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In our previous study [Phys. Rev. B 86, 201104 (2012).] we introduced the so-called quasi-non-uniform
gradient-level exchange-correlation approximation (QNA) and demonstrated its strength in producing highly
accurate equilibrium volumes for metals and their alloys within density-functional theory. In this paper we
extend the scheme to include the accuracy of the bulk modulus as an additional figure of merit and show that
this scheme is flexible enough to allow the computation of accurate equilibrium volumes and bulk moduli at the
same time. The power and feasibility of this scheme is demonstrated on NiAl and FeV binary alloys.
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I. INTRODUCTION

Density-functional theory [1,2] has become the most widely
used method in determining the electronic properties of
atoms, molecules and solids. It’s success stems from the
surprising accuracy of the earliest exchange-correlation (xc)
approximation, the local-density approximation (LDA) [2].
Going beyond LDA within the framework of the local density
formalism leads to gradient-level density functionals (GDFs),
which can be divided into two main families. The generalized
gradient approximation [3] (GGA) managed to stabilize the
diverging term in the second-order gradient expansion [2] and
gave, e.g., a qualitatively correct description for the ground
state of ferromagnetic iron [4–6]. The subsystem functional
approach (SFA) [7] originates from the nearsightedness prin-
ciple [8] and incorporates inhomogeneous electron density
effects through well-adapted model systems. For both GDF
families, LDA represents the lowest-order approximation and
thus the correct limit in systems with densities showing
negligible inhomogeneities. LDA together with the Perdew–
Burke–Ernzerhof (PBE) [9] GGA are the two most widely
used xc functionals for condensed matter.

In DFT, assuming proper numerical implementation of the
software, the accuracy of the results for well-converged cal-
culations depends only on the chosen xc functional. However,
there is no functional that could provide systematic accuracy
for a wide range of solids. In our previous work [10] we
introduced the concept of quasi-non-uniform gradient-level xc
approximation (QNA) and showed that it is able to produce
highly accurate equilibrium volumes for metals and their
alloys. This scheme is based on the observation that, for
metals, the beyond-LDA features of a GGA-type xc functional
only matter in the valence-core overlap regions centered
around the atomic sites. The error of a GDF is thus mainly
local in nature. This finding concurs with the discussions
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in Refs. [11–13] and it allows one to define a new SFA
in which each (element-specific) valence-core overlap region
constitutes a subsystem and these subsystems are connected by
the nearly homogeneous, LDA-like valence-electron sea. For
a general multicomponent system then, one can apply local
corrections in each core-valence overlap region separately and
the overall QNA functional can mathematically be expressed
as a superposition of the subsystem functionals, viz.

EQNA
xc [n] =

∑
q

∫
ωq

εLDA
x (n)F

optq
xc (rs,s)d3r, (1)

where rs = [3/(4πn)]1/3, s = |∇n|/[2n(3π2n)1/3], and F
optq
xc

in this case (see next paragraph) is the GGA enhancement
function of the subsystem functional for the alloy component
q. Around each atomic site q, the integration domain is within
ωq . These space-filling polyhedra ωq are defined so that the
gradient of the density (and thus s) vanishes on the boundary
of each ωq .

Defining the optimal subsystem functionals could be done
in different ways. In this work we use perhaps the simplest
procedure. Namely, all subsystem functionals have the same
analytical form and only some “tunable” parameters are
changed. Thus, for each element so-called “optimal” param-
eters have to be found. In our previous work (see Ref. [10])
these optimal parameters were chosen in such a way that the
error in equilibrium volume vanished. In this paper we extend
our scope and investigate how well this process can be done
when the error in equilibrium volume (V0) and bulk modulus
(B0) are both taken into account. To this end, for each element
we find such optimal parameters that minimize the objective
function that we have chosen to be the combined absolute
relative error:

f (∗args) = Wa
|a0(∗args) − aexpt|

aexpt
+ WB

|B0(∗args) − Bexpt|
Bexpt

,

(2)

where a is the lattice constant, B is the bulk modulus, expt
signifies experimental values and *args represents the tunable
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parameters that the functional form in use has. Wa and WB are
weights that can be chosen appropriately. We have chosen to
use the framework of PBE and PBEsol [14] due to its simple yet
powerful construction. PBE was designed to provide accurate
atomic energies whereas PBEsol was optimized for bulk and
surface systems by restoring the original gradient expansion
behavior for the exchange part and adjusting the correlation
term using the jellium surface exchange-correlation energies
obtained at meta-GGA level. Both PBE and PBEsol have two
parameters, μ and β, which control the strength of exchange
(μ) and correlation (β) corrections over LDA. Their PBE
and PBEsol values are (μ,β)PBE = (0.219 515,0.066 725)
and (μ,β)PBEsol = (0.123 457,0.046 000), respectively. Find-
ing optimal parameters, which is to say minimizing Eq. (2),
thus in this case becomes a two-dimensional optimization
problem. In this work such optimization for 25 elements has
been done. This group contains 10 cubic sp metals and 15
transition metals.

