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Short-range correlations in Ag-Au and Ag-Pd alloys are investigated by analyzing the ab initio
total energy of face centered cubic (fcc) based random AgcAu1−c and AgcPd1−c. Since the infor-
mation on the atomic interactions is incorporated in the energetics of alloys it is possible with a
suitable model, Bethe-Peierls-Weiss model is used in the present work, to invert the problem, i.e.
to obtain information on the short-range correlation from the total energy of a random system.
As an example we demonstrate how site correlations can be extracted from random alloy data.
Bethe-Peierls-Weiss model predicts negative (positive) first neighbor correlator for substitutional
fcc Ag-Au and (Ag-Pd) alloys at low temperature which can be related to the optimal structures of
Ag0.5Au0.5 (and Ag0.5Pd0.5).

I. INTRODUCTION

Short-range order (SRO) in metallic alloys may induce changes in the properties of the alloys. This topic has been
a subject of research in numerous investigations.1–15 In the present work we study how the random alloy data can be
used to extract information of the ordering tendences of the alloys.
For test cases we adopt Ag-Au and Ag-Pd alloys. Ag-Au alloys are widely studied both experimentally and

theoretically and they are considered to be alloys whose properties are well known and can be explained within the
nearest-neighbor model.7,14 The low-temperature short-range order of Ag-Pd has attracted theoretical research for
several decades. Results supporting phase separation16,17 as well as ordering1,5,11,15,18–21 have been reported. Due to
the low transition temperature predicted for the disorder-order transition direct experimental observation concerning
this matter is still lacking.
In the present work, we reanalyze the Ag-X (X=Au, Pd) binary alloy systems using a spin lattice model beyond

the simplest mean field (Weiss) model. We employ Bethe-Peierls-Weiss (BPW) model,22 which, in contrast to Weiss
model, incorporates non-vanishing correlators of neighboring atomic sites. Therefore it is suitable for extracting
ordering information on the binary system in hand. To get an overview of the feasibility of the proposed method
we restrict here to the nearest-neighbor interactions combined with averaged interactions beyond the nearest-neigbor
level. To go beyond the nearest neighbor formalism in exact form would incerase the complexcity of the calculations
by 2-3 orders of magnitude. This is, however, beyond the scope of the present investigation and it is left for the future
study. However, we extend the BPW model by introducing a parameter controlling the beyond-the-nearest-neighbor
coupling.

II. BPW MODEL

The lattice structure of binary alloys can be modeled by spin (Ising) lattices identifying spin states ±1 of a particular
site with occupation of a given atom, say A or B. For spin model calculations one has to specify the interaction energies
between the sites. This can be done, for instance, by fitting the calculated lattice quantities to the corresponding
observed or simulated ones.
In the following we model Ag-X by an Ising-lattice with N sites each associated with spin σi = ±1, i = 1, . . . N .

We identify the spin state σi = +1 with the occupation of the site i by a Ag atom and σi = −1 with the occupation
of the site i by an X atom. The average concentration of the whole lattice is fixed by requiring that there is N+ sites
with σi = +1 and N− sites with σi = −1 (N++N− = N). The average concentration of Ag atoms is then c = N+/N
and the expectation value over all lattice sites is

⟨σ⟩ =
∑

i σi

N
=

N+ −N−

N
= 2c− 1. (1)

Considering only two-particle interactions the state sum is

Z =
∑

{σi}N
i=1

e−βE , (2)
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where the sum is over all spin configurations with constraint
∑

i σi = (2c−1)N and β = (kBT )
−1, kB is the Boltzmann

constant and T temperature. The total energy (E) is written as the sum of pairwise interaction energies

E =
1

2

∑
i ̸=j

Eij =
∑
i>j

Eij . (3)

An important quantity measuring the ordering of spins is the correlator

gi,j = ⟨σiσj⟩ − ⟨σi⟩⟨σj⟩. (4)

Here gi,j ∈ [−1, 1], gi,j < 0 (> 0) corresponds to spins at sites i and j tending to align antiparallel (parallel), whereas
the case gi,j = 0 corresponds to completely random alignment.
In practise to calculate the state sum in Eq. (2) one has to make further approximation. In the following we use the

nearest neighbor (NN) approximation, where only the closest atom sites are included in the energy sum (3). While
Ising models include only two-site interactions, our task requires to include the multi-site interactions to the model.
Formally this is done by allowing the Ising model parameters to depend on the concentration c, so that many-site
interactions are effectively and on the average taken into account.
Thus in NN-models only the nearest neighbor sites contribute to the energy and for a fixed concentration c only

effective energy for a site is given. For that purpose we define the pair interaction energy as

