ABSTRACT

Food allergy (FA) affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. In the past few decades, the prevalence of allergic disease has been on the rise worldwide. Identified risk factors for FA include family history, mode of delivery, variations in infant feeding practices, prior diagnosis of other atopic diseases such as eczema, and social economic status. Identifying reliable biomarkers that predict the risk of developing FA in early life would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. There is also the potential to identify new therapeutic targets. This narrative review provides details on the genetic, epigenetic, dietary, and microbiome influences upon the development of FA and synthesizes the currently available data indicating potential biomarkers. Whereas there is a large body of research evidence available within each field of potential risk factors, there is a very limited number of studies that span multiple methodological fields, for example, including immunology, microbiome, genetic/epigenetic factors, and dietary assessment. We recommend that further collaborative research with detailed cohort phenotyping is required to identify biomarkers, and whether these vary between at-risk populations and the wider population. The low incidence of oral food challenge–confirmed FA in the general population, and the complexities of designing nutritional intervention studies will provide challenges for researchers to address in generating high-quality, reliable, and reproducible research findings. Adv Nutr 2021;00:1–19.

Statement of Significance: Food allergy affects the quality of life of millions of people worldwide and presents a significant psychological and financial burden for both national and international public health. Identifying reliable biomarkers that predict the risk of developing food allergy would be valuable in both preventing morbidity and mortality and by making current interventions available at the earliest opportunity. This review provides details on the genetic, epigenetic, dietary, and microbiome influences upon the development of food allergy. This helps in identifying reliable biomarkers to predict the risk of developing food allergy, which could be valuable in both preventing morbidity and mortality and by making interventions available at the earliest opportunity.

Keywords: IgE-mediated food allergy, biomarkers, pathways, risk factors, microbiota, nutrition, infant diet

Introduction

Food allergy (FA) is defined as an adverse immunological response to a food protein (1). It affects the quality of life of millions of people worldwide and presents a significant psychological (2) and financial (3) burden for both national and international public health. The European Academy of Allergy and Clinical Immunology (EAACI) systematic review estimates FA prevalence in Europe at between 0.1% and 6.0% (4). Risk factors for developing FA are multiple and contextual, ranging from genetic predisposition to environmental factors (such as mode of birth delivery, type and timing of solid food introduction, changes in hygiene conditions, and exposure to a spectrum of allergens) (5). The complex nature of FA can also be attributed to the role of maternal factors during pregnancy (6). This narrative review will provide a comprehensive overview of the genetic, epigenetic, dietary, and microbiome influences upon the development of FA. We will critically evaluate the currently available evidence and highlight the limitations of current knowledge and the unmet research needs.

1 School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; 2 Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; 3 Imperial College London, London, United Kingdom; 4 Department of Paediatrics and Paediatric Infectious Diseases, Institute of Child’s Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; 5 Inflammation, Repair and Development Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; 6 FrieslandCampina, Amersfoort, The Netherlands; 7 Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; 8 IFF Health, International Flavors & Fragrances, Finland; 9 ILSI Europe, Belgium; 10 University of Turku, Finland; 11 Danone Nutricia Research, The Netherlands; and 12 Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com. Adv Nutr 2021;00:1–19; doi:https://doi.org/10.1093/advances/nmab122.
practices, and socioeconomic status) and the interaction between these factors (Table 1).

Identifying biomarkers that reflect either the risk of developing FA, the severity of FA, or induction of tolerance (i.e., reaching nonreactivity toward a substance that would previously cause a reaction) would be valuable in both preventing morbidity and mortality arising from FA, by allowing earlier interventions and by potentially highlighting new targets for intervention. The Health Biomarkers Definitions Working Group defined a biomarker as “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” (5).

Biomarkers can also provide value in the regulatory context. The European Food Safety Authority health claim substantiation requires that “a food or one of its constituents significantly reduces a risk factor in the development of a human disease” (6). The regulation additionally requires that the risk factor is “generally accepted.” A classic example is cholesterol, a biomarker found to be associated with heart disease development. In labeling or advertising, health claims that constitute a “reduction of disease risk” shall also bear a statement indicating that the disease to which the claim is referring has multiple risk factors and that altering one of these risk factors might or might not have a beneficial effect. Thus, the optimal risk biomarker to be altered would be a combination of risk factors or a chain of events reflecting changes in the RR.

This article reviews available evidence in human studies in early life about well-described pathways with well-defined biomarkers and risk factors that are associated with IgE-mediated FA.

Current Status of Knowledge

Recent efforts have focused on the identification of biomarkers for prediction and diagnosis of IgE-mediated FA. IgE-mediated reactions induce a variety of symptoms that range from erythema, urticaria and angioedema, nausea, abdominal pain or vomiting, to severe respiratory distress, or cardiovascular collapse among others (7). Differences in the outcomes and manifestations might be related to genetic components but also to environmental factors, dietary factors, and the intestinal microbiota (8). The exact
diagnosis and prevalence of FA is difficult to ascertain due to the imprecision of laboratory tests and the lack of specific biomarkers, relying on the combination of the clinical history of characteristic symptoms together with test results (7), the use of IgE as a biomarker in FA, and the potential associations with genetic and epigenetic origins that would be targets of potential interventions (breast milk compared with others, weaning, diet, etc.).

Genetic and epigenetic biomarkers of FA

The link between the risk of FA in children and allergic diseases and/or allergic sensitization in their family has been extensively reported (9–14), with estimates that FA/sensitization risk doubles if 1 parent has an allergic disease, and is 3-fold higher if both parents have an allergic disease. A meta-analysis of genome-wide association studies identified 10 loci in or near TLR6 (toll like receptor 6), C11orf30 (EMSY transcriptional repressor, BRCA2 interacting), STAT6 (signal transducer and activator of transcription 6), SLC25A46 (solute carrier family 25 member 46), HLA-DQB1 (human leukocyte antigen DQ isotype B1), IL1RL1 (interleukin 1 receptor like 1), LPP (LIM domain containing preferred translocation partner in lipoma), MYC (MYC proto-oncogene, bHLH transcription factor), IL2 (interleukin 2), and HLA-B (major histocompatibility complex, class I, B), that are associated with allergic sensitization (15). Allergen-specific genetic modifications in the HLA DR and DQ isotype gene region have also been associated with peanut allergy (16). Conflicting results were reported with regard to gender association with FA and no conclusive studies are available (10, 11, 17, 18). Some data suggest that 5 loci at genome-wide significance (clade B serpin, or SERPINB) gene cluster at 18q21.3, the cytokine gene cluster at 5q31.1, the filaggrin gene, the C11orf30/LRRC32 (leucine rich repeat containing 32) locus, and the HLA region increase the risk of FA (19).

