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Abstract

Objective: Sleep disturbances are associated with increased risk of migraine,

however the extent of shared underlying biology and the direction of causal

relationships between these traits is unclear. Delineating causality between sleep

patterns and migraine may offer new pathophysiologic insights and inform sub-

sequent intervention studies. Here, we used genetic approaches to test for

shared genetic influences between sleep patterns and migraine, and to test

whether habitual sleep patterns may be causal risk factors for migraine and vice

versa. Methods: To quantify genetic overlap, we performed genome-wide

genetic correlation analyses using genome-wide association studies of nine sleep

traits in the UK Biobank (n ≥ 237,627), and migraine from the International

Headache Genetics Consortium (59,674 cases and 316,078 controls). We then

tested for potential causal effects between sleep traits and migraine using bidi-

rectional, two-sample Mendelian randomization. Results: Seven sleep traits

demonstrated genetic overlap with migraine, including insomnia symptoms

(rg = 0.29, P < 10�31) and difficulty awakening (rg = 0.11, P < 10�4). Men-

delian randomization analyses provided evidence for potential causal effects of

difficulty awakening on risk of migraine (OR [95% CI] = 1.37 [1.12–1.68],
P = 0.002), and nominal evidence that liability to insomnia symptoms increased

the risk of migraine (1.09 [1.02–1.16], P = 0.02). In contrast, there was mini-

mal evidence for an effect of migraine liability on sleep patterns or distur-

bances. Interpretation: These data support a shared genetic basis between

several sleep traits and migraine, and support potential causal effects of diffi-

culty awakening and insomnia symptoms on migraine risk. Treatment of sleep

disturbances may therefore be a promising clinical intervention in the manage-

ment of migraine.

Introduction

Migraine is a debilitating and highly prevalent chronic pain

condition that is a leading contributor to disability

worldwide.1 By the time of clinical presentation, those with

migraine are more likely to report several comorbidities,

including several sleep disturbances and disorders (re-

viewed by Vgontzas and Pavlovi�c).2–6 Prospective studies
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have found associations between insomnia and increased

risk for incident migraine diagnosis7 and vice versa. Despite

this epidemiologic evidence, there remain several unan-

swered questions about the relationship between migraine

and sleep. Although both migraine (SNP-based heritability

15%)8 and sleep traits (SNP-based heritability ranging from

6.9% to 17%)9–12 are heritable, it is unknown whether this

comorbidity is driven, at least partly, by shared genetic

influences. It is also unknown whether causality underlies

this comorbidity,4 as associations in epidemiologic studies

are potentially biased by residual confounding and reverse

causality. Delineating causality between sleep patterns and

migraine may offer new pathophysiologic insights into

these traits and inform subsequent intervention trials.

Causality can be investigated using Mendelian random-

ization (MR).13 MR can be conceptualized as a natural

experiment whereby individuals are randomly allocated to

lifelong greater exposure to a given risk factor (e.g.,

insomnia symptoms) based on their genetic risk, and then

the risk of a disease outcome (e.g., migraine) as a func-

tion of this exposure is measured later in life.14 The valid-

ity of this approach rests on the random assortment of

genetic alleles at gametogenesis, thereby rendering the

alleles relatively unconfounded by environmental factors.

Moreover, inherited genetic variation is fixed at birth and

is therefore not modifiable by environmental factors or

disease status. MR has been previously used to examine

causal relationships between migraine and dementia,15

blood pressure,16 and cardiovascular disease.17,18

The availability of large-scale genome-wide association

studies (GWAS) for sleep traits9–12 (n ≤ 452,071) and

migraine8 (n = 375,752) now provides an opportunity to

test shared genetic predisposition and causal effects. Here,

we leveraged cross-trait LD Score regression19 and MR20

using recently available data from the UK Biobank cohort

and the largest GWAS of migraine8 to, respectively, assess

for a shared genetic basis and for potential causal effects

between sleep traits and migraine.