II. COMPUTATIONAL METHOD

The electronic structure and total-energy calculations from
which the optimal parameters were derived were performed
employing the exact muffin-tin orbitals (EMTO) method
[15–17]. Gradient corrections have been taken into account
in a non-self-consistent (NSC) manner, which is to say self-
consistent (SC) calculations were carried out within LDA and
the gradient terms were included in the total energy within the
perturbative approach [18]. The reason behind favoring
the NSC approach in this case is that it greatly reduces the
required computational time. This way the resource-intensive
self-consistent Kohn-Sham loops can be completed first so that
the optimization process only involves fast evaluations of the
total energy. For Cr self-consistent GGA was employed instead
of the perturbative approach. This is because, for antiferro-
magnetic Cr, the perturbative approach highly overestimates
the bulk modulus and self-consistent GGA becomes necessary
to correct for this error [19]. The Kohn-Sham equations
were solved within the scalar relativistic approximation and
the soft-core scheme. The Green’s function was calculated
for 16 complex energy points distributed exponentially on
a semicircular contour including the valence states and
employing the double Taylor expansion approach [20]. The
EMTO basis set included s, p, d, and f orbitals (lmax = 3), and
in the one-center expansion of the full charge density lhmax = 8
was used. The amount of inequivalent �k points was 27 434
and 28 884 in the irreducible wedge of the body-centered
cubic (bcc) and face-centered cubic (fcc) Brillouin zones,
respectively. The theoretical equilibrium lattice constants a0

and bulk moduli B0 were derived from the stabilized jellium
equations of state (SJEOS) [21] fitted to the ab initio total
energies calculated for 18 to 21 atomic volumes around the
equilibrium. For each element Eq. (2) was minimized with
weights Wa = WB = 1 under the constraints of keeping the
accuracy of the calculated Wigner–Seitz radius with respect to
the experimental value roughly inside ±0.005 Bohr and not
letting β become greater than 0.1.

To assess the transferability of these NSC-derived optimal
parameters into SC-GGA calculations additional SC-EMTO
and FP − (L)APW + lo Elk [22] calculations have been

carried out for Li, V, Fe, Cu, Nb, and Au. With Elk, a grid
of 21 × 21 × 21 �k points (286 in the irreducible wedge) was
used and Rmin

MT Kmax, which determines the size of the basis
set, was between 8 and 10. Spin-orbit coupling has been
taken into account for Au. Lattice constants and bulk moduli
were obtained from a SJEOS-fit to 10 to 11 points around the
equilibrium.

Based on our experience the differences between NSC-
EMTO and SC-EMTO results are expected to be quite
small (see Sec. III C). However, problems in the SC-EMTO
results may occur if the numerical derivatives of the density
(especially with the second derivative) are not being calculated
with sufficient accuracy. Even small deficiencies in the way
the derivatives are calculated can be detrimental, because the
error has a tendency to amplify itself after each iteration of the
self-consistent Kohn-Sham loop.

III. RESULTS AND DISCUSSION

All experimental lattice constants and bulk moduli have
either been reported at 0 K or extrapolated to 0 K using
the linear thermal expansion coefficients α from Ref. [23].
Zero-point phonon effects (ZPPE) have also been subtracted
out from both lattice constants and bulk moduli. For lattice
constants, ZPPEs are in the form of a zero-point anharmonic
expansion (ZPAE) and it can be estimated as explained in
Refs. [21] and [24] by using the expression

�a0

a0
= 1

3

�V0

V0
= 3

16
(B1 − 1)

kB�D

B0V0,at
, (3)

where �V0/V0 is the fractional volume change caused by
the inclusion of ZPAE leading to a correction �a0 to the
experimental lattice parameter a0. B1 is the pressure derivative
of the bulk modulus B0, �D is the Debye temperature (from
Ref. [25]), and V0,at is the experimental volume per atom. With
bulk moduli, the ZPPEs have been taken into account using
the procedure of Ref. [26], according to which

�B0 = B1(Pt + Pz) = B1

(
−�V

V
B − 3

16
B1

kB�D

B0V0,at

)
,

(4)

where Pt = −B�V/V is a small negative pressure associated
with the thermal expansion of a material and Pz is the effective
pressure required to mimic the effect of ZPPEs. In the present
application, we used the data from Refs. [13] and [27] and the
supplementary material from Ref. [28] to estimate B1 from
Eq. (3). For Cr, B1 was estimated by using the data from
Ref. [29]. The so-derived B1 values were used in Eq. (4).

In this work a group of 25 metals is considered. This group
contains monovalent sp metals (Li, Na, K, Rb, and Cs), cubic
divalent sp metals (Ca, Sr, and Ba), Al, Pb, and cubid 3d (V,
Cr, Fe, Ni, and Cu), 4d (Nb, Mo, Rh, Pd, and Ag), and 5d (Ta,
W, Ir, Pt, and Au) metals. Experimental lattice constants are
from Ref. [13] (Li, Na, K, Rb, Cs, Ca, Sr, Ba, Al, Pb, Cu, Rh,
Pd, and Ag), Ref. [27] (V, Fe, Ni, Nb, Mo, Ta, W, Ir, Pt, and
Au), and Ref. [23] (Cr). Experimental bulk moduli are from
Ref. [13] (Li, Na, K, Rb, Cs, Ca, Sr, Ba, Al, Pb, Cu, Rh, Pd,
and Ag), Ref. [30] (V), Ref. [25] (Cr, Ni, Nb, Mo, and Ir),
Ref. [31] (Fe), and Ref. [32] (Ta, W, Pt, and Au).
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TABLE I. Theoretical and experimental equilibrium lattice constants a0 (in Å) and bulk moduli B0 (in GPa) for the cubic sp, 3d , 4d , and
5d metals. Corresponding lattice structures are in parentheses. The experimental data have been corrected for temperature and ZPPE terms.
Results are shown for PBE, PBEsol, and QNA functionals. The best theoretical values and statistical data are in boldface.

a0 B0

Solid QNA PBE PBEsol Expt. QNA PBE PBEsol Expt.