Eczema and FA often coexist, and evidence suggests that an impaired skin barrier is a significant risk factor for FA development later in life (20, 21) with loss-of-function variants in the filaggrin gene suggested as a causative factor; moreover, filaggrin mutation is associated with eczema and asthma later in life (22, 23). Identified genetic loci associated with FA, their potential mode of action, and evidence supporting their use as biomarkers are presented in Table 2.

Extrinsic environmental factors including diet, pollutants, and infections, and intrinsic factors such as the intestinal microbiota and inflammatory state are likely to play a crucial role in inducing epigenetic changes (24, 25). Postnatal factors and environmental influence are risk factors for FA development and this exposure accumulates while the infant develops (9, 10, 18). The route of exposure (e.g., placental, skin, breast milk, airway, gut), timing, dose of allergen exposure, and host immune system status are likely to impact upon the potential for epigenetic change (26). Investigations of targeted and untargeted methylation profiles of immune cells are methodologies that can help to find biomarkers that reflect the different stages of FA: those at risk, those who are tolerant, and those with active disease (27, 28). An overview of studies on epigenetic changes associated with FA is presented in Table 3.

The role of breastfeeding, and time of food introduction in FA

Breastfeeding.

Human milk is the first food available to a newborn baby, and exclusive breastfeeding for the duration of 6 mo is recommended by the WHO. Available evidence suggests that breastfeeding protects against infections as well as offering long-term benefits, reducing the risk of hypertension and diabetes, and improving cognitive development (29). The protective effect of breast milk on allergy development has not been fully demonstrated (29–33). However, there are conflicting data concerning the relation between breastfeeding and FA, with some cohort studies reporting a reduced risk of FA development in the general population (20, 21) and in high-risk children (34) and others reporting an increased risk (35, 36). One meta-analysis investigating this relation reported no evidence of breastfeeding’s protective effect in preventing FA development (OR: 1.02; 95% CI: 0.88, 1.18), although the authors suggested that the risk of bias and major differences in the outcome definitions in the current studies might be responsible for the inconclusive results (31). Because human milk contains food proteins, their concentrations in the milk and maternal diet might also contribute to tolerance development (37), particularly in the presence of the biologically active molecules (38). Both aspects are not normally considered in the studies assessing associations between breastfeeding and noncommunicable diseases development.