Eij =

{
ϵ(c) + ∆ϵ(c) σiσj +

1
2 ϵ̄(c) (σi + σj) i, j are NN

0 otherwise
(5)

Suppose now, that the site i of the Ising-lattice has νi nearest neighbors j ∈ Ni. This number νi is the coordination
number of the site i. Then the energy of the whole system is

E =
1

2

∑
i ̸=j

Eij =
1

2

N∑
i=1

∑
j∈Ni

Eij =
1

2

N∑
i=1

Ei, (6)

where

Ei =
∑
j∈Ni

Eij (7)

is the effective energy of the site i. In this sum there is νi addends and reads for (5) as

Ei = νi(ϵ+
1

2
ϵ̄ σi) + (∆ϵ σi +

1

2
ϵ̄)

∑
j∈Ni

σj . (8)

To go beyond mean field models we treat the system by BPW model.22 In BPW model each site i interacts with
its ν nearest neighbors23 i1, . . . iν, which in part interact with their NN’s other that i itself, i.e. with ν − 1 sites. The
interaction energy of neighbors of i are included exactly, whereas the interaction of the neighbors with their neighbors
is calculated using mean field. Thus, instead of Eq. (7) the energy of a site i is

Ei =
∑
j∈Ni

Eij + k
∑
j∈Ni

∑
l∈Nj , l ̸=i

⟨Ejl⟩σl

= ν ϵ+
1

2
ϵ̄ ν σi + (∆ϵ σi +

1

2
ϵ̄)(σi1 + · · ·+ σiν) (9)

+k (ν − 1)[ν ϵ+ (∆ϵ⟨σ⟩+ 1

2
ϵ̄)(σi1 + · · ·+ σiν)

+
1

2
νϵ̄⟨σ⟩],

where k is the control parameter regulating the importance of the next-to-nearest interactions of the basic cluster.
The choice k = 1 corresponds to the normal BPW model. For Ag-Pd the effective pair interactions just at the first two
coordination shells are needed to qualitatively understand the ordering energy,19 while in the Ag-Au system the first
coordination shell is the most dominant.7,8,14 Moreover the parameter k can be used to obtain specific thermodynamic
quantities by differentiation.
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For ν NNs of site i we denote the number of σij = +1 by n+ and the number of σij = −1 by n−, so that n++n− = ν
and

Ei = E(σi, n+) ≡ ν ϵ+
1

2
ϵ̄ ν σi + (∆ϵ σi +

1

2
ϵ̄)(n+ − n−)

+ k (ν − 1)[ν ϵ+ (∆ϵ⟨σ⟩+ 1

2
ϵ̄)(n+ − n−) +

1

2
νϵ̄⟨σ⟩]

= ν

[
ϵ− 1

2
ϵ̄+ k(ν − 1)

{
ϵ−∆ϵ⟨σ⟩ − 1

2
ϵ̄ (1− ⟨σ⟩)

}]
+ν[

1

2
ϵ̄−∆ϵ]σi

+

[
∆ϵ σi +

1

2
ϵ̄+ k(ν − 1)

{
∆ϵ⟨σ⟩+ 1

2
ϵ̄

}]
2n+. (10)

When n+ ≪ N+ and ν ≪ N we may approximate that configuration of the ν neighbors of a fixed site i is effectively
independent on all other sites. This is the main idea of Bethe-Peierls approximation.24 However, BPW-approximation
is widely used to model short-range correlation in various statistical systems.25,26 The accuracy of this approximation
is however not clear, as there is no known error estimation method; PBW model has an uncontrolled error.
There would be two straightforward possibilities for next step improvement of the model beyond the BPW-