Li (bcc) 3.444 3.437 3.434 3.449 13.5 13.9 13.7 13.8
Na (bcc) 4.204 4.200 4.171 4.210 7.55 7.77 7.91 7.63
K (bcc) 5.212 5.286 5.214 5.212 3.75 3.58 3.74 3.75
Rb (bcc) 5.581 5.667 5.564 5.576 2.95 2.82 2.99 2.92
Cs (bcc) 6.034 6.167 6.016 6.039 2.07 1.96 2.03 2.11
Ca (fcc) 5.546 5.540 5.472 5.553 17.9 17.3 17.9 18.6
Sr (fcc) 6.038 6.031 5.933 6.045 11.6 11.6 13.4 12.5

Ba (bcc) 4.991 5.014 4.865 4.995 8.33 8.09 8.28 9.34
Al (fcc) 4.018 4.045 4.019 4.020 80.8 76.8 81.3 80.8
Pb (fcc) 4.909 5.053 4.947 4.902 48.3 39.3 46.5 47.0
V (bcc) 3.024 2.998 2.958 3.024 163 177 190 161
Cr (bcc) 2.869 2.869 2.808 2.877 189 184 252 194
Fe (bcc) 2.854 2.838 2.793 2.853 175 189 220 174
Ni (fcc) 3.514 3.526 3.470 3.508 200 197 228 195

Cu (fcc) 3.602 3.637 3.571 3.595 150 139 167 144
Nb (bcc) 3.288 3.310 3.269 3.294 167 162 169 174
Mo (bcc) 3.137 3.164 3.131 3.141 266 249 266 278
Rh (fcc) 3.800 3.846 3.796 3.793 283 251 288 271
Pd (fcc) 3.882 3.958 3.890 3.875 204 165 201 196
Ag (fcc) 4.063 4.163 4.068 4.056 119 88.0 117 110
Ta (bcc) 3.295 3.326 3.287 3.299 195 187 196 198

W (bcc) 3.165 3.191 3.161 3.160 305 293 311 300
Ir (fcc) 3.838 3.890 3.850 3.831 386 340 377 365
Pt (fcc) 3.920 3.988 3.936 3.913 295 242 282 289
Au (fcc) 4.068 4.176 4.101 4.062 186 135 171 178
MEa (Å×10−2) 0.06 4.15 −2.23 ME (GPa) 2.20 −9.76 8.24
MAEb (Å×10−2) 0.52 4.95 3.52 MAE (GPa) 4.62 12.38 11.06
MREc (%) 0.02 0.95 −0.56 MRE (%) 0.14 −6.67 4.28
MAREd (%) 0.13 1.17 0.87 MARE (%) 3.32 8.41 7.13

aMean error.
bMean absolute error.
cMean relative error.
dMean absolute relative error.

Table I contains the calculated equilibrium lattice constants
and bulk moduli for the 25 elements considered as well as the
0 K estimated experimental values. Results for PBE, PBEsol,
and QNA functionals are included. Total mean error (ME),
mean absolute error (MAE), mean relative error (MRE), and
mean absolute relative error (MARE) for the lattice constants
as well as the bulk moduli are also listed at the bottom of the
table.

A. Lattice constants

The present trends for PBE and PBEsol are in line
with investigations that have studied the performance of
these functionals [13,27,33–36]. On average PBE tends to
overestimate the volume while PBEsol does the opposite (see
MEs and MREs in Table I). At least for the elements tested so
far, it is always possible to find such optimal μ and β that the
error in lattice constant vanishes. In fact, there is an infinite
amount of such {μ,β} pairs forming a continuous curve in the
{μ,β} space (see Fig. 1). If the accuracy of the bulk modulus

was not to be taken into consideration QNA’s MAE in Table I
for lattice constants would consequently be zero. Even with
the accuracy of the bulk modulus factored in, MAE of QNA is
an order of magnitude smaller than those of PBE and PBEsol.
In all but two cases QNA is able to produce the most accurate
lattice constant, with the exceptions being Rh and W. For Rh
and W, PBEsol already gives a very accurate lattice constant
and some of this accuracy has been given up in QNA to better
match the error in bulk modulus. The effect in both cases,
however, remains rather modest; QNA lattice constant is only
0.004 Bohr larger that that of the best-performing functional.

It has been explained in Ref. [12] how the calculated
equilibrium volume is determined by the slope dExc/dV ,
where V is some measure for the volume. In this paper
the Wigner–Seitz radius w will be used. Different slopes
for different functionals arise from the core-valence overlap
region with larger slopes corresponding to smaller volumes
and vice versa. By changing the parameters μ and β one can
manipulate the shape of the F

optq
xc (rs,s) map, which in turn
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LEVÄMÄKI, PUNKKINEN, KOKKO, AND VITOS PHYSICAL REVIEW B 89, 115107 (2014)

FIG. 1. QNA bulk modulus of V along the curve of such {μ,β}
pairs, which all yield the same optimal volume (the thick dashed line).

is going to determine the slope dExc/dw. In the interesting
region (core-valence overlap region) this slope is given by

∂Ecvor
xc

∂w
= A(G1 + G2 + G3), (5)

where A = (3/4)(3/π )1/3[3/(4π )]4/3 and “cvor” stands for
core-valence overlap region. The notation of Ref. [12] has
been used, in which

G1 =
∫

cvor

4

r5
s

drs

dw
Fxcd

3r, (6)

G2 = −
∫

cvor

1

r4
s

∂Fxc

∂rs

drs

dw
d3r, (7)

G3 = −
∫

cvor

1

r4
s

∂Fxc

∂s

ds

dw
d3r. (8)

It is the interplay of G1, G2, and G3 which determines the
slope and as a result the lattice constant. G1 is the strongest
and positive, while G2 and G3 are generally one to two orders
of magnitude weaker and negative in sign [12]. Note that for
LDA G3 is always zero since ∂Fxc/∂s is zero by definition. For
PBE, on the other hand, the ∂Fxc/∂s term is always positive
and relatively strong in the interesting region, as can be seen
in Fig. 2. This figure also displays the parametric curves of
rs and s of Au in the ẑ direction within the Wigner–Seitz
cell at the PBE and QNA equilibrium volumes. The solid
portions of these curves represent the core-valence overlap
region and they illustrate what kind of ∂Fxc/∂s values appear
inside the integral of Eq. (8) for PBE and QNA. As a result,
GPBE

3 cancels a fair amount out of GPBE
1 , leading to shallow

slopes and overestimated lattice constants for many solids.
But Au, for example, has optimal parameters μ = 0.125 and
β = 0.1 leading to a ∂Fxc/∂s map which, in the interesting
region, is weaker by roughly a factor of 2 to 3 compared to the

FIG. 2. (Color online) s-derivatives of the enhancement function
Fxc for (left) PBE and (right) QNA(Au). The thick black lines
represent the values of rs and s of Au in the ẑ direction within the
Wigner–Seitz cell at the PBE and QNA equilibrium volumes. The
solid portion of these lines represent the core-valence overlap region.
Dashed contour lines represent negative regions.