A recent systematic review on FA prevention suggests that although breastfeeding has many benefits for infants and mothers, it might not reduce the risk of FA (39). Human breast milk constituents vary (over time postpartum, within and between women, and even within the same feed), which could, in part, explain some of the conflicting results of general observational studies regarding the provision of breastfeeding (40, 41). It has been described that immunological compounds in breast milk (including cytokines and IgG) are modulated by multiple factors, including maternal allergic status, parity, and geographical location among others (42–45), but overall evidence on the topic is conflicting with most of the studies not identifying clear associations between the immunological composition of breast milk and allergic disease development in infants (38). Dietary peptides from proteins in food are excreted in breast milk, but these have relatively short sequences and are in small amounts; therefore, their sensitization or tolerogenic potential remains to be explored (46). The presence of specific peptides has also been shown in infant formula (47). However, so far, systematic reviews (48, 49) have not found sufficient evidence that hydrolyzed formula prevents eczema or milk allergy (50).
<table>
<thead>
<tr>
<th>Name</th>
<th>Genetic risk factor</th>
<th>Role</th>
<th>Potential link with FA</th>
<th>Reported utility as biomarker?</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toll-like receptor 6</td>
<td>TLR6</td>
<td>Pathogen recognition and activation of innate immunity</td>
<td>TLR function can be altered by early environmental and microbial exposures</td>
<td>Generally associated with allergic sensitization</td>
<td>(15, 145)</td>
</tr>
<tr>
<td>EMSY transcriptional repressor</td>
<td>C1orf30</td>
<td>Repressor of BRCA2 protein</td>
<td>Involved in epigenetic regulation of gene expression</td>
<td>Identified as genetic risk factor for peanut allergy and food allergy</td>
<td>(15, 146)</td>
</tr>
<tr>
<td>Signal transducer and activator of transcription 6</td>
<td>STAT6</td>
<td>Central role in IL4-mediated responses</td>
<td>Polymorphisms have been associated with age of tolerance induction</td>
<td>Age of tolerance development for cow milk was significantly higher in children with the GG genotype at rs324015 of the STAT6 gene compared with those with the AA + AG genotype [2 y (range = 1.5–3.9 y) vs. 1.2 y (range = 1.0–2.2 y); P = 0.02]</td>
<td>(15, 147)</td>
</tr>
<tr>
<td>Solute carrier family 25 member 46</td>
<td>SLC25A46</td>
<td>Promotes mitochondrial fission and prevents the formation of hyperfilamentous mitochondria</td>
<td>Involved in the association between food allergy and atopic dermatitis</td>
<td>Polymorphism SLC25A46 was associated with higher risk of food allergy</td>
<td>(15, 148)</td>
</tr>
<tr>
<td>Major histocompatibility complex, class II, DQ beta 1</td>
<td>HLA-DQB1</td>
<td>Plays a central role in the immune system by presenting peptides derived from extracellular proteins</td>
<td>Peanut allergic-specific loci in the human leukocyte antigen (HLA-DQ and -DR regions were found in a large cohort study)</td>
<td>Several polymorphisms associated with peanut, milk, and egg allergy</td>
<td>(15, 16, 149)</td>
</tr>
<tr>
<td>Interleukin 1 receptor-like 1</td>
<td>IL1RL1</td>
<td>Involved in the function of helper T cells</td>
<td>ST2, β-chain of IL33 receptor</td>
<td>Generally associated with allergic sensitization</td>
<td>(15)</td>
</tr>
<tr>
<td>LIM domain containing preferred translocation partner in lipoma</td>
<td>LPP</td>
<td>Involved in cell-cell adhesion and cell motility. This protein also shuttles through the nucleus and may function as a transcriptional coactivator</td>
<td>Allergic sensitization</td>
<td>Generally associated with allergic sensitization</td>
<td>(15)</td>
</tr>
<tr>
<td>MYC proto-oncogene, bHLH transcription factor</td>
<td>MYC</td>
<td>Plays a role in cell cycle progression, apoptosis, and cellular transformation</td>
<td>Downregulated in children with food allergy</td>
<td>Generally associated with allergic sensitization and food allergy</td>
<td>(15, 150)</td>
</tr>
<tr>
<td>Interleukin 2</td>
<td>IL2</td>
<td>Proliferation of T and B lymphocytes</td>
<td>Allergic sensitization</td>
<td>Generally associated with allergic sensitization</td>
<td>(15)</td>
</tr>
<tr>
<td>Major histocompatibility complex, class I B</td>
<td>HLA-B</td>
<td>Central role in the immune system by presenting peptides derived from the endoplasmic reticulum lumen</td>
<td>Allergic sensitization</td>
<td>Generally associated with allergic sensitization</td>
<td>(15)</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Name</th>
<th>Genetic risk factor</th>
<th>Role</th>
<th>Potential link with FA</th>
<th>Reported utility as biomarker?</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filaggrin</td>
<td>FLG</td>
<td>Role in skin barrier function</td>
<td>Indirect association with food allergy</td>
<td>Filaggrin loss-of-function mutations are associated with food allergy in older children via eczema and food allergen sensitization in their early childhood</td>
<td>(20, 21, 23, 151)</td>
</tr>
<tr>
<td>Interleukin 13</td>
<td>IL13</td>
<td>Involved in several stages of B-cell maturation and differentiation</td>
<td>IL13 polymorphism rs1295686 (in complete linkage disequilibrium with functional variant rs20541) is associated with challenge-proven food allergy</td>
<td>IL13 gene polymorphisms have also been identified as biomarkers of IgE-mediated food allergy and are a predictor of cord blood IgE concentrations</td>
<td>(152)</td>
</tr>
<tr>
<td>Catenin alpha 3</td>
<td>CTNNA3</td>
<td>Cell-cell adhesion</td>
<td>Knockdown of CTNNA3 resulted in upregulation of CD63 and CD203c in mononuclear cells upon PMA stimulation</td>
<td>Copy number variation impacting CTNNA3 has been associated with pediatric food allergy</td>
<td>(153)</td>
</tr>
<tr>
<td>RNA binding fox-1 homolog 1</td>
<td>RBFOX1</td>
<td>Regulates alternative splicing events</td>
<td>Association with food allergy at a genome-wide scale</td>
<td>Generally associated with pediatric food allergy</td>
<td>(153)</td>
</tr>
<tr>
<td>GC vitamin D binding protein</td>
<td>GC/DBP</td>
<td>Binds to vitamin D and its plasma metabolites and transports them to target tissues</td>
<td>Gg genotype produces less vitamin D binding protein (DBP)</td>
<td>Vitamin D deficiency linked with GG genotype producing less vitamin D binding protein (DBP) was associated with a higher prevalence of egg and peanut allergy in 1- and 2-year-old infants</td>
<td>(154)</td>
</tr>
<tr>
<td>Indoleamine 23-dioxygenase 1</td>
<td>IDO1</td>
<td>Modulates T-cell behavior</td>
<td>High IDO activity is associated with nonresponsiveness to food allergens despite allergen sensitization</td>
<td>Associated with tolerance to food allergens</td>
<td>(155)</td>
</tr>
<tr>
<td>Sirtuin 1</td>
<td>SIRT1</td>
<td>Functions of human sirtuins have not yet been determined</td>
<td>Negatively regulates FceRI-stimulated mast cell activation and anaphylaxis</td>
<td>Generally associated with antiallergic response</td>
<td>(156, 157)</td>
</tr>
</tbody>
</table>

1 BRCA2, Breast Cancer Type 2 susceptibility protein; FceRI, high-affinity IgE receptor; PMA, phorbol myristyl acetate.
TABLE 3 Epigenetic changes associated with food allergy

