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Abstract— Analog silicon neurons were proven to be a promising 

solution for VLSI neuromorphic platform to implement massively 

scalable computing systems. They possess the advantages of 

consuming less power and silicon area than digitally designed 

neurons. This paper compares the differences in power and area 

consumption between two methods of synapse design for analog 

neuron models: time-based modulation and current-based 

modulation. The obtained results demonstrate that under the same 

technology process (ST CMOS 65nm), the neuron that uses time-

based modulation consumes less power (almost six times) and silicon 

area (about thirty times) but higher energy (twelve times) than that of 

the current-based modulation.  

I. Introduction 

Since being adopted, spiking neural networks have shown 
to be an emerging topic in academic scholarly. The system is 
well-proven by a wide range of applications across multiple 
research areas [1][2][8][10], for instance understanding its 
impact in the neuroscience field, or in the case of the 
neuromorphic engineering field, constructing of computational 
systems that mimic the brain. As a result of the popularity of 
the spiking neural network, various simulators, including both 
strategies and software tools, have been carried out in the effort 
to simulate those networks [3]. Although such simulators 
would theoretically work well to investigate or verify neural 
networks’ behavior, one of the major issues is there is no 
system powerful enough to capture the real-time behavior of 
some cerebral cortex regions with multiple characteristics of 
different classifications of neuron cells without taking in a huge 
amount of resources. In response to the obstacle created by the 
lack of scalable operations of those simulators, custom digital 
systems are proposed as a solution. Despite being rather limited 
to small- and medium-sized networks and having the 
bottleneck in memory interconnection, the capability of digital 
systems includes taking advantage of the speedup from GPUs 
and FPGAs or the energy and area saving aspect of the ASIC 
devices. In spite of that it is not verified that whether such a 
system could be able to qualify for the energy consumption, 
area overhead and robustness, which are the key parameters for 
modelling the neurons. On the other hand, there is the silicon 
neuron, a type of hybrid analog/digital very large scale 
integration (VLSI) circuit, having the ability to accelerate the 
function of the hardware emulation in terms of power, silicon 
area and speed. Instead of manipulating the simulation on 
normal computers, silicon neurons allow the hardware to 
emulate directly on its network. This fits well with the concept 
of neuromorphic, which was first introduced by C. Mead in 
“Neuromorphic electronic systems” in 1990 [12]. 
Neuromorphic refers to an “artificial neural system” which is 
organized and functions with high similarity to the operation of 
a biological nervous system. By using silicon neurons as the 
basic building blocks in a neural network, we can achieve a 

scalable concurrent system with promising area-wise and 
energy-wise aspects [15]. 

In this paper, two design methods of the analog neuron are 
presented and compared. Time-based modulation and current-
based modulation are presented for the Leaky Integrate and 
Fire neuron model. Both implementation methods of analog 
neuron designs are compared based on speed, power and area 
through circuit-level simulation and layout estimation under 
the ST CMOS 65nm technology process.  

II. MOTIVATION 

Digital neurons may provide faster time and more precision 
outcomes but analog neurons, on the other hand, had been 
proven to be much more power efficient and much less area 
overhead than that of digital neurons [11]. However; the 
shortcomings of analog neurons lie in their difficulty in 
designing and inaccuracy which is caused by noise. At the 
system level, the reason noise could have influence on analog 
systems is because the systems themselves do not have any 
mean to remove those random effects and such influence by 
noise could not be shaded away but rather being accepted as a 
part of the operation. Digital systems, as developed as they are, 
could totally remove the noise influence by utilizing extra bits 
in order to achieve more accuracy in calculation. As a matter of 
fact, a highly desirable neural network is a network that can 
perform well with the existence of noise and the noise models 
can be integrated into the spiking neuron without much hassle. 
In such a situation, the hybrid system could be considered as 
one of the possible alternatives. Such a system is a combination 
of both digital communication and analog computation which 
shares the integrated memory, process and interface. In this 
case, the noise could be suppressed at each individual neuron 
circuit while on the digital domain noise is less likely an issue. 
Furthermore, VLSI hybrid system can be used to implement 
neural networks (in terms of transmitting digital signal pulses, 
a representative of a neuron’s spikes, throughout the network) 
[4]. As a result, the system will be similar to that of a neural 
system where the operations of each distinguish neuron in such 
a system could happen simultaneously. 

Different implementation methods may bring different pros 
and cons of each neuron as an individual as well as the system 
as a whole. Thus, it is in within the scope of this paper that the 
keys parameters of each design of the neuron will be explored 
and analyzed to pave the road to build such a neuromorphic 
system. Consequently, a massively scalable system can be 
achieved by designing each of the unit components separately 
and then connecting them together to form one consistent 
system [4][7][13]. 