approximation. By increasing the number of the exact interactions, one may extend the exact cluster in the spirit
of Bethe lattice by including the interactions between NN’s and their NN’s, whose other interactions are included as
effective mean field interactions. In the case of FCC lattice, where ν = 12, the size of exact cluster is ν2−3ν+1 = 109
sites, the number of exact interactions is ν2 = 144 and effective interactions ν(2 ∋ −11) = 156. However, as all
interactions are between NN’s only, the stucture of the lattice is taken in the account at the same level as in the BPW
model: only the (first) coordination number defineds the structure. Another possibility is to include exact interac-
tions with the second neighbors within the exact cluster. For the second coordination number ν2 (= 6 for FCC) the
exact cluster size is ν + ν2 + 1 = 19, the number of exact interactions is 5ν + ν2 = 66 and mean field interactions
is ν(ν + ν2) + 3ν + 7ν2 = 186. This approach carries more information on the lattice structure but is more compli-
cated to calculate due to two kind interactions it includes. Both approaches are in principle simple but technically
difficult and therefore not discussed here. By going beyond the BPW-approximation there are several possibilities to
improve the calculations. As far as Bethe lattice is considered, the accuracy of the approximation may be improved
using cavity method of Mézard, Parisi and Virasoro27, or its extensions.28 Moreover, renormalization group inspired
generalizations of inverse spatial dimension expansion may also upgrade the accuracy of the approximation.29

Anyway, with the assumption of effective independence of neighbors of separate sites leads to BPW-partition
function

Z =
∑

{σk}N
k=1

N∏
i=1

e−
1
2βEi =

(
N
N+

)
Z1(+1)N+Z1(−1)N− . (11)

The effective one site (neighbor) partition function for spin σ can be calculated using grand canonical ensemble of
its neighbors. We write

Z1(σ) =
ν∑

n+=0

(
ν
n+

)
eµ

′n+e−
1
2βE(σ,n+). (12)

The chemical potential of a site µ′ has to be related to the overall concentration c, as N+ is still fixed by overall
concentration condition c = N+/N .
Here the partition function Z is a grand canonical partition function with respect to the number of σ = +1 sites of

the system but canonical one with respect to the total number of sites. That is, the partition function is related to
grand potential

Ω = − 1

β
lnZ.

Thus when we later turn to use Helmholtz free energy (i.e fixed concentration) we have to make the appropriate
Legendre transformation.
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The thermodynamical quantities are to be calculated from the logarithm of the partition function, i.e.

lnZ = ln

(
N
N+

)
− 1

2
N β[E0 + c∆E(+1) + (1− c)∆E(−1)]

+ N
{
ν c ln

[
1 + z e−βẼ+

]
+ ν (1− c) ln

[
1 + z e−βẼ−

]}
(13)

with

E0 = ν

[
ϵ− 1

2
ϵ̄

+ k(ν − 1)

{
ϵ−∆ϵ⟨σ⟩ − 1

2
ϵ̄ (1− ⟨σ⟩)

}]
= ν

[
ν∗ϵ− ν∗

1

2
ϵ̄+ k(ν − 1)

{
1

2
ϵ̄−∆ϵ

}
⟨σ⟩

]
∆E(σ) = ∆E σ = ν[

1

2
ϵ̄−∆ϵ]σ,

Ẽ(σ) = ∆ϵ σ +
1

2
ϵ̄+ k(ν − 1)

{
∆ϵ⟨σ⟩+ 1

2
ϵ̄

}
= ∆ϵσ + ν∗

1

2
ϵ̄+ k(ν − 1)∆ϵ⟨σ⟩

where z = eµ
′
is the one-site fugacity

z−1 =

√
⟨σ⟩2 + (1− ⟨σ⟩2)e−β(Ẽ+−Ẽ−) − ⟨σ⟩

1 + ⟨σ⟩
e−βẼ−

=

√
⟨σ⟩2 + (1− ⟨σ⟩2)e−2β∆ϵ − ⟨σ⟩

1 + ⟨σ⟩
e−βẼ− , (14)

Ẽ± = Ẽ(±1), and ν∗ = 1 + k(ν − 1). The internal energy reads

U = −∂ lnZ

∂β
=

1

2
N [E0 + (2c− 1)∆E]

+ N

[
c ν Ẽ+

1 + z−1eβẼ+

+
(1− c) ν Ẽ−

1 + z−1eβẼ−

]
. (15)

Now we turn to use fixed concentration, whence the Helmholtz free energy is given by

F = Ω+
µ′

β

∂ lnZ

∂µ′ = − 1

β
lnZ +

1

β
N+ν ln z (16)

which can be expressed as energy density. The formula for the entropy can be given after that in a standard way:

T S = U − F = U +
1

β
lnZ − 1

β
N+ν ln z

= T S0 +
Nν

β
[cI+ + (1− c)I− − c ln z], (17)

where

I± =
βẼ±

1 + z−1eβẼ±
+ ln[1 + z e−βẼ± ]. (18)
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Further, the entropy per site is

s = s0 + kB ν [cI+ + (1− c)I−]− kB ν c ln z (19)

and the Helmholtz free energy per site reads as

f = − 1

Nβ
lnZ +

1

β
ν c ln z.