<table>
<thead>
<tr>
<th>Study</th>
<th>Where identified</th>
<th>Main findings</th>
<th>Potential mechanism of action</th>
<th>Reported utility as biomarker?</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA methylation profiles (≈450,000 CpGs) of peripheral immune cells (CD4+ T cells)</td>
<td>Children with IgE-mediated food allergy 179 differentially methylated sites of loci associated with the disease phenotype, and 96 CpG sites DNA methylation profile discriminated food-allergic vs. healthy infants</td>
<td>MAP kinase pathway → dysregulation of DNA methylation at MAPK signaling–associated genes during early CD4+ T-cell development may contribute to suboptimal T-lymphocyte responses in early childhood associated with the development of food allergy</td>
<td>Predicted clinical outcomes with an accuracy of almost 80% MAP kinase pathway was most prominently associated with CpGs that were predictive of food challenge</td>
<td>(158, 159)</td>
<td></td>
</tr>
<tr>
<td>DNA methylation profiles</td>
<td>Egg allergy DNA methylation profiles of T cells discriminate infants with persistent egg allergy compared with those who had outgrown egg allergy</td>
<td>Methylation of metabolic (RPTOR, PI3KCD, MAPK1, FOXL1) and inflammatory genes (ILR, IL13Rα1, CD82) affected</td>
<td>Data about predictive potential not available</td>
<td>(150)</td>
<td></td>
</tr>
<tr>
<td>DNA methylation profiles</td>
<td>Cow milk allergy Cow milk allergic infants showed hypermethylation in whole blood compared with controls and tolerant group</td>
<td>Differential methylation patterns on DHX58 (innate immune response), ZNF281 (transcriptional regulation), EIF42A (interferon pathway), and HTRA2 (smooth muscle contraction) between groups</td>
<td>Data about predictive potential not available</td>
<td>(160)</td>
<td></td>
</tr>
<tr>
<td>DNA methylation profiles and single-nucleotide polymorphisms</td>
<td>Peanut allergy DNA methylation of the HLA-DQB1 and HLA-DRB1, IL4, IL12Rb1, IL2, BDNF, IL17, CXCL12, CCR7, runt-related transcription factor 1 (RUNX1), CT0, and SERPINE1 IL1B and IL6 has been associated with peanut allergy</td>
<td>Increased protein secretion in response to allergen-specific stimulation Additional functional studies are needed</td>
<td>DNA methylation signature combinations may have superior diagnostic potential than serum peanut–specific IgE</td>
<td>(16)</td>
<td></td>
</tr>
<tr>
<td>Th1-Th2</td>
<td>Cow milk allergy DNA methylation profiles differ with cow milk allergy DNA methylation profiles of IL4, IL5, IL10, and IFNγ genes between infants with active cow milk allergy and those who outgrew their cow milk allergy</td>
<td>GATA3 in Th2 cells Ex vivo PBMC cytokine profile in predicting cow milk allergy: TNF, IL10, IL12 higher in cow milk allergy patients compared with controls</td>
<td>(161–163)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Where identified</th>
<th>Main findings</th>
<th>Potential mechanism of action</th>
<th>Reported utility as biomarker?</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1-Th2 Cow milk allergy</td>
<td>DNA methylation of FOXP3, Th1/Th2 cytokine genes in IgE-mediated allergy, in children with cow milk allergy treated with an extensively hydrolyzed formula including a probiotic (test formula) vs. a control formula</td>
<td>FOXP3, IL-10, and IFN-γ demethylation rate was higher, and IL-4 and IL-5 demethylation rate was lower in the test formula group</td>
<td>Intervention promotes regulatory and immune suppressive immune factors and at the same time decreases activity of Th2 type genes</td>
<td>(164)</td>
<td></td>
</tr>
<tr>
<td>FOX3 Peanut-allergic infants and cow milk-allergic infants</td>
<td>Immune-tolerant participants had ↑Treg with greater suppressive function, and with ↑FOX3 hypomethylation</td>
<td>Oral immunotherapy in peanut allergic infants increased antigen-induced regulatory T-cell function and hypomethylation of FOX3 in infants that became tolerant</td>
<td>Data about predictive potential not available</td>
<td>(165)</td>
<td></td>
</tr>
<tr>
<td>FOX3 Cow milk allergy</td>
<td>↓FOX3 gene demethylation in children with active IgE-mediated cow milk allergy</td>
<td>Formula selection influenced the FOX3 T-cell–specific demethylation region demethylation profile</td>
<td>Data about predictive potential not available</td>
<td>(166)</td>
<td></td>
</tr>
<tr>
<td>Methylation levels taken from mononuclear blood cells at 405,658 CpG islands across the genome (machine learning approach)</td>
<td>Novel 13-gene signature to diagnose clinical reactivity: chr1p13 (SARS), chr7p22 (MAFA), chr11q14 (PAO1), chr9p22 (SLC2A4), chr8p21 (KIF13B), chr1q11 (CTBP2), chr1q11 (ARID5B), and chr1q12 (FAM190B)</td>
<td>The 18-CpG signature mapped to several canonical Wnt pathways, GO, and positional gene sets with functional association with the immune system</td>
<td>The 18-CpG signature mapped to 13 genes is a strong biomarker of FA with a 94–96% accuracy</td>
<td>(167)</td>
<td></td>
</tr>
</tbody>
</table>

1ai, antigen-induced; ARID5B, AT-rich interaction domain 5B; BDNF, brain-derived neurotrophic factor; CCR7, C-C motif chemokine receptor 7; chr, chromosome; CTBP2, C-terminal binding protein 2; CXCL12, C-X-C motif chemokine ligand 12; DHX58, DExH-box helicase 58; EIF4A2, eukaryotic translation initiation factor 4A-2; FA, food allergy; FOX01, forkhead box O1; FOXP3, forkhead box P3; GATA3, GATA binding protein 3; GO, The Generic Gene Ontology; HLA, human leukocyte antigen; HTRA2, HtrA serine peptidase 2; KIF13B, kinesin family member 13B; MAFA, MAF bZIP transcription factor K; MAPK1, mitogen-activated protein kinase 1; PANX1, pannexin 1; PBMCs, peripheral blood mononuclear cells; PIK3CD, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta; RPTOR, regulatory associated protein of MTOR complex 1; SARS, seryl-tRNA synthetase; SLC2A4, solute carrier family 24 member 2; Th, helper T cells; Treg, regulatory T cells; ZNF281, Zinc Finger Protein 281.
Thus, claims currently appearing on infant formula products need better substantiation and many reputable organizations, including the American Academy of Pediatrics; American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and Canadian Society for Allergy and Clinical Immunology, concluded that "there is no protective benefit from the use of hydrolyzed formula in the first year of life against food allergy or food sensitization" (51, 52). A recent study suggested that avoiding temporary supplementation with conventional cow milk formula in the first 3 d of life can result in a large decrease in the risk of FA in early childhood (53), but this requires further confirmation.

Weaning and food introduction.

Delaying the introduction of solid food until 6 mo remains the current WHO recommendation. Yet recent expert opinion has investigated the hypothesis that oral tolerance can be induced by modifying the timing and diversity of early food exposure (54). Supportive data for this hypothesis are coming predominantly from 2 large high-quality randomized controlled trials (RCTs), The Learning Early about Peanut Allergy (LEAP) and Enquiring About Tolerance (EAT). The LEAP study demonstrated a significant reduction in peanut allergy prevalence in children at high risk of allergy development, who were consuming peanuts between 4 and 11 mo old on a regular basis (55). There was an earlier and greater increase in peanut-specific IgG and IgG4 in the early consumption group compared with the avoidance group. In both groups the mean peanut-specific IgE concentrations were highly comparable and increased over time, albeit there were more participants in the avoidance group with very high IgE concentrations (55). The EAT trial looked at early food introduction (from 3 mo old) and concluded that it might decrease the risk of FA development (56). The authors reported significantly lower RRs of peanut and egg allergy in the early introduction group, with no difference in the prevalence of milk, sesame, fish, or wheat allergy. Risk reduction was shown in per protocol analysis only, whereas no statistically significant difference was found in intention-to-treat analysis. Studies reporting contradictory results to EAT exist (57), but they are often considered of lower robustness.