∂Fxc/∂s map of PBE (see Fig. 2). It also has negative areas
which partially cancel the contributions from positive areas,
even further undermining the significance of the G

QNA(Au)
3

contribution. This is why Au, for instance, prefers such a
choice of optimal parameters, since they lead to an LDA-like
steep dExc/dw slope and thus a correct lattice constant.

B. Bulk moduli

Unlike in Refs. [27,34–36], our results find the MAE (MUE
in Ref. [36]) of PBEsol is smaller than that of PBE. This is
at least partly due to the use of ZPPE-corrected experimental
bulk moduli. As PBEsol generally (except for Li in Table I)
produces larger bulk moduli than PBE, ZPPE corrections
favour PBEsol, since these corrections increase the values of
experimental bulk moduli. On average (MEs and MREs in
Table I), PBE produces bulk moduli that are too small and
PBEsol bulk moduli that are too large, while QNA has no
strong bias towards either overestimation or underestimation.

In terms of bulk modulus, the improvements offered by
QNA approximation are very clear. In most cases such good
optimal parameters can be found that MAE and MARE of
QNA in Table I are less than a half of the MAE and MARE of
PBEsol. For many of the heavier elements, however, PBEsol
produces the most accurate bulk modulus. Ba seems to be a
difficult case as the relative error of the QNA bulk modulus
remains at 11%.

The value of the calculated bulk modulus of different
functionals is mostly determined by the volume dependence
of the total energy, which causes the error in the bulk modulus
to be inversely related to the error in the lattice constant [37].
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This is, for example, why LDA tends to overestimate bulk
moduli while PBE underestimates them. There is, however, a
secondary effect which becomes important within QNA when
the value of the bulk modulus is tuned while keeping the
volume fixed to its optimal value. This secondary effect is the
contribution coming from the curvature ∂2Exc/∂w2 of the Exc

vs V curve. Increasing (decreasing) the negative curvature of
the Exc vs V curve while keeping the overall slope (difference
between the end points) fixed moves points higher (lower) in
energy near the equilibrium volume and makes the Etot vs
V curve shallower (deeper) thus giving smaller (higher) bulk
modulus. The curvature arising from the interesting region is
of the form

∂2Ecvor
xc

∂w2
= A(H1 + H2 + H3 + H4 + H5 + H6), (9)

where the six contributors H1–H6 have been grouped in terms
of the enhancement factor Fxc and its derivatives, and they are

H1 =
∫

cvor
Fxc

[
4

r5
s

d2rs

dw2
− 20

r6
s

(
drs

dw

)2]
d3r, (10)

H2 =
∫

cvor

∂Fxc

∂rs

[
8

r5
s

(
drs

dw

)2

− 1

r4
s

d2rs

dw2

]
d3r, (11)

H3 =
∫

cvor

∂Fxc

∂s

[
8

r5
s

drs

dw

ds

dw
− 1

r4
s

d2s

dw2

]
d3r, (12)

H4 = −
∫

cvor

∂2Fxc

∂s∂rs

2

r4
s

drs

dw

ds

dw
d3r, (13)

H5 = −
∫

cvor

∂2Fxc

∂r2
s

1

r4
s

(
drs

dw

)2

d3r, (14)

H6 = −
∫

cvor

∂2Fxc

∂s2

1

r4
s

(
ds

dw

)2

d3r. (15)

Similarly to Eq. (5), the biggest contribution comes from
the negative H1 term. The second most important terms are H2,
H3, and H6, while H4 and H5 most of the time yield practically
negligible contributions, because the second partial derivatives
of Fxc involving ∂/∂rs generally tend to be small. ∂Fxc/∂s and
∂2Fxc/∂s2 terms are much more sensitive to the details of
the functional than their rs counterparts, making H3 and H6

contributions vary between high importance and insignificance
depending on the actual case (see Table II). d2rs/dw2 and
d2s/dw2 seem to be of the same order of magnitude as each
other as well as with drs/dw and ds/dw. For most elements
tested the curvature becomes smaller in magnitude, which is to
say the value of the bulk modulus increases as we move higher
in β along the curve of fixed optimal volume in {μ,β} space.
Figure 1 displays one such curve for V. The heaviest elements
Pb and Au have the opposite behavior. Not as clear a trend has
been observed with elements having small bulk modulus, such
as Li, which could be due to numerical difficulties associated
with very shallow Etot vs V curves.

To better understand how these differences in curvatures as
a function of optimal β come about, we have approximated the
terms G1–G3 and H1–H6 by calculating them in the ẑ direction
inside the core-valence overlap region within the Wigner–Seitz

TABLE II. Calculated values of G1-G3, Gtot, H1-H6, and Htot for
V and Au using three different equivolume {μ,β} pairs.