 

III. LEAKY INTEGRATE AND FIRE MODEL (LIF) 

A regular neuron unit has three main parts which are 
differentiated with each other by their operation and mission. 
These parts include: the soma, the dendrite and the axon. Soma 
– also known as cell body – Is the largest part and is considered 
as the central control unit of each neuron where most of the 
primary operation activities of a neuron take place, for instance 
the integration of membrane potential or the firing of spikes. 
The signal receiver is the second part which is normally called 
dendrites. As the name says, the dendrites’ main function is to 
receive incoming signals which are initiated or transmitted 
from other neurons. The last part is axon of which main 
function is to transmit the outgoing signal from corresponding 
neuron to another neuron. Normally, axon situates at the axon 
terminals which are also at the end of their respective neuron. It 
is noted that each neuron may have many different types of 
dendrite but could only have one single axon. The axon of one 
neuron is connected to multiple receiving dendrites of other 
neurons and out of these connections a neural network is 
effectively formed. In other words, the operation of each 
neuron allows that neuron to generate only one outgoing signal 
whilst receiving multiple incoming signals from many other 
different neurons in the same network. There is another 
element which is not counted as one of the three parts above is 
the synapse which handles all transmitting and receiving of 
information between one neuron and the others. The synapses 
take the role as the linkage between the transmitting part of the 
neuron, the axon, and the receiving part of another neuron, the 
dendrite or the soma. 

The neuron model which is used here is the LIF [6][9]. 
Practically, the LIF model is easier to implement in hardware 
and it is also simple enough so that if there are problems, they 
can be easily tracked down and “troubleshot”. 
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Fig. 1. Schematic diagram of the Leaky Integrate and Fire model [6](Gerstner 

W. & Kistler W. M., 2002) 

Fig. 1 shows the schematic diagram of the basic Leaky 
Integrate and Fire model. Inside the dashed circle on the right 
side of Fig. 1 is the soma circuit. On the left side of Fig. 1, the 
synapse which contains the low pass filter circuit acts as the 
connection between the input spike δ (t - tj(f)) and the soma. 
The input spike is filtered out and a current α(t - tj(f)) is the 
result of the process and gets transferred to the soma. The 
current I(t) charges the RC circuit thus changing the membrane 
potential of the neuron. The membrane potential of the neuron, 

presented as voltage different between the anode and cathode 
of the capacitor u(t) is then compared against a threshold of 
value ϑ. There are two cases as to what happens: if u(t) reaches 
ϑ at time ti(f), the neuron will generate (or fire) an output pulse 
of δ(t - ti(f)), otherwise if u(t) is smaller than ϑ, no output spike 
will be generated. There are also descriptions of how the 
“integrate” part and the “leaky” part of the neuron works in the 
schematic diagram. The capacitor is the main storage of the 
membrane potential of the neuron which is the integration of 
input current I(t) while the resistor, in parallel with the 
capacitor, is where the leakage of membrane potential takes 
place. Although the firing (a spike) event and the operation 
sequences are not specifically presented in the schematic 
diagram, it should be noted that as soon as the membrane 
potential u(t) reach the threshold ϑ, the membrane potential of 
the neuron will be reset to the reset potential ur instantly and 
the next integration begins with the initial value of the 
membrane potential of ur. The LIF neuron model can be 
expressed as the leaky integration of the input spike and its 
membrane potential over time: 

τm (du/dt) = -u(t) + RI(t) 

Where on the right hand side of the equation, u(t) is the 
membrane potential of the neuron at time t, R is the membrane 
resistance, I(t) is the current which is generated from the 
synaptic connection of the synapse charges the capacitor, the 
representative of the membrane potential. The element on the 
left side of the equation, τm, is the membrane time constant 
calculated by the multiplication of membrane resistance and 
membrane capacitance (τm = R * C). 

To have a quick view of how silicon neurons operate one 
can think of them as circuits consisting of at least one synapse 
block, a leaky integrator block and a comparator block. The 
synapse block functions as both the dendrites and synaptic 
connection of the neuron while the leaky integrator block and 
the comparator block functionalities are similar to that of the 
neuron’s soma as presented in Fig. 2. 
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Fig. 2 block diagram of the Leaky Integrate and Fire neuron 

IV. ANALOG DESIGN APPROACHES OF THE LIF NEURON 

For the analog implementation, current injection method is 
utilized for the weight injection where the current Iweight 
representing the weight of the input spike will be injected to the 
membrane capacitor Cm. The differences between two methods 
of current injection will be explored through the operating 
principle and the results obtained through power and area 
simulation. The synapse, which consists of a digital to analog 
converter and a weight injection circuit, is the only differences 
between the two methods of analog designs for the LIF neuron. 
The remaining components of the neuron model, the leaky 
integrator and the comparator, are the same for both designs. 