With an apparent shift in expert opinion toward early introduction of certain highly allergenic foods, the American National Institute of Allergy and Infectious Diseases updated its guidelines on peanut allergy prevention in 2017 (58), recommending that peanut-containing food introduction should occur between 4 and 6 mo of age in egg-allergic infants and/or babies with severe eczema, and at 6 mo of age for infants with mild-to-moderate eczema. Recent guidelines from the American Academy of Pediatrics support these recommendations (52).

In their systematic review on FA prevention, the authors concluded that available evidence suggests that "introduction of small amounts of cooked egg into the infant diet as part of complementary feeding probably reduces the risk of egg allergy in infancy and in countries with a high prevalence of peanut allergy, introducing regular peanut consumption from 4–11 months of life in infants at increased risk probably results in a large reduction in peanut allergy in early childhood compared to completely avoiding peanut for the first five years" (39). In contrast, no reduction in FA incidence was found when multiple potential food allergens were simultaneously introduced into the infant diet from age 3 mo (56). Diet diversity during the first year of life might also have a positive role in determining the risk of FA. An increased diversity of complementary foods introduced in the first 12 mo of life was inversely associated with FA development up to 6 y old (59).

Is there a need for biomarkers to monitor dietary interventions to induce tolerance?

Food avoidance remains the main therapeutic approach in FA management, but researchers and clinicians are continuously seeking for intervention options. Controlled exposure to the allergens was suggested as a potential option for tolerance induction. Indeed, in recent years, oral immunotherapy (OIT) has been applied for several allergens to investigate whether desensitization and/or sustained unresponsiveness development is possible. A meta-analysis on the effect of OIT in reducing prevalence of cow milk allergy (CMA) concluded it is an effective therapy (60); however, frequency of adverse events is high and validity of outcome selection used to measure the efficacy of OIT is still unclear. Looking at an individual study level, there was no association of OIT in children (aged 6–17 y) and IgE concentrations between the treated and the control group, whereas IgG4 was significantly increased in the posttreatment group after OIT but there was only a slight increase in the control group (61). Recently, a cohort of 137 peanut-allergic child and adult patients (aged 6–26 y) were compared with non–peanut-allergic controls and differences between IgE, IgG4, and the ratio of IgG4/IgE were examined (62). These observations would imply that more data are needed on specific immunoglobulin E (sIgE) and IgG4 in monitoring tolerance induction over time before it can be concluded that these are reliable biomarkers for tolerance induction. There could be more potential for the increase in IgG4 in oral tolerance induction than the decrease in IgE. It is very important to note that there are no agreed core outcome measures in FA trials, which do not allow for appropriate effectiveness/efficacy evaluation (63). Different immunological parameters are currently used as end points in OIT trials, but available evidence of their importance is very limited (64).

What Is the Role of the Microbiota in FA?

A link between IgE-mediated FA and the gut microbiota composition and metabolic activity has been suggested. A recent study including 233 infants (>4 y old) with FA (milk, sesame, peanut, and tree nuts), and nonallergic controls showed a distinct microbial profile for FA to different foods.
characterized with an underrepresentation of *Prevotella copri* (65). In agreement, maternal carriage of *Prevotella copri* during pregnancy was also linked to a decreased risk of FA during infancy (66). Growing evidence supports a role for the gut microbiome in the pathogenesis and course of FA, with microbial dysbiosis preceding the development of FA (67). It has been reported that an elevated *Enterobacteriaceae/Bacteroidaceae* ratio in early infancy as well as lower microbial species richness in the infant (*n* = 166, ages 3 and 12 mo) might be a predictor of egg, milk, and peanut sensitization (determined by skin prick test) at age 12 mo, adjusting for birth delivery mode, antibiotic use, or breastfeeding (68). This raises the question of whether FA can be predicted using gut microbiome biomarkers (69). A study with 319 subjects enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) study showed that infants at risk of asthma exhibited transient gut microbial dysbiosis during the first 100 d of life characterized by lower relative abundance of *Lachnospira*, *Veillonella*, *Faealibacterium*, and *Rothia* species (70). Another study reported lower relative abundance of *Citrobacter*, *Oscillospira*, *Lactococcus*, and *Dorea* in stool samples collected at age 3–6 mo in children who had FA (milk, egg, peanut, wheat, soy, or other nut allergy) by the age of 3 y (71). In addition, *Firmicutes*, including clostridia, were enriched in the gut microbiota of infants at age 3–6 mo whose milk allergy resolved by 8 y of age (72), suggesting a potential predictive role of gut microbiota composition for FA. Interestingly, the specific microbiota signature can distinguish infants with IgE-mediated from non–IgE-mediated FA. Infants with IgE-mediated FA had increased concentrations of (cluster I) and *Anaerobacter* and decreased concentrations of *Bacteroides* and *Clostridium cluster XVIII*, with a positive correlation between *Clostridium sensu stricto* and serum...
sIgE (73). However, as with observational studies, it is not possible to assess causation between changes in microbial composition and FA (74). A study in adults with FA showed the opposite results with reduced Clostridiales, and increased Bacteroidales (75), suggesting that the changes observed in microbiota associated with allergy can be different depending on other factors such as age, ethnicity, geographical location, and lifestyle.

It is widely known that the early infant microbiota is influenced by several factors, including mode of birth, antibiotic use, and environmental exposures, that can contribute to the dysbiosis linked to allergy development (Figure 1) and would provide opportunities to develop strategies aimed at microbial modulation and decreasing the risk of FA (76).

C-section delivery and antibiotic exposition
Available evidence indicates that C-section is a possible risk factor for FA because the newborn infant bypasses the microbial exposure happening naturally during vaginal delivery, whereby a distinct gut microbiota is obtained (77). In general, infants born by C-section have lower concentrations of Bacteroides and lower diversity, which is a pattern also observed to precede the development of allergic symptoms in several studies (78). However, there is no clear evidence on C-section association with a higher risk of FA development, with studies producing contradictory results (79, 80). However, a 7-fold increased risk of parental-reported fish or nut allergy and a 4-fold increased risk of confirmed egg allergy were reported (81) in high-risk children born via C-section. C-section was found to be associated with other allergic diseases, such as allergic rhinitis (OR: 1.23; 95% CI: 1.12, 1.35), asthma (OR: 1.18; 95% CI: 1.05, 1.32), and allergic sensitization to foods (OR: 1.32; 95% CI: 1.12, 1.55) (82). Most of the C-sections are associated with antibiotic intrapartum. Antibiotic use (particularly cephalosporins and sulfonamides), including its frequency during pregnancy and first year of life, was linked with an increased risk of FA development (83), and is likely to reflect an indirect effect via infant gut microbiota dysbiosis (84, 85).