V, a0 = 3.024 Å Au, a0 = 4.068 Å

μ 0.1880 0.2995 0.2945 0.0168 0.0969 0.1250
β 0.0050 0.0500 0.1000 0.005 0.0500 0.1000
B0 (GPa) 163 167 170 188 188 187
G1 0.856 0.854 0.840 0.614 0.608 0.597
G2 −0.016 −0.015 −0.013 −0.012 −0.011 −0.009
G3 −0.078 −0.077 −0.066 −0.001 −0.003 −0.006
Gtot 0.762 0.762 0.761 0.601 0.594 0.584

H1 −2.159 −2.155 −2.118 −2.004 −1.985 −1.953
H2 0.052 0.047 0.041 0.046 0.040 0.032
H3 0.183 0.187 0.169 0.003 0.009 0.018
H4 0.000 0.005 0.008 0.000 0.006 0.012
H5 0.003 0.002 0.002 0.001 0.001 0.001
H6 −0.036 −0.037 −0.051 −0.001 −0.029 −0.068
Htot −1.957 −1.950 −1.948 −1.955 −1.958 −1.959

cell at the QNA equilibrium volume for V and Au. The NSC
approach has been used, which means that rs , s and their first
and second derivatives stay the same and only Fxc and its
derivatives change between different sets of calculations.

Table II shows results for three different pairs of optimal μ

and β, yielding the same volume as in Table I. The sums Gtot =
G1 + G2 + G3 and Htot = H1 + H2 + H3 + H4 + H5 + H6,
respectively describing the slope and curvature of an Exc

vs V curve, are in decent agreement with the observable
trends relating to calculated volumes and bulk moduli as
μ and β are changed. Gtot stays nearly constant (except
for Au in the high-β limit), as it should since all three
pairs of μ and β give identical equilibrium volumes. Gtot

also respects sequences GLDA
tot > GPBEsol

tot > GPBE
tot > G

QNA(V)
tot

and GLDA
tot ≈ G

QNA(Au)
tot > GPBEsol

tot > GPBE
tot (not shown), which

agrees with the observed ordering of the lattice constants.
For V (Au) Htot decreases (increases) in magnitude with

increasing β, which agrees with the way bulk modulus evolves
through increasing β. Despite H1 being a major part of Htot,
looking at H1 alone is not enough to explain these trends. For
Au all terms except H5 have to be taken into account to make
Htot slowly increase in magnitude as β is increased.

C. Optimal parameters

Optimal parameters minimizing the combined error in
lattice constant and bulk modulus for the selected elements
are presented in Table III. They are also laid out graphically
in {μ,β} space in Fig. 3. The best optimal values yielding
nearly vanishing errors can generally be obtained in cases
where either PBE or PBEsol tends to underestimate the lattice
constant but overestimate bulk modulus, or vice versa. This
feature enables efficient matching of the volume and bulk
modulus errors, since increasing volume generally decreases
the value of bulk modulus and vice versa. Note that while
it is possible to completely minimize the error either in
lattice constant or bulk modulus, it is much more difficult
to completely minimize both errors at the same time. The
presently employed PBE or PBEsol functional form is not
flexible enough to allow for that.
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TABLE III. Values of optimal parameters which minimize the
combined error in lattice constant and bulk modulus [Eq. (2)] for the
selected solids.

Solid μopt βopt

Li (bcc) 0.087 8000 0.071 8111
Na (bcc) 0.096 0000 0.000 0010
K (bcc) 0.118 7816 0.047 2974
Rb (bcc) 0.122 0000 0.055 0631
Cs (bcc) 0.133 3000 0.018 0581
Ca (fcc) 0.150 0000 0.100 0000

Sr (fcc) 0.147 0000 0.005 0000
Ba (bcc) 0.195 0000 0.027 3746
Al (fcc) 0.114 7214 0.040 1048
Pb (fcc) 0.126 0000 0.100 0000
V (bcc) 0.188 0000 0.005 0000
Cr (bcc) 0.075 0000 0.000 2000

Fe (bcc) 0.148 5000 0.005 0000
Ni (fcc) 0.102 0000 0.005 0000
Cu (fcc) 0.079 5000 0.005 0000
Nb (bcc) 0.173 0000 0.100 0000
Mo (bcc) 0.160 0000 0.100 0000
Rh (fcc) 0.050 0000 0.005 0000

Pd (fcc) 0.141 5645 0.100 0000
Ag (fcc) 0.107 0000 0.035 3330
Ta (bcc) 0.145 0000 0.065 4408
W (bcc) 0.060 5000 0.005 0000
Ir (fcc) 0.025 0000 0.005 0000
Pt (fcc) 0.113 0000 0.056 1219
Au (fcc) 0.125 0000 0.100 0000

In light of the mean errors in Table I constructing a
functional out of element-specific subfunctionals is one clear
way of improving accuracy, while it has proven to be difficult
to design an element independent GGA-level functional form
that would have a consistent performance across the periodic
table [10,27]. The difficulty lies in the fact that while some
pair of elements assume fairly similar values of rs and s

in the core-valence overlap region, they might require very
differently shaped F

optq
xc (rs,s) maps. As a result an element

independent functional with only one Fxc(rs,s) map would
have to be able to change its shape very rapidly and nontrivially
as a function of rs and s over relatively short distances.

For the sake of reducing computational time the optimiza-
tion process was done using NSC-GGA, i.e., self-consistent
calculations were performed at LDA level and gradient
corrections were included in the total energies as perturbations.
To test the validity of these NSC-derived optimal parameters
in conjunction with a fully self-consistent method further
SC-EMTO and FP-(L)APW + lo Elk calculations for Li,
V, Fe, Cu, Nb, and Au were carried out. Results of these
calculations along with the accompanying experimental values
are presented in Table IV.

The differences between NSC-EMTO and SC-EMTO
lattice parameters are very small. Bulk moduli show minor
deviations with the ∼−4 GPa difference of Fe being the
most notable. Similar observation concerning the discrepancy
between the NSC and SC bulk moduli of Fe has been made in
Ref. [18] where it was attributed to a connection between the

FIG. 3. (Color online) Optimal parameters for the selected
monatomic solids. PBE and PBEsol points as well as the mean of
the QNA optimal parameters are also drawn as annotated.

gradient effects and the nonspherical spin densities of Fe. In
our case, however, the SC treatment increases the bulk modulus
of Fe, while in Ref. [18] (all-electron FP-KKR) it decreased.