Methods

Data sources: sleep GWAS

Sleep traits in UK Biobank

Genetic associations for sleep traits were obtained from

published9,10,12,21 and unpublished GWAS summary

statistics in UK Biobank (UKB) participants of European

ancestry (methodologic details given in Data S1; GWAS

characteristics listed in Table S1). We considered GWAS

for all sleep traits ascertained in UKB: sleep duration,12

morning diurnal preference (also referred to as “chrono-

type”),10 daytime napping frequency,22 snoring, insomnia

symptoms,9 difficulty awakening, and daytime sleepiness23

(phenotype definitions and GWAS procedures are pro-

vided in Data S1 and Table S2). We selected all available

sleep traits so as to provide an unbiased survey of the

relationship between sleep health and migraine. The ques-

tion used to define self-reported insomnia symptoms in

UKB has been shown to be sensitive and specific for clini-

cally diagnosed insomnia disorder in an independent

sample.24 Although daytime sleepiness is generally investi-

gated as an outcome, we included it as an exposure here

because the genetic architecture of daytime sleepiness sug-

gests that the trait may partly reflect sleep fragmenta-

tion.6,23 Genetic variants that associate with sleep traits in

these GWAS also strongly associate with corresponding

objective measures of sleep.21

Data sources: migraine GWAS

We obtained genetic associations with migraine from the

largest available meta-analysis of genome-wide association

studies (GWAS) of migraine conducted by the Interna-

tional Headache Genetics Consortium (IHGC).8 This

study comprised 59,674 cases and 316,078 controls from

22 GWA studies (including 23andMe), conducted using

data from six tertiary headache clinics (n = 20,395) and

27 population-based cohorts (n = 355,357). Characteris-

tics of each of the contributing cohorts have been previ-

ously described.8 Migraine cases were defined using a

range of different approaches across the cohorts including

self-report, questionnaires assessing diagnostic criteria,

and diagnosis by a trained clinician interviewer. All par-

ticipants had genetically verified European ancestry.

Genetic correlation analyses

We calculated genome-wide genetic correlations (rg)

using cross-trait LD Score regression with precomputed

LD scores19,25 (Data S1). A positive genetic correlation

differing from 0 implies that genetic variants increasing

risk for one trait tend to also increase risk for the other

trait.

Mendelian randomization analyses

The design of our MR analysis is shown in Figure 1, with

details of data harmonization provided in the Data S1.

The primary MR method was random-effects inverse-

variance weighted (IVW) regression,26 with sleep and

migraine alternately used as exposure or outcome. For

ordinal phenotypes (Table S1), a one-unit increase in the

genetic instrument corresponds to a unit increase in the

ordinal scale. For dichotomous phenotypes, a one-unit

increase in the genetic instrument reflects a doubling in

the odds of the exposure trait.27
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Sensitivity analyses

MR provides strong evidence for causality under the fol-

lowing assumptions14: (1) the genetic instrument is

strongly associated with the exposure, (2) the genetic

instrument is not associated with confounders, and (3)

the genetic instrument only affects the outcome through

its effect on the exposure (i.e., no horizontal pleio-

tropy).14 As the second MR assumption is generally satis-

fied by the use of randomly allocated alleles as

instrumental variables and by control for population

stratification in GWAS, we focused on approaches to

address assumptions 1 and 3. Broadly, to address assump-

tion 1 we performed sensitivity analyses using stronger

genetic instruments for insomnia. To assess assumption 3,

we used four models robust to various forms of pleio-

tropy, and tested for pleiotropy between the exposures

and other sleep traits, and between the exposures and

psychiatric comorbidities (depression and anxiety symp-

toms). Technical details regarding these sensitivity analy-

ses are provided in the Data S1.

Hypothesis testing and statistical software

The Bonferonni-adjusted threshold for MR analyses

accounted for 14 forward and reverse MR tests (without

double-counting short and long sleep duration, which are

highly correlated with sleep duration measured continu-

ously12), yielding an alpha threshold of 0.05/14 = 0.0036.

The corrected alpha threshold in genetic correlation analyses

was 0.05/7 = 0.007. P values less than these corrected alpha

thresholds were considered to represent significant evidence

for causal effects, and P < 0.05 was considered to represent

nominal evidence for a causal effect. Analyses were

performed using the LDSC software,19,25 R version 3.5.0 and

the TwoSampleMR28 package, and the GSMR29 software.30

Standard protocol approvals, registrations,
and patient consents

All UKB participants provided written informed consent,

and all data used in this study were deidentified. Sleep

GWAS data are available at the Sleep Disorder Knowledge

portal (see data links). The IGHC migraine GWAS sum-

mary statistics including data from 23andMe were pro-

vided under a Data Transfer Agreement by 23andMe.

Results

Migraine shares genetic determinants with
multiple sleep patterns and disturbances

As sleep disturbances are comorbid with migraine and are

also heritable, we first tested if the traits have shared

genetic influences using cross-trait LD score regression.25

Migraine was genetically correlated with seven out of nine

sleep patterns or disturbances after Bonferonni correction

P < 0.007; Table 1). Insomnia symptoms had the stron-

gest and most significant evidence for a shared genetic

basis with migraine (rg [95% CI] 0.29 [0.25–0.33],
P = 1.87 9 10�32), with weaker correlations between

migraine and short sleep duration (0.18 [0.12–0.24],
P = 1.69 9 10�9), difficulty awakening (0.11 [0.05–0.17],
P = 2.02 9 10�5), and daytime napping (0.11 [0.05–
0.17], P = 1.31 9 10�5). There was no evidence for a

genetic correlation between migraine and morning diur-

nal preference (�0.03 [�0.07–0.01], P = 0.24) or snoring

(0.01 [�0.05–0.07], P = 0.84).