Breastfeeding practices
It has been shown that infants with CMA had an increased gut microbiota diversity and a higher prevalence of members belonging to the Lachnospiraceae family (Firmicutes phylum) compared with nonallergic infants (86). However, another study showed an inverse association between the early gut microbial diversity and the risk of allergic sensitization (87). A low gut microbiota richness, overrepresentation of Enterobacteriaceae, and underrepresentation of Bacteroidaceae (Bacteroidetes phylum) at 3 mo of age were associated with food sensitization in a subset of the CHILD study (68). Those associations were found in infants who were vaginally delivered, exclusively breastfed, and unexposed to antibiotics.

Breastfeeding practices were associated with lower diversity and higher concentrations of Bifidobacterium breve and B. bifidum (Actinobacteria phylum), and the cessation of breastfeeding resulted in faster maturation of the gut microbiota, as marked by an increase in the members belonging to the Firmicutes phylum (88). However, formula-fed infants had a more diverse microbiota with higher proportions of Clostridium spp. (Firmicutes phylum), and Enterobacteriaceae members (Proteobacteria phylum), but with lower bacterial count (89). Recent studies have shown that breast milk with a reduced microbial richness in the first month of life could play an important role in allergy development during childhood (90). Thus, the protection against allergy development provided by human milk might be attributable to the effect on the infant gut microbiota or direct effects on immune system; however, further studies are needed to evaluate the effect of breastfeeding and milk-specific compounds on FA (91).

Environmental exposures
Associations between living in affluent countries and allergic disease development are well known, and FA is no exception to the rule. A higher socioeconomic status (92) or living in developed societies were associated with an increased risk of FA development, although it is possible that variations in frequencies of studies and methodological variation also contribute to these geographic variations (4). Researchers suggest that farming lifestyle exposes pregnant women and their offspring to a wide variety of microorganisms, which urban inhabitants lack. Data from 2 large, prospective cohorts showed that exposure to a greater variety of environmental microorganisms was associated with a reduced risk of asthma development in "Prevention of Allergy—Risk Factors for Sensitization Related to Farming and Anthroposophic Lifestyle" (PARSIFAL study) (OR: 0.62; 95% CI: 0.44, 0.89) and in Multidisciplinary Study to Identify the Genetic and Environmental Causes of Asthma in the European Community (GABRIEL) Advanced Study (OR: 0.86; 95% CI: 0.75, 0.99) (93).

Dietary Interventions
Macronutrient and micronutrient associations with FA
A recent systematic review suggested that supplementation with fish oil [a source of long-chain omega-3 (n–3) fatty acids] during pregnancy and lactation can reduce risk of allergic sensitization to egg (RR: 0.69; 95% CI: 0.53, 0.90; I² = 15%; absolute risk reduction: 31 cases per 1000; 95% CI: 10, 47) (94). The Grading of Recommendations Assessment, Development and Evaluation certainty of these findings was moderate. In addition, in vitro and in vivo studies have demonstrated that n–3 PUFAs can modulate the activity of dendritic cells, T cells, and IgE production by B cells, reducing allergic sensitization (95).

Although vitamin D deficiency was linked with the development of allergic diseases (96), data relevant for FA are limited. Vitamin D deficiency linked with GG genotype producing less vitamin D binding protein was associated with
a higher prevalence of egg and peanut allergy in 1- and 2-
year-old infants (97). Use of vitamin D supplements during pregnancy to prevent FA was, however, unsuccessful, both in
an RCT (RR: 1.92; 95% CI: 0.57, 6.50) (98) and a case-control study (OR: 1.50; 95% CI: 0.78, 2.88) (99). Supplementation
during the first year of life resulted in a reduced risk of
FA development during the first 12 mo of life (RR: 0.49,
95% CI: 0.27, 0.88) (99). However, the confidence in this estimate is also very low owing to indirectness of the evidence
and risk of bias, as reported in a recent systematic review
on the subject (100). Overall, there is currently not enough
evidence to suggest that vitamin D supplements for pregnant
and/or breastfeeding women or infants have an effect on FA
development (39).

Dietary interventions targeting microbiota modulation:
prebiotics and probiotics
Targeted and personalized nutrition is an emerging strategy
to approach FA in early infancy including microbiome-modifying interventions with probiotics (Lactobacillus aci-
dophilus LAVRI A1, Lactaseibacillus rhamnosus GG),
prebiotics (long-chain fructo-oligosaccharides, short-chain
galacto-oligosaccharides), and human milk oligosaccharides
(2′-fucosyllactose, lacto-N-neotetraose) (101). The patho-
geneses of FA in early infancy and other associated events
such as dermatitis or asthma are still largely unknown, but
increasing evidence suggests that they are associated with a
perturbation of the gut microbiome, or microbial dysbiosis,
leading to alterations in the immune system that could
influence the occurrence of FA (102). In addition, FA derives
from a defect in immune tolerance mechanisms. Immune
tolerance is modulated by gut microbiota composition and
function. Therefore, the potential use of probiotics has
been highlighted to counteract microbial dysbiosis linked
to FA and boost microbiologically modulated tolerance because
probiotics could interact with the host microbiota and the
host immune system at the same time (103). In infants,
supplementation with specific probiotic strains might reduce
the risk of sensitization to cow milk (RR: 0.60; 95% CI: 0.37, 0.96) (104) although the quality of evidence is considered
low. In general, those studies combined maternal and infant
supplementation, and it is unclear if the effect was due to
the combination or the specific intervention (104–106). A
systematic review and meta-analysis was published recently,
suggesting that probiotic intake during late pregnancy
and lactation might reduce the risk of eczema (RR: 0.78; 95%
CI: 0.68, 0.90; I²: 61%; absolute risk reduction: 44 cases
per 1000; 95% CI: 20, 64) (94). There are some studies
associating the consumption of oligosaccharides in early
life with reduced incidence of atopic dermatitis and other
allergy manifestations (107, 108) with a lack of evidence in
FA and human studies. However, the evidence on the
use of prebiotics, probiotics, and synbiotics in breastfeeding
mothers and infants to reduce the risk of FA is inconclusive
(39). In an RCT, specialized infant formula enriched with
fructo-oligosaccharides and Bifidobacterium breve M-16V
could restore altered microbiota in non–IgE-mediated cow
milk–allergic infants bringing it close to the healthy breastfed
microbial profile when compared with the same formula
without the synbiotic (109). Increasing evidence suggests
that shifts in the neonatal gut microbiota composition,
activity, and diversity are implicated in the pathogenesis of FA
(Table 4).