Elk results in general agree very well with the NSC-EMTO
calculations and thus with the experimental values. For Au the
Elk lattice parameter becomes too small and bulk modulus

TABLE IV. Self-consistent GGA lattice constants a0 (in Å) and
bulk moduli (in GPa) calculated with EMTO and Elk using PBE and
QNA functionals for Li, V, Fe, Cu, Nb, and Au. QNA is using the
optimal parameters from Table III. �a (in Å × 10−3) and �B (in GPa)
indicate the difference compared to the NSC-EMTO results of Table I
for QNA (“NSC − SC” or “NSC − Elk”).

EMTO
a0 B0

Solid QNA PBE �a QNA PBE �B

Li (bcc) 3.442 3.433 2 13.5 14.0 0
V (bcc) 3.023 2.996 1 164 176 −1
Fe (bcc) 2.854 2.836 0 179 193 −4
Cu (fcc) 3.602 3.637 0 150 139 0
Nb (bcc) 3.286 3.308 2 165 160 2
Au (fcc) 4.069 4.177 −1 185 135 1

Elk
a0 B0

Solid QNA PBE �a QNA PBE �B

Li (bcc) 3.442 3.433 2 13.5 13.9 0
V (bcc) 3.027 3.002 −3 170 181 −7
Fe (bcc) 2.850 2.834 4 177 194 −2
Cu (fcc) 3.598 3.632 4 153 141 −3
Nb (bcc) 3.294 3.314 −6 176 169 −9
Au (fcc) 4.048 4.149 199 145
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too high, but this is mostly due to the inclusion of spin-
orbit coupling, which was not present in the NSC-EMTO
calculations. Elk bulk moduli show some differences. This
is expected, since by comparing, for example, the results of
Table I and Ref. [34] (PBE, EMTO) to the results in the
supplementary material of Ref. [28] (PBE, WIEN2K) one
can see that bulk moduli in Elk and in methods similar to
Elk [FP-(L)APW+lo] tend to be higher than their EMTO
counterparts for many of the 3d, 4d, and 5d metals. For
solids such as Nb, for which QNA underestimates the bulk
modulus, this is only beneficial. On the other hand, for solids
with overestimated NSC-QNA bulk moduli the SC-QNA
bulk modulus can be further overestimated depending on the
employed computational method. Therefore, depending on
the solid and the used computational method, it might be
necessary to further optimize the values given in Table III
to make them better suited for SC-QNA calculations. For
example, optimal μ for Au should be increased from its value
of 0.125 to compensate for the inclusion of spin-orbit coupling.
Generally speaking, increasing μ will increase (decrease) the
calculated lattice constant (bulk modulus) and vice versa, while
increasing β tends to decrease (increase) the calculated lattice
constant (bulk modulus) up to some element specific point,
after which the trend is reversed (see Fig. 2 of Ref. [10]).

It is interesting to note how in Fig. 3 the mean value
of the optimal parameters nearly coincides with the PBEsol
parameters. If the restriction β � 0.1 were to be lifted to allow
Ca, Nb, Mo, Pd, Au, and Pb (see Fig. 3 and Table III) to have
even higher values of optimal β, the agreement between the
mean and PBEsol parameters would be even more convincing.
It is not, however, surprising that the mean should be closer
to PBEsol parameters than those of PBE, since PBEsol was
designed for solids, so perhaps the mean of the optimal
parameters can thus be viewed as an alternative confirmation
of the PBEsol parameters.

D. Applications

The performance of QNA scheme is tested on random
Fe1−xVx solid solution and ordered NiAl intermetallic com-
pound having bcc and B2 structures, respectively. Previously,
good performance for VW solid solution and CuAu (L10) and
Cu3Au (L12) intermetallic compounds has been reported [10].
Here FeV was treated using the NSC-GGA approach and
coherent potential approximation [39,40] and for both FeV
and NiAl optimal parameters from Table III were used. The
experimental values are from Ref. [38] (FeV) and Ref. [27]
(NiAl). For FeV the experimental values have not been
corrected to 0 K (room temperature). The experimental values
of NiAl are extrapolated to 0 K and the lattice constant includes
ZPAEs but the bulk modulus does not include ZPPEs. The
results are gathered in Table V. It is no surprise that PBE
underestimates the lattice constant of FeV, since it does so
for both of the constituents. This results in the PBE bulk
modulus being too large, as well. QNA corrects for these
errors, improving the description of both quantities. At high V
concentrations QNA lattice constant starts to deviate from the
experimental value, which is due to the fact that the optimal
parameters of V were calculated using the 0 K ZPAE-corrected
experimental value (3.024 Å) which is markedly smaller than

TABLE V. Lattice constants a0 (in Å) and bulk moduli (in
GPa) for bcc Fe1−xVx and B2 NiAl calculated with EMTO using
PBE and QNA functionals. QNA is using the optimal parameters
from Table III. Experimental values from Ref. [38] (FeV, room
temperature) and Ref. [27] (NiAl, 0 K) are also included.

EMTO

a0 B0

Solid QNA PBE Expt. QNA PBE Expt.
NiAl (B2) 2.881 2.894 2.882 163 159 156
Fe (bcc) 2.854 2.838 2.858 175 189 170
Fe75V25 (bcc) 2.889 2.870 2.886 171 184 166
Fe50V50 (bcc) 2.919 2.897 2.914 169 183 161
Fe25V75 (bcc) 2.948 2.924 2.963 188 202 182
Fe6V94 (bcc) 3.004 2.978 3.020 169 183 172
V (bcc) 3.024 2.998 3.042 163 177 163

the room temperature value of Table V (3.042 Å). 0 K
corrections to the experimental values would significantly
improve the accuracy at the V-rich end.

