1625(72)90010-8
https://doi.org/10.1016/0040-1625(79)90080-5
http://www.sciencedirect.com/science/article/pii/S1364815213001151
http://www.sciencedirect.com/science/article/pii/S1364815213001151
https://doi.org/10.1016/j.envsoft.2013.05.005
https://doi.org/10.1016/j.envsoft.2013.05.005
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0235
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0235
https://www.sciencedirect.com/science/article/pii/S0020737386800402
https://www.sciencedirect.com/science/article/pii/S0020737386800402
https://doi.org/10.1016/S0020-7373(86)80040-2
https://doi.org/10.1016/S0020-7373(86)80040-2
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0245
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0245
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0245
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0250
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0250
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0255
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0255
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0255
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0260
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0260
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0265
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0265
https://doi.org/10.1007/s10479-015-1957-7
https://doi.org/10.1007/s10479-015-1957-7
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0275
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0275
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0275
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0280
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0280
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0285
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0285
https://doi.org/10.1016/0040-1625(78)90035-5
https://doi.org/10.1016/0040-1625(78)90035-5
https://doi.org/10.1016/j.futures.2015.06.005
https://doi.org/10.1016/j.futures.2015.06.005
https://doi.org/10.1016/0040-1625(76)90005-6
http://www.norsys.com
http://www.norsys.com
https://doi.org/10.1016/0040-1625(78)90056-2
https://doi.org/10.1002/0470033312
https://doi.org/10.1016/j.techfore.2008.07.003
https://github.com/jmpaon/AXIOM
https://github.com/jmpaon/AXIOM
https://www.sciencedirect.com/science/article/pii/S0301421518302246
https://www.sciencedirect.com/science/article/pii/S0301421518302246
https://doi.org/10.1016/J.ENPOL.2018.04.009
https://doi.org/10.1016/J.ENPOL.2018.04.009
https://www.sciencedirect.com/science/article/pii/S004016251731644X
https://www.sciencedirect.com/science/article/pii/S004016251731644X
https://doi.org/10.1016/J.TECHFORE.2018.06.046
https://doi.org/10.1016/J.TECHFORE.2018.06.046
https://ci.nii.ac.jp/naid/10000000985/en/
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0345
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0345
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0345
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1007/s13280-013-0482-7
http://www.sciencedirect.com/science/article/pii/0040162574900146
http://www.sciencedirect.com/science/article/pii/0040162574900146
https://doi.org/10.1016/0040-1625(74)90014-6
https://www.sciencedirect.com/science/article/pii/S0888613X05000654
https://doi.org/10.1016/J.IJAR.2005.10.005
https://doi.org/10.1016/J.IJAR.2005.10.005
https://doi.org/10.1057/palgrave.jors.2602177
https://books.google.fi/books?id=wOOikQEACAAJ
https://books.google.fi/books?id=wOOikQEACAAJ
https://doi.org/10.1016/j.techfore.2010.03.002
https://doi.org/10.1016/j.techfore.2010.03.002
https://doi.org/10.1016/s0040-1625(71)80021-5
https://doi.org/10.1016/j.techfore.2005.06.005
https://doi.org/10.1016/j.techfore.2005.06.005
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0395
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0395
http://refhub.elsevier.com/S0040-1625(18)30587-0/rf0395

	The AXIOM approach for probabilistic and causal modeling with expert elicited inputs
	Introduction
	Literature review
	Systems thinking, modeling and simulation
	Established expert informant oriented modeling approaches
	Motivation for further methodological development

	Methodological influences and the methodological contribution
	Bayesian networks and influence diagrams
	Gordon-Hayward cross-impact analysis and SMIC
	The BASICS approach

	The AXIOM approach
	Modeling language
	Model evaluation
	Example model and analysis of results
	Software implementation

	Discussion
	Conclusions and future work
	Acknowledgments
	Pseudocode description of the AXIOM model evaluation
	References