Evidence for the Role of Microbial Metabolites
in FA
Increasing data are showing the key role of metabolites
in the host–microbe interaction as messengers and signals
between the microbiota and the immune system with an
impact on human health. A comprehensive understanding
of how microbiota-derived metabolites influence the human
immune system and health is critical for the rational design
of therapies for microbiota-driven diseases (110). Different
dietary patterns change the proportions and type of microbial
groups, influencing host exposure to microbial metabolites
(111), which in turn produce epigenetic changes. Although
no data are available for infants in their first year of life, in
older children and adults, a balanced low-fat and high-fiber
diet could be important in preventing perturbation of the
gut microbiome and preserving a functional immune system
(112). Little is known about the role of microbial metabolites
in FA but evidence is showing the impact of diet including
prebiotics on the production of microbial metabolites such as
SCFAs, polyamines, and even other compounds as toxins
(LPS, staphylococcal enterotoxin B, etc.).

SCFAs
Metabolites produced by intestinal microbiota, and in par-
ticular SCFAs, play a critical role in mediating the effect of
the gut microbiota on regulatory T-cell (Treg) proliferation
and differentiation both in vitro and in vivo (113). The
molecular mechanisms for this are not clearly elucidated
but butyrate can suppress NF-κB and STAT1 activation and
induce differentiation of colonic Treg cells by enhanced
histone acetylation (113–116). Moreover, these effects are
not confined to the gastrointestinal tract, and both butyrate
and propionate have been reported to influence peripheral
Treg development (117). The mechanisms involved in SCFA
regulation of T-cell differentiation would include the control
of cellular metabolism and the G-protein-coupled receptor
signaling pathways (118), and involve strong epigenetic
regulation through inhibition of histone deacetylases (102).
In particular, the effect of butyrate on Treg differentiation
could be through the increase of histone H3 acetylation in
the FOXP3 locus (117), and propionate seems to increase the
expression of FOXP3 and IL10 (119). These results could
explain the benefits of dietary fiber and bacteria, such as
Akkermansia muciniphila, Faccalibacterium prausnitzii, Eu-
bacterium, Bifidobacterium, Clostridium, and Ruminococcus,
typical SCFA producers, that can increase colonic luminal
SCFA concentrations and modulate the immune system
response (120, 121).

Some specific SCFAs have been reported to influence FA.
In detail, butyrate has a well-known inhibitory effect on
<table>
<thead>
<tr>
<th>Strain(s)</th>
<th>No. subjects</th>
<th>Intervention time</th>
<th>Target</th>
<th>Outcome(s)</th>
<th>Study type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus GG 1 × 10⁹ CFU</td>
<td>100 infants diagnosed with CMA</td>
<td>4 wk</td>
<td>Management of CMA</td>
<td>Significant improvement in symptoms of infants diagnosed with CMA. No impact on abdominal pain, constipation, and dermatitis.</td>
<td>Randomized, double-blind, placebo-controlled study</td>
<td>(168)</td>
</tr>
<tr>
<td>Synbiotic formula with a combination of Bifidobacterium breve M-16V and chicory-derived neutral oligofructose, long-chain inulin</td>
<td>122 infants [Sypiotic n = 35; Control n = 36; Reference n = 51]</td>
<td>8 wk</td>
<td>Management of severe or complex non-IgE-mediated CMA</td>
<td>↑% of Bifidobacterium and ↓% of Eubacterium rectale/Clostridium coccoides group in the test group. No significant results for the fecal secretory IgA and SCFAs.</td>
<td>Double-blind, randomized clinical trial with nonrandomized breastfed reference group</td>
<td>(169)</td>
</tr>
<tr>
<td>Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis</td>
<td>290 infants aged ~1 mo [Probiotic n = 144; Placebo n = 146]</td>
<td>6 mo</td>
<td>Allergic diseases and sensitization</td>
<td>↓% incidence of eczema. No effect on the incidence of asthma and conjunctivitis or sensitization.</td>
<td>Randomized, double-blind, placebo-controlled intervention</td>
<td>(170)</td>
</tr>
<tr>
<td>Amino acid–based formula (AAF) with fructo-oligosaccharides and Bifidobacterium breve M-16V Lactobacillus rhamnosus GG, L rhamnosus LC705 (DSM 7061), Bifidobacterium breve Bb99 (DSM 13,692), and Propionibacterium freudenreichii ssp. shermanii JS (DSM 7076)</td>
<td>51 infants aged <1 3 mo [Test n = 35; Control = 36.]</td>
<td>8 wk</td>
<td>Infant intervention for maternal-infant intervention Follow-up until 5 y</td>
<td>↑% Bifidobacterium in the AAF with probiotic and probiotic. ↓% IgE–associated allergic disease occurred in cesarean-delivered children. No allergy-preventive effect that extended to age 5 y.</td>
<td>Randomized, double-blind, placebo-controlled intervention</td>
<td>(109)</td>
</tr>
<tr>
<td>Meta-analyses</td>
<td>10 RT; n = 845 infants [Probiotics n=422; control n = 423]</td>
<td>Different intervention times</td>
<td>Management of infants with suspected/proven CMA</td>
<td>No impact on hematochezia in confirmed CMA, probiotics ↑ acquisition of tolerance to CMA at the end of 3 y.</td>
<td>Meta-analysis</td>
<td>(172)</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Strain(s)</th>
<th>No. subjects</th>
<th>Intervention time</th>
<th>Target</th>
<th>Outcome(s)</th>
<th>Study type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single or multiple organisms, grown as capsules, powder, or part of a drink or infant formula milk</td>
<td>28 trials RT; n=6705 participants</td>
<td>Maternal-infant intervention</td>
<td>Allergy prevention</td>
<td>↓ Risk of eczema and/or atopic eczema at age ≤4 y</td>
<td>Systematic review and meta-analysis</td>
<td>(94)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓ Allergic sensitization to cow milk at age 1–2 y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓ Risk of atopic eczemahypersensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When probiotics were administered either only prenatally or only postnatally, no effects on atopy and food hypersensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination of lactobacilli and bifidobacteria</td>
<td>17 trials; n=2947 infants</td>
<td>Maternal-infant intervention</td>
<td>Allergy prevention</td>
<td>↓ Risk of atopic eczema</td>
<td>Systematic review and meta-analysis</td>
<td>(173)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓ Risk of food hypersensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When probiotics were administered either only prenatally or only postnatally, no effects on atopy and food hypersensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↓ Risk ratio for atopic eczema</td>
<td>Meta-analysis</td>
<td>(174)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No impact on asthma, wheezing, or rhinoconjunctivitis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1AAF, amino acid–based formula; CMA, cow milk allergy; DSM, German Collection of Microorganisms and Cell Cultures; RT, randomized trial.