 

A. The Leaky Integrator component of LIF neuron  

The incoming spike excites or inhibits a neuron toward or 
away from firing a spike while the membrane potential of the 
neuron slowly decreases over time. This process can be 
interpreted as a leaky integrator where the synaptic connection 
charges or discharges a capacitor Cm storing the model’s 
membrane potential Vm that integrates the incoming spike and 
its weight overtime while the internal potential of the integrator 
continuously dissipates by the present of a leakage current Ileak. 
Furthermore, when the membrane potential Vm of the integrator 
reaches the threshold Vthreshold, the membrane potential Vm gets 
immediately pulled down to initial potential Vreset (or reset 
voltage).  

The leaking rate of the LIF model is required to be 
customizable to some extent; this is done by replacing the 
leaking resistor with a leaking current source Ileak or leaking 
voltage source Vleak controlled by a digital input. The principle 
of the leaky circuitry remarkably bears a resemblance of a 
digital to analog converter, where the resolution of the 
converter is the resolution of the leaking rate which is digitally 
encoded. Fig. 3 demonstrates the leakage current Ileak or 
leakage voltage Vleak discharging from the membrane capacitor 
Cm. 

The n-channel MOSFET controlled by the input signal 
“leak” will determine whether or not the leakage happens. 
Another n-channel MOSFET is put into place to control the 
reset mechanism of the neuron model by a “reset” signal, when 
closed will initialize Vm to Vreset. 

The charging curve of  is dependent on the membrane time 
constant (τm = R * C) which in turns depends on the membrane 
capacitance itself, expressed by the equation: 

Vm = τm * (1 – exp(-t/τm)) 
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Fig. 3. schematic diagram of the leaky integrator with necessary signals and 

components 

B. The comparator component of LIF neuron 

The comparator block receives the internal potential Vm as 
input voltage and compares it with the threshold voltage which 
is treated at the reference voltage. If the input voltage is larger 
than the reference voltage, the comparator output will be 
active. 

The comparator is one of the most critical building blocks 
since the speed and accuracy of the comparator is the speed 
and accuracy of the design model itself. For this design, the 
comparator should be designed to be sufficiently fast, accurate 
and low area and power consumption. Hence the latched 
comparator is chosen where the operation is dependent on a 
clock signal as illustrated in Fig. 4. 
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Fig. 4. schematic diagram of the latched comparator 

C. The Synapse component of LIF neuron 

A spike generated by a neuron can be transferred through 
the synapse. From the analog circuit point of view, the function 
of the synapse is taking in the input spikes and weights and 
converting them into an electrical potential then transferring it 
to the soma of the neuron. The synapse can then be interpreted 
as a digital to analog converter that converts the digitally coded 
weight of a spike to the analog value of the weight, either as a 
current value or a voltage value. The resolution of the digital to 
analog converter is equal to the resolution of the weight of the 
input spike while the amplitude of current or voltage at the 
output node of the digital to analog converter represents the 
weight of the input spike.The n-bit Digital to Analog Converter 
will convert the n-bit weight value (which is digital) of the 
incoming spike to an analog current value of Iweight or a voltage 
value of Vweight. After that, the converted weight value will be 
injected to the soma via the weight injection circuit. The 
neuron designs in this paper will have the weight resolution of 
7 bits, which makes the maximum weight reach 127 unit 
weights. In the weight injection circuit, the excitatory input 
spike can be realized by a positive current or voltage being 
applied to the load and vice versa for the inhibitory input spike, 
a negative current or voltage is applied to the load, as in Fig. 5. 

Fig. 5A and Fig. 5B show the incoming spike is presented 
as the input signal “spikein” and the membrane potential of the 
neuron will be stored in the capacitor Cm. The input signal 
“spikein” controls a CMOS Inverter (logic NOT gate) which 
consists of two transistors, the p-channel MOSFET M1 and the 
n-channel MOSFET M2. In the case of excitatory incoming 
spike, the “spikein” signal will be LOW, leading to the p-
channel MOSFET M1 get closed (or M1 is conductive) and the 
n-channel MOSFET M2 get opened (there is no current 
flowing through M2), then the capacitor Cm will be charged 
with an inflow current of value Iweight or a positive voltage of 
value +Vweight. On the other hand, the inhibitory input weight 
can be easily achieved by changing the input signal “spikein” 
to HIGH, the capacitor Cm will be discharges by an outflow 
current of value Iweight or a negative voltage of value –Vweight. 