Figure 1. Mendelian randomization analysis pipeline. GWAS, genome-wide association study; IHGC, international headache genetics consortium;

UKB, UK Biobank
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Mendelian randomization analyses support
causal effects of difficulty awakening and
insomnia symptoms on migraine

To investigate whether any of the sleep traits causally

influence migraine susceptibility, we performed two-sam-

ple MR analyses using established genetic signals to proxy

each of the sleep exposures (Fig. 2; Table S1). There was

evidence for a significant effect of difficulty awakening on

migraine (OR [95% CI] 1.37 [1.12–1.68], P = 0.002).

There was also nominal evidence for an effect of liability

to insomnia symptoms on migraine (1.09 [1.02–1.16],
P = 0.015). Removing weakly correlated SNPs (using a

stricter clumping threshold of r2 < 0.001 vs. r2 < 0.01)

yielded nearly identical effect estimates for insomnia (36

SNPs; 1.09 [1.01–1.17], P = 0.019) and for difficulty

awakening (71 SNPs; 1.37 [1.10–1.71], P = 0.006). MR

estimates were null for the effect of all other sleep traits

on migraine susceptibility (Fig. 2).

Mendelian randomization estimates are
robust in sensitivity analyses

We first tested whether results were consistent when using

a genetic instrument for insomnia symptoms developed

from a meta-analysis of the UK Biobank and 23andme

studies (n = 1.3 million24). Using this 195-SNP genetic

instrument, we found a slightly stronger and more signifi-

cant estimate for a causal effect of liability to insomnia

symptoms on migraine (1.14 [1.11–1.16], P = 7.64

9 10�24).
We next tested whether MR results were robust to sen-

sitivity analyses assessing the validity of the assumption of

no horizontal pleiotropy. The MR estimates were largely

consistent in four model-based sensitivity analyses for

pleiotropy (Fig. S1; Table S6). Leave-one-out plots

revealed that the rs113851554 variant in MEIS1 flipped

the Egger regression effect estimate for insomnia on

migraine (Fig. S2). In analyses without this variant, the

Egger effect estimate was directionally concordant with

the IVW estimate but had wide confidence intervals

(Fig. S1). No outliers were detected in any other leave-

one-out analyses (Figs. S3–S5).
We next performed sensitivity analyses to determine

whether the MR estimates were biased by pleiotropy with

other sleep traits or with MDD. There was no evidence

for a causal effect of liability to restless legs syndrome

(RLS) on migraine susceptibility, suggesting that effects of

insomnia symptoms on migraine are not driven by pleio-

tropic effects of the variants on RLS (1.03 [0.99–1.07],
P = 0.10). The effects of insomnia symptoms and diffi-

culty awakening on migraine were consistent when

excluding variants associated at genome-wide significance

with other sleep traits, and in multivariable MR modeling

pleiotropic effects on both exposures (Fig. S1). The MR

estimates for the effect of insomnia symptoms on

migraine were partly attenuated but remained significant

Table 1. Genetic correlations between migraine and sleep traits

Sleep trait1
Genetic correlation

with migraine (SE) P value

Morning diurnal preference �0.03 (0.02) 0.24

Difficulty awakening 0.11 (0.03) 2.02 9 10�5*

Insomnia symptoms 0.29 (0.02) 1.87 9 10�32*

Long sleep duration (≥9h) 0.12 (0.04) 7.60 9 10�4*

Short sleep duration (<7h) 0.18 (0.03) 1.69 9 10�9*

Sleep duration (hours) �0.08 (0.03) 1.56 9 10�3*

Napping 0.11 (0.03) 1.31 9 10�5*

Daytime sleepiness 0.09 (0.03) 1.21 9 10�4*

Snoring 0.01 (0.03) 0.84

GWAS, genome-wide association study; SE, standard error.
1The LDSC intercept ranged from 1.02 (daytime sleepiness) to 1.06

(morning diurnal preference), consistent with the absence of uncon-

trolled confounding. Z scores for heritability were all greater than 419,

supporting the validity of genetic correlation analyses.

*P less than Bonferonni-corrected threshold of 0.05/7 = 0.007.