The PBE lattice constant of NiAl is too large but the bulk
modulus is reproduced quite accurately due to cancellation
of errors. QNA on the other hand gives an accurate lattice
constant at the expense of slightly overestimated bulk modulus.
We would like to highlight that the optimal parameters of Al
and Ni were determined for their equilibrium fcc structures
whereas NiAl adopts a bcc-like B2 structure. Hence, our
findings demonstrate that at ambient conditions the optimal
parameters are not dependent on the crystal structure and
chemical environment. However, they might be sensitive to
extremely high pressure, which is a question to be investigated
in the future.

IV. CONCLUSIONS

We have investigated the flexibility of the quasi-non-
uniform xc approximation and have shown it to be able to
significantly improve the description of lattice constants and
bulk moduli over the currently used popular GGA functionals
for a large set of metals and their alloys. QNA achieves this
by applying local corrections separately in each core-valence
overlap region of the system at hand. Designing a uniform,
element-independent functional that would have a similar,
consistent accuracy across the periodic table seems to be a
rather difficult task. For any element tested, it is possible to
completely minimize the error either in calculated volume or
the bulk modulus but it is much more difficult to completely
minimize both errors at the same time. The presently employed
PBE functional form is not flexible enough to allow this.
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LEVÄMÄKI, PUNKKINEN, KOKKO, AND VITOS PHYSICAL REVIEW B 89, 115107 (2014)

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] K. Burke, J. P. Perdew, and M. Ernzerhof, Int. J. Quantum Chem.

61, 287 (1997).
[4] P. Bagno, O. Jepsen, and O. Gunnarsson, Phys. Rev. B 40, 1997

(1989).
[5] D. J. Singh, W. E. Pickett, and H. Krakauer, Phys. Rev. B 43,

11628 (1991).
[6] B. Barbiellini, E. G. Moroni, and T. Jarlborg, J. Phys.: Cond.

Matter 2, 7597 (1990).
[7] R. Armiento and A. E. Mattsson, Phys. Rev. B 66, 165117

(2002).
[8] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
[9] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
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and P. H. Dederichs, Phys. Rev. B 60, 5202 (1999).

[19] R. Hafner, D. Spisak, R. Lorenz, and J. Hafner, Phys. Rev. B
65, 184432 (2002).

[20] A. E. Kissavos, L. Vitos, and I. A. Abrikosov, Phys. Rev. B 75,
115117 (2007).

[21] A. B. Alchagirov, J. P. Perdew, J. C. Boettger, R. C. Albers, and
C. Fiolhais, Phys. Rev. B 63, 224115 (2001).

[22] http://elk.sourceforge.net/.
[23] W. M. Haynes, CRC Handbook of Chemistry and Physics,

94th ed. (CRC press, Boca Raton, 2013).
[24] V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Phys.

Rev. B 69, 075102 (2004).
[25] C. Kittel and P. McEuen, Introduction to Solid State Physics

(Wiley, Hoboken, 2005).
[26] R. Gaudoin and W. M. C. Foulkes, Phys. Rev. B 66, 052104

(2002).
[27] P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104

(2009).
[28] P. Haas, F. Tran, P. Blaha, and K. Schwarz, Phys. Rev. B 83,

205117 (2011).
[29] K. A. Gschneider Jr., in Solid State Physics: Advances in

Research and Applications, edited by H. Ehrenreich and D.
Turnbull (Academic, New York, 1964), Vol. 16, p. 276.

[30] D. I. Bolef, R. E. Smith, and J. G. Miller, Phys. Rev. B 3, 4100
(1971).

[31] J. J. Adams, D. S. Agosta, R. G. Leisure, and H. Ledbetter,
J. Appl. Phys. 100, 113530 (2006).

[32] A. Dewaele, P. Loubeyre, and M. Mezouar, Phys. Rev. B 70,
094112 (2004).

[33] A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills,
and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).

[34] M. Ropo, K. Kokko, and L. Vitos, Phys. Rev. B 77, 195445
(2008).

[35] P. Janthon, S. M. Kozlov, F. Vines, J. Limtrakul, and F. Illas,
J. Chem. Theory Comput. 9, 1631 (2013).

[36] F. Labat, E. Bremond, P. Cortona, and C. Adamo, J. Mol. Model.
19, 2791 (2013).

[37] B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Rev. B 76,
024309 (2007).

[38] M. S. Lucas, J. A. Munoz, O. Delaire, N. D. Markovskiy, M. B.
Stone, D. L. Abernathy, I. Halevy, L. Mauger, J. B. Keith,
M. L. Winterrose, Y. Xiao, M. Lerche, and B. Fultz, Phys. Rev.
B 82, 144306 (2010).

[39] P. Soven, Phys. Rev. 156, 809 (1967).
[40] B. L. Györffy, Phys. Rev. B 5, 2382 (1972).