 
Fig. 5. basic schematic diagram of the weight injection 
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1) Time-based modulation synapse  
This method for the synapse is based on the principle of the 

simple yet effective pulse-width modulation digital to analog 
converter such that the amplitude of the input signal will be 
expressed as the percentage of time which the pulse (pulse 
width) stays as “High” state in one clock cycle (duty cycle) as 
presented in Fig. 6. To further reduce the power, another 
technique called step wise charging [5] is applied, basically, by 
dividing the width of one pulse into smaller equal width steps, 
which is illustrated in Fig. 7. Since basing on the step wise 
modulation principle, the elementary circuits of the time-based 
synapse consist of one pulse width modulation digital to analog 
converter and the step wise weight injection circuit as shown in 
Fig. 8. 

The injection period for one input spike may reach up to 
127 clock cycles (one clock cycle for one unit weight) if the 
input spike have maximum weight. 

time

amplitude

Cm

Vm

pulse
Vm

R

Iunit-

weight

pulse

10% 

duty cycle

20% 50% 80% 80% 80%

 
Fig. 6. the weight of the input spike is modulated as the width of the pulse that 

controls the injecting period. The longer the switch is closed, the larger the 
amount of current getting injected to the capacitor 
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Fig. 7. step wise pulse width modulation waveform, the improved version of 

PWM with the pulses got divided into equally sized smaller pulse 
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Fig. 8. time-based modulation synapse. Signal spikein determines if the input 

weight is positive or negative. The weight of the input spike is realized by 
using the switches controlled by the pulses generated by a pulse generator 

2) Current-based modulation  
This method is based on the principle of the binary 

weighted digital to analog converter which is more straight-

forward as the amplitude of the inputs signals is represents as 
the amplitude of the current injecting to the capacitor. 

The major difference between the current-based modulation 
synapse and the time-based modulation synapse which had 
been addressed during the design step is that the current-based 
modulation consumes a very large amount of silicon area since 
the transistors have to be sufficiently large to house the extra 
current flowing through them. On the bright side, the injecting 
period of one input spike regardless of its weight costs only 
two clock cycles for the current-based modulation neuron 
model; it makes a difference in speed when comparing with the 
injecting period of 127 clock cycles for the time-based 
modulation neuron model. 

Being originated from the binary weighted modulation, the 
time-based synapse circuit includes one pulse width 
modulation digital to analog converter and the step wise weight 
injection circuit as shown in Fig. 9. 

Since the clock frequency is high and the maximum value 
of Iweight can reach up to 127 times the unit weight current 
Iunitweight, the weight switches (w(0), w(1), …, w(6)) alone are 
not enough to handle the task of injecting a large current to the 
membrane capacitor.. Thus, another switch is put into the 
weight injection circuit and controlled by the signal “inject”. 
Staying closed for a sufficient amount of clock cycles, the 
weight switches will ensure that the injecting weight current 
Iweight reaches the stable value while the inject switch will do 
the actual injecting in one clock cycle as illustrated in Fig. 10. 

 
Fig. 9. binary weighted waveforms, the input sequence is as follow: 0001, 

0010, 0101, and 1000 
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Fig. 10. current-based modulation synapse 
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V. EXPERIMENTAL RESULTS 

In this work, the circuits are designed using Cadence’s icfb 
and simulated using Spectre simulator using ST CMOS065 
(65nm).The desired goal is for the neuron models to operate 
with a 500MHz clock with minimal power and area 
consumption. The weight has the resolution of 7 bits, which 
makes the maximum weight reach 127 unit weights. 

Both design models have the maximum threshold of one 
maximum weight, which are 127 unit weights. This threshold 
means that the neuron models will fire as soon as their 
membrane potential reach the voltage value equivalent to that 
of 127 unit weights (after resetting: 127 pulses for time-based 
modulation model and 127*Iunitweight for current-based 
modulation model). The leaking rate is fixed at a tenth of 
Iunitweight (Ileak = 1/10 * Iunitweight). 

A. Time-based modulation neuron model 

In Fig. 11, after the membrane potential being initialized to 
the reset voltage, 127 pulses were injected by one excitatory 
input spike during a 254 nanosecond-long injecting period. 
During the injecting period, the membrane potential Vm raises 
until Vm meet the threshold voltage and then a spikeout is fired. 

Poly-NW capacitor is chosen for area saving purpose since 
this type of capacitor has relative high capacitance density. In 
total, the neuron model that uses time-based modulation 
method costs a total of 174 um

2
. The layout is presented in Fig. 