Figure 2. Forest plot of two-sample Mendelian randomization estimates for effects of sleep phenotypes on risk of migraine (59,674 cases and

316,078 controls). Estimates were obtained using the random-effects inverse-variance weighted method. CI, confidence interval
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in multivariable MR when adjusting for genetic associa-

tions with MDD or anxious symptoms (Fig. S1).

Mendelian randomization does not support
causal effects of migraine on sleep patterns
and disturbances

We next assessed whether genetic liability to migraine

impacted habitual sleep patterns and disturbances. Genet-

ically predicted liability to migraine did not significantly

influence any sleep disturbances, with confidence intervals

excluding large effects (Fig. 3; Table S8). There was sug-

gestive evidence for a weak effect of migraine liability on

increased napping (0.01 unit increase in napping fre-

quency [0.003, 0.017], P = 0.007), with consistent esti-

mates across sensitivity analyses (Table S9).

Discussion

We leveraged genetic methods to investigate comorbidity

and causality between migraine and sleep disturbances.

We found evidence for shared genetic influences between

multiple sleep traits and migraine, as well as potential

causal effects of insomnia symptoms and difficulty awak-

ening on migraine. These effects were robust in sensitivity

analyses for horizontal pleiotropy and there was no evi-

dence for strong effects in the reverse direction.

We found evidence f shared genetic influences between

several sleep traits and migraine, with the strongest

genetic correlation found with insomnia symptoms

(rg = 0.29). With the exception of a previously reported

genetic correlation of migraine with MDD of 0.32, the

magnitude of genetic overlap between insomnia and

migraine was greater than that reported for most other

common disease traits in the UK Biobank18 and in previ-

ous studies,31,32,16 suggesting more shared underlying

biology between migraine and insomnia than migraine

and other cardiometabolic, neuropsychiatric and immune

phenotypes. Weaker but highly significant correlations of

migraine were seen with other sleep duration and quality

traits, confirming that the highly pleiotropic migraine

genetic loci also influence sleep traits. As the sample size

for migraine GWAS grows, future cross-phenotype analy-

ses may identify specific loci underlying these genetic cor-

relations. Although prior work has demonstrated that rare

mutations in the casein kinase (CK Id) gene may simulta-

neously cause familial migraine and advanced sleep phase

syndrome,33 our work showed no evidence for an overall

shared genetic basis for migraine and morning diurnal

preference. This suggests that genetic variation in circa-

dian rhythms may not generally have an important effect

on migraine etiology, but certain circadian genes (e.g.,

CK Id) may have pleiotropic roles in migraine via path-

ways unrelated to their circadian effects.33

Mendelian randomization analyses suggested a causal

effect of insomnia symptoms on migraine, adding support

to findings from prospective epidemiologic studies.7 This

estimate was consistent across sensitivity analyses, and

was stronger in a secondary analysis using a larger num-

ber of insomnia SNPs from a meta-analysis of UK Bio-

bank and 23andMe. These variants were only used in

sensitivity analyses because sample overlap of the insom-

nia symptoms GWAS (288,557 insomnia cases and

655,920 controls from 23andMe)24 with the migraine

GWAS (30,465 migraine cases and 143,147 controls from

23andMe)8 may bias effect estimates away from the null.

However, this bias is unlikely to be large given that the

degree of case overlap is not large (up to 30,465 migraine

GWAS cases included in the insomnia GWAS of

n = 1,331,010; 3%) and that the genetic instrument for

insomnia is strong (F-statistic > 10).34 Given the nominal

statistical evidence for this finding, additional replication

in independent samples with well-defined and validated

diagnostic criteria for insomnia will strengthen confidence

Figure 3. Forest plot of two-sample Mendelian randomization estimates for effect of genetic liability of migraine on sleep traits. Thirty-five single

nucelotide polymorphisms were used as genetic proxies for migraine liability. Estimates were obtained using the random-effects inverse-variance

weighted method. MR estimates for binary outcomes (insomnia symptoms, long sleep duration, short sleep duration, and snoring) are reported

on the log-odds scale. CI, confidence interval
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in this effect. Nevertheless, the evidence from this study

supports findings from longitudinal epidemiologic studies

of insomnia and migraine (reviewed by Uhlig et al.).7

One of the largest studies to date (26,197 participants

from the HUNT study) reported that individuals with

insomnia at baseline had a relative risk of 1.40 (95% CI

1.0–1.9; P = 0.02) for migraine after 11 years of follow

up.35 Our results are also consistent with evidence from a

clinical trial of cognitive behavioral therapy for insomnia

in patients with migraine, in which treatment of insomnia

reduced migraine frequency.36 Although insomnia symp-

toms are genetically correlated with short sleep dura-

tion,9,12 there was no significant effect of genetically

proxied self-reported short sleep duration on migraine.