Other microbial metabolites

It has been suggested that some other microbial metabolites such as polyamines (139–143) and microbial metabolites such as histone deacetylases (114) and can induce the expression of noncoding RNAs (113, 116). Furthermore, a lower butyrate production and shifted gut microbiota composition toward an enrichment of

$Bacteroides$ and $Alistipes$ genera have been reported in infants with non–IgE-mediated CMA (122). Low concentrations of SCFAs at 1 y of age have been associated with questionnaire-reported symptoms of FA at 4 y (123). In addition, propionate has been associated with increased expression of FOXP3 and IL10 in colonic Treg cells (119). There are signals of an association between SCFA and Treg cell development and function by epigenetic mechanisms, but the influence of this association in the risk of FA is still not clear.

Other microbial metabolites

It has been suggested that some other microbial metabolites such as polyamines (139–143) and microbial metabolites such as histone deacetylases (114) and can induce the expression of noncoding RNAs (113, 116). Furthermore, a lower butyrate production and shifted gut microbiota composition toward an enrichment of $Bacteroides$ and $Alistipes$ genera have been reported in infants with non–IgE-mediated CMA (122). Low concentrations of SCFAs at 1 y of age have been associated with questionnaire-reported symptoms of FA at 4 y (123). In addition, propionate has been associated with increased expression of FOXP3 and IL10 in colonic Treg cells (119). There are signals of an association between SCFA and Treg cell development and function by epigenetic mechanisms, but the influence of this association in the risk of FA is still not clear.
Recommendation/Guidance for Future Research

FA research is now experiencing an exciting new era thanks to advances on immunological, microbiological, and epigenetic factors and their integration, increasing knowledge of risk factors and potential biomarkers. However, limited data are available to identify potential biomarker or biomarker combinations determining a risk reduction in FA. The EAACI has recently published a systematic review as a source of evidence to support the development of FA prevention guidelines (39). This systematic review included 46 intervention studies to reduce the risk of FA in infancy (≤1 y) or early childhood. Different interventions during pregnancy, lactation, and infancy, including dietary avoidance of food allergens, vitamin supplements, fish oil, probiotics, prebiotics, symbiotics, and emollients, were included. Results showed that interventions have little or no effect in preventing FA, but the evidence is very uncertain.

The systematic review concluded that most of the evidence has been published in the last 10 y, and still no clear data are available on preventing FA. There is a need to validate the potential benefits of early introduction of food allergens in a wider range of populations. Furthermore, there is a lack of studies analyzing serial and longitudinal biomarkers from birth up to adulthood, and clear biomarkers have not been identified until now. Promising potential biomarkers associated with FA, such as the depletion of key microbial components (e.g., *Bifidobacterium* and *Bacteroides* genus) or methylation profiles in the FOXP3 and IL10 genes, should be deeply evaluated in future studies.

To bridge the gap, more data are required on the maternal impact during gestation on fetal immune regulation as well as the immunometabolic profile of breast milk composition (immune cells, cytokines, hormones). There are also a limited number of studies focusing on immunology, microbiome, and diet, but few assess across the board. More cohort and intervention studies are needed to confirm which methylation profiles are suitable as biomarkers to monitor risk reduction of FA. Thus, designing nutritional intervention trials aimed at risk reduction of FA, or induction of tolerance, could need stratification based on specific risk factors to determine a design that is still feasible to execute. Indeed, the low incidence of oral food challenge–confirmed FA in the general population requires high numbers of infants to be able to detect a significant effect of an intervention. This review of currently available and emerging biomarkers linked to allergy can inform the design of future intervention studies. The available literature suggests that a highly collaborative approach spanning nutritional, genetic, and microbial biomarkers will be valuable in identifying panels of biomarkers that best predict FA, its severity, or its remission.

Acknowledgments

We thank Professor Philip Calder (University of Southampton, United Kingdom), Dr Jalil Benyacoub (Nestlé Health Science, Switzerland), Dr Stein-Erik Birkeland (Tine SA R&D, Norway), Dr Bruno Pot (Yakult Europe BV, The Netherlands), Dr Patrizia Bohnhorst (Procter & Gamble, Germany), Dr Elizabeth Forbes-Blom (Nestlé Research Center, Switzerland), and Professor Ascensión Marcos (ICTAN-CSIC, Spain) for their contributions to the discussions that form the basis of this article and their help in the reviewing phase. Dr Simeon Bourdoux and Mr Adam Coventry (ILSI Europe, Belgium) coordinated the work of authors and facilitated meetings and discussions.

The authors’ responsibilities were as follows—CEC, DM, LU, CG-G, MCC: wrote and revised the manuscript; LL, TR, SS, MT: assisted the previously cited authors in designing the structure of the manuscript and in reviewing the final content; and all authors: read and approved the final manuscript.

References