12. 

 

Fig. 11. waveforms from the simulation of time-based modulation neuron 
model 

 

Fig. 12. layout of time-based modulation neuron model 

B. Current-based modulation neuron model 

In Fig. 13, between time t = 60ns and t = 70ns, all weight 
switches are closed, ensuring a stable current of Iweight = 127 * 
Iunitweight. During that time, an injecting period of four 
nanoseconds is realized by the inject switch, effectively inject 
the current Iweight into the membrane capacitor which raises the 
membrane potential and then a spikeout is fired when the 
membrane potential is higher than the threshold voltage. 

The current-based modulation neuron model is estimated to 
cost 5000 um

2
 of silicon where the major part (more than 90%) 

of the neuron circuit is the synapse. 

 
Fig. 13. waveforms from the simulation of current-based modulation neuron 

model 

C. Results and Comparison 

Table I gives the average power consumption of both 
methods by each component as well as the total power values 
of both models. In the case of time-based modulation, the 
power hungry component is the comparator which accounts for 
three forth of the total power consumption while the leaky 
integrator consumes little to no power. Consequently, it is 
advisable to use multiple leaky integrators and/or synapse 
while utilize one comparator when there is a need for designing 
a cluster of neurons arises. 

TABLE I. AVERAGE POWER CONSUMPTION FOR EACH COMPONENT OF BOTH 

NEURON MODELS 

 Synapse  

(DAC + weight 

injection) 

Leaky 

Integrator 

Comp -

arator 

Total 

Time-

based 

2.7uW 0.21uW 8.8uW 11.7uW 

Current-

based 

53.6uW 0.83uW 9.1uW 63.5uW 
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TABLE II. STATISTICS OF THE TWO NEURON MODELS 

 Total 

Average 

Power 

Leakage 

Power 

Time 

per 

spike 

Total 

Energy 

Total Area 

Time-

based 

11.73uW 1.8uW 254ns 2.98pJ 174um2 

Current-
based 

63.5uW 2uW 4ns 0.25pJ 5000um2 

 
In Table II, for each neuron model, the total energy is 

calculated by multiplying the total power (average power) with 
the time it takes to fire a spike. The experiment shows that the 
neuron circuit that uses current-based modulation method only 
needs a short amount of time compared with the one using 
time-based modulation method (4ns versus 254ns). Hence, 
despite the higher power consumption, the total energy of the 
current-based modulation model is much less than that of the 
time-based modulation model. On top of that, when there is no 
circuit activity the leakage powers of both neuron models are 
the same. It could also be reduced as both neuron circuits 
would use up the same amount of energy when they are both 
idle. The silicon area result from the time-based variant is 
obtained by doing the layout in full custom flow. The layout 
includes the synapse (which contains DAC and weight 
injection), the leaky integrator and the comparator. The silicon 
area of the current-based neuron circuit (also contains the same 
building blocks as the time-based modulation neuron circuit), 
however, is based on the estimation of the floorplan. 

Other factors that may affect the power consumption and 
silicon area of the neuron circuits are the threshold value, the 
weight resolution and the clock speed. Firstly, the larger 
threshold was experimented on and the consensus is that the 
higher the threshold, the larger the membrane capacitor needed 
and the more time it takes for the neuron model itself to fire a 
spike (assuming the membrane potential have to raise from the 
reset voltage to the threshold voltage) which in turn increase 
the energy dissipation and area overhead respectively. 
Secondly, a higher weight resolution may not affect the time-
based modulation synapse circuit in terms of power or area but 
it will definitely affect the energy consumption since the time it 
takes to inject the weight value (maximum weight = 
2^weight_resolution - 1). On the other hand, a higher weight 
resolution will definitely affect every statistics of the current-
based modulation synapse circuit since a bigger current or a 
longer injection time will be needed. Finally, a different clock 
frequency will literally affect all of the statistics of both 
methods. It is vice versa for the neurons that have lower weight 
resolution. Works targeting at the weight resolution are 
ongoing while some of those show that at the lower weight 
resolution, SNN can still function appropriately. 

VI. CONCLUSION 

Two different designs of analog silicon neurons are brought 
out and compared. The current-based modulation method can 

operate quite effective in systems where performance is the 
first priority; however, the total energy per spike is worth 
considering in the long run. On the other hand, it is an optimal 
choice to build a massively scalable computing system with the 
time-based modulation neuron circuit as the core processing 
element due to the lower cost for silicon and less power 
consumption (heat dissipation will also less likely be an issue).  
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