This is in contrast to prior MR analyses which found

concordant effects of insomnia and short sleep duration

on coronary artery disease risk,9,37 suggesting that the

short sleep component of insomnia may be less relevant

to the etiology of migraine. Rather, other features of

insomnia such as hyperarousal may play more prominent

roles in the etiology of migraine.38

Relative to insomnia, less is known about the phe-

nomenon of difficulty awakening, which in some settings is

referred to as sleep inertia.39,40 Difficulty awakening is inver-

sely genetically correlated24 with morning diurnal preference

(rg = �0.78) and with insomnia symptoms (rg = 0.23) and

may therefore reflect a combination of circadian misalign-

ment and interrupted sleep.39,24 However, we did not find

evidence for a causal effect of morning diurnal preference on

migraine. This suggests that the effect of difficulty awaken-

ing onmigraine may be driven by disturbances to sleep qual-

ity rather than through circadian mechanisms. Difficulty

awakening40 may also be a consequence of psychiatric

comorbidities, and prior work has highlighted genetic corre-

lations between sleep and psychiatric comorbidities,9,12 and

between migraine and psychiatric disease.31 This motivated

multivariable MR analyses adjusting MR estimates for

potential pleiotropy with MDD and with anxious symp-

toms. We found partial attenuation of the MR estimates for

both difficulty awakening and insomnia symptoms on

migraine when adjusting for MDD, however the adjusted

MR estimate remained significant. This finding is consistent

with prior epidemiologic analyses that have shown that sleep

disturbances influence migraine risk independently of MDD

and anxiety.41 This suggests that sleep disturbances directly

influence migraine risk independently of psychiatric comor-

bidities and therefore warrant intervention in their own

right.

There was minimal evidence for an effect of migraine on

any of the sleep patterns or disturbances. While longitudi-

nal epidemiologic studies lasting up to 11 years have sug-

gested potential effects of migraine on insomnia risk,7,35

our results are in line with microlongitudinal studies that

have not shown effects of migraine headaches on next-day

sleep.42 We did, however, identify a small effect of migraine

liability on increased napping frequency. The use of naps

as an acute abortive treatment for migraine2 may be one

possible mechanism mediating this effect. The generally

null effects of migraine on habitual sleep patterns do not

exclude an acute effect of a migraine episode on sleep. An

analogy may be drawn to the relationship of caffeine with

sleep, where MR analyses have not shown causal effects of

caffeine on sleep patterns,43 suggesting discordance

between effects of short and long-term caffeine consump-

tion. Similarly, while a migraine headache may acutely

interrupt sleep, we did not find strong evidence for effects

of migraine liability on sustained sleep patterns.

There are several potential pathways by which sleep

quality or insomnia symptoms may influence migraine

susceptibility. Cortical excitability, a potential mechanism

of migraine pathophysiology,44 may be increased by

insomnia.45 Sleep disturbances2,46 may also reduce pain

thresholds47 and cause dysfunction of the glymphatic sys-

tem, resulting in accumulation of nociceptive CNS

waste.4,41 Finally, difficulty awakening may reflect slow

clearance of CNS adenosine,39 with the consequent

increases in adenosine increasing the likelihood of head-

ache onset.48 Additional work is necessary to determine

which of these pathways, if any, are relevant to the effect

of sleep disturbances on migraine.

We acknowledge limitations to this work. First,

although we incorporated sensitivity analyses for horizon-

tal pleiotropy, we cannot fully exclude the influence of

this potential bias. Second, MR power calculators are not

currently designed for ordinal or binary exposures, so we

focused on interpretation of the confidence intervals to

determine whether the bounds contained clinically rele-

vant effects. Third, single, self-reported questions are less

reliable for phenotyping than validated scales or physi-

cian-diagnosed insomnia, which were unavailable in UKB.

Fourth, the known common variant contributions to

migraine primarily reflect the genetic architecture of

migraine without aura (MO), which is the most prevalent

form of migraine.8 Our findings may therefore have

greater relevance to the pain component of migraine,

which is more prominent in MO.49 This limitation may

be addressed in future analyses as genetic data on

migraine with aura become more robust. Finally, the

selection of relatively healthy individuals into UKB may

limit generalizability to less healthy populations and to

populations of non-European ancestry.

Conclusion

The genetic determinants of sleep and migraine are partly

overlapping. Sleep disturbances may causally influence
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migraine etiology, and are promising targets for the treat-

ment of migraine.
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