115107-8

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9
http://dx.doi.org/10.1103/PhysRevB.40.1997
http://dx.doi.org/10.1103/PhysRevB.40.1997
http://dx.doi.org/10.1103/PhysRevB.40.1997
http://dx.doi.org/10.1103/PhysRevB.40.1997
http://dx.doi.org/10.1103/PhysRevB.43.11628
http://dx.doi.org/10.1103/PhysRevB.43.11628
http://dx.doi.org/10.1103/PhysRevB.43.11628
http://dx.doi.org/10.1103/PhysRevB.43.11628
http://dx.doi.org/10.1088/0953-8984/2/37/005
http://dx.doi.org/10.1088/0953-8984/2/37/005
http://dx.doi.org/10.1088/0953-8984/2/37/005
http://dx.doi.org/10.1088/0953-8984/2/37/005
http://dx.doi.org/10.1103/PhysRevB.66.165117
http://dx.doi.org/10.1103/PhysRevB.66.165117
http://dx.doi.org/10.1103/PhysRevB.66.165117
http://dx.doi.org/10.1103/PhysRevB.66.165117
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.76.3168
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.86.201104
http://dx.doi.org/10.1103/PhysRevB.86.201104
http://dx.doi.org/10.1103/PhysRevB.86.201104
http://dx.doi.org/10.1103/PhysRevB.86.201104
http://dx.doi.org/10.1103/PhysRevB.57.2134
http://dx.doi.org/10.1103/PhysRevB.57.2134
http://dx.doi.org/10.1103/PhysRevB.57.2134
http://dx.doi.org/10.1103/PhysRevB.57.2134
http://dx.doi.org/10.1103/PhysRevB.80.195109
http://dx.doi.org/10.1103/PhysRevB.80.195109
http://dx.doi.org/10.1103/PhysRevB.80.195109
http://dx.doi.org/10.1103/PhysRevB.80.195109
http://dx.doi.org/10.1103/PhysRevB.79.155107
http://dx.doi.org/10.1103/PhysRevB.79.155107
http://dx.doi.org/10.1103/PhysRevB.79.155107
http://dx.doi.org/10.1103/PhysRevB.79.155107
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevB.64.014107
http://dx.doi.org/10.1103/PhysRevB.64.014107
http://dx.doi.org/10.1103/PhysRevB.64.014107
http://dx.doi.org/10.1103/PhysRevB.64.014107
http://dx.doi.org/10.1103/PhysRevLett.87.156401
http://dx.doi.org/10.1103/PhysRevLett.87.156401
http://dx.doi.org/10.1103/PhysRevLett.87.156401
http://dx.doi.org/10.1103/PhysRevLett.87.156401
http://dx.doi.org/10.1103/PhysRevB.60.5202
http://dx.doi.org/10.1103/PhysRevB.60.5202
http://dx.doi.org/10.1103/PhysRevB.60.5202
http://dx.doi.org/10.1103/PhysRevB.60.5202
http://dx.doi.org/10.1103/PhysRevB.65.184432
http://dx.doi.org/10.1103/PhysRevB.65.184432
http://dx.doi.org/10.1103/PhysRevB.65.184432
http://dx.doi.org/10.1103/PhysRevB.65.184432
http://dx.doi.org/10.1103/PhysRevB.75.115117
http://dx.doi.org/10.1103/PhysRevB.75.115117
http://dx.doi.org/10.1103/PhysRevB.75.115117
http://dx.doi.org/10.1103/PhysRevB.75.115117
http://dx.doi.org/10.1103/PhysRevB.63.224115
http://dx.doi.org/10.1103/PhysRevB.63.224115
http://dx.doi.org/10.1103/PhysRevB.63.224115
http://dx.doi.org/10.1103/PhysRevB.63.224115
http://elk.sourceforge.net/
http://dx.doi.org/10.1103/PhysRevB.69.075102
http://dx.doi.org/10.1103/PhysRevB.69.075102
http://dx.doi.org/10.1103/PhysRevB.69.075102
http://dx.doi.org/10.1103/PhysRevB.69.075102
http://dx.doi.org/10.1103/PhysRevB.66.052104
http://dx.doi.org/10.1103/PhysRevB.66.052104
http://dx.doi.org/10.1103/PhysRevB.66.052104
http://dx.doi.org/10.1103/PhysRevB.66.052104
http://dx.doi.org/10.1103/PhysRevB.79.085104
http://dx.doi.org/10.1103/PhysRevB.79.085104
http://dx.doi.org/10.1103/PhysRevB.79.085104
http://dx.doi.org/10.1103/PhysRevB.79.085104
http://dx.doi.org/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1103/PhysRevB.83.205117
http://dx.doi.org/10.1103/PhysRevB.3.4100
http://dx.doi.org/10.1103/PhysRevB.3.4100
http://dx.doi.org/10.1103/PhysRevB.3.4100
http://dx.doi.org/10.1103/PhysRevB.3.4100
http://dx.doi.org/10.1063/1.2365714
http://dx.doi.org/10.1063/1.2365714
http://dx.doi.org/10.1063/1.2365714
http://dx.doi.org/10.1063/1.2365714
http://dx.doi.org/10.1103/PhysRevB.70.094112
http://dx.doi.org/10.1103/PhysRevB.70.094112
http://dx.doi.org/10.1103/PhysRevB.70.094112
http://dx.doi.org/10.1103/PhysRevB.70.094112
http://dx.doi.org/10.1063/1.2835596
http://dx.doi.org/10.1063/1.2835596
http://dx.doi.org/10.1063/1.2835596
http://dx.doi.org/10.1063/1.2835596
http://dx.doi.org/10.1103/PhysRevB.77.195445
http://dx.doi.org/10.1103/PhysRevB.77.195445
http://dx.doi.org/10.1103/PhysRevB.77.195445
http://dx.doi.org/10.1103/PhysRevB.77.195445
http://dx.doi.org/10.1021/ct3010326
http://dx.doi.org/10.1021/ct3010326
http://dx.doi.org/10.1021/ct3010326
http://dx.doi.org/10.1021/ct3010326
http://dx.doi.org/10.1007/s00894-012-1646-2
http://dx.doi.org/10.1007/s00894-012-1646-2
http://dx.doi.org/10.1007/s00894-012-1646-2
http://dx.doi.org/10.1007/s00894-012-1646-2
http://dx.doi.org/10.1103/PhysRevB.76.024309
http://dx.doi.org/10.1103/PhysRevB.76.024309
http://dx.doi.org/10.1103/PhysRevB.76.024309
http://dx.doi.org/10.1103/PhysRevB.76.024309
http://dx.doi.org/10.1103/PhysRevB.82.144306
http://dx.doi.org/10.1103/PhysRevB.82.144306
http://dx.doi.org/10.1103/PhysRevB.82.144306
http://dx.doi.org/10.1103/PhysRevB.82.144306
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRevB.5.2382
http://dx.doi.org/10.1103/PhysRevB.5.2382
http://dx.doi.org/10.1103/PhysRevB.5.2382
http://dx.doi.org/10.1103/PhysRevB.5.2382