The mixing energy per atom can be constructed straightforwardly as

umix(c) = u(c)− c u(1)− (1− c)u(0).

By differentiation of (13) with respect to energy parameters ϵ̄ and ∆ϵ we find

gi, i1 = [1− ⟨σ⟩2]
[

1

1 + z−1eβẼ+

− 1

1 + z−1eβẼ−

]
. (20)

Thus BPW model clearly allows correlation between a site and its neighbors. Instead of the correlator one often uses
the Warren-Cowley short-range-order parameter defined as

αlmn = 1− PAB
lmn/cB ,

where PAB
lmn is the probability of finding a B atom at site lmn (indexes are in units of half of the lattice parameter) if

an A atom is at site 000 and cB is the atomic fraction of B atoms in the A-B alloy.14 The Warren-Cowley parameter
and the pair correlation function are related as

α110 =
gi,i1
4cAcB

.

In the present work we express neighbor dependences using Warren-Cowley parameter. Note, that the correlator and
Warren-Cowley parameter coincide at c = 0.5.

III. RESULTS

Next step is to determine the BPW parameters ϵ, ϵ̄ and ∆ϵ by fitting the internal energy to the calculated total
energy of the alloys. First we consider AgcPd1−c alloys. As the second coordination shell is important in Ag-Pd
system but there is no experimental data available to quantify its significance, we set k = 1 in the first place. The
reference data we are using are the total energies from Ref. 30 calculated for AgcPd1−c using the exact muffin-tin
orbitals (EMTO) method31,32 within the coherent potential approximation (CPA),33,34 i.e. corresponding to the mean
field approximation (Table I). The EMTO method within the full-charge density (FCD) implementation is shown to
be as accurate as the full-potential methods when applied for metallic alloys.32,35–39 Therefore, for the substitutionally
disordered random alloys the FCD-EMTO-CPA method is a perfect choice. Because the ab initio energies in Table I
refer to the non-correlated Ag-Pd system at 0 K temperature we have to use in the fitting procedure the non-correlated
BPW energy obtained by differentiation with respect to k or equivalently from Eq. (9) as

u =
1

2N

N∑
i=1

⟨Ei⟩,

assuming that ⟨σiσj⟩ = ⟨σi⟩⟨σj⟩ = ⟨σ⟩2 (i ̸= j). We find the non-correlated internal energy unc to be up to
normalization same as in the Weiss model,

unc(⟨σ⟩) =
1

2
νν∗[ϵ+ ϵ̄⟨σ⟩+∆ϵ⟨σ⟩2]. (21)

This can be expressed as a function of concentration as

unc(c) =
1

2
νν∗[ϵc + ϵ̄cc+∆ϵcc

2], (22)
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where the parameters are related by

∆ϵ =
1

4
∆ϵc,

ϵ̄ =
1

2
(∆ϵc + ϵ̄c), (23)

ϵ = ϵc +
1

2
ϵ̄c +

1

4
∆ϵc.

unc(c) [Ry]

c AgcPd1−c AgcAu1−c

0.00 -10084.720387 -38085.823779

0.05 -10111.731714 -36713.015417

0.10 -10138.743066 -35340.206948

0.20 -10192.765913 -32594.589743

0.30 N/A -29848.972193

0.40 -10300.812124 -27103.354389

0.50 -10354.835440 -24357.736326

0.60 -10408.858240 -21612.118011

0.70 -10462.880386 -18866.499447

0.80 -10516.901915 -16120.880636

0.90 -10570.922942 -13375.261578

1.00 -10624.943741 -10629.642276

TABLE I: The ab initio internal energy at 0 K of AgcPd1−c, as obtained in Ref. 30, and that of AgcAu1−c calculated in this
work. Instead of the exchange-correlation potential, used in Ref. 30, a more recent approximation to the exchange-correlation,
the revised version of the Perdew-Burke-Ernzerhof exchange correlation approximation for solids and surfaces,40,41 is used in
Ag-Au calculations. The difference in energies of Ag is typical when using different exchange-correlation approximations in
calculations.

To fit the Eq. (22) to the numerical data shown in Table I is not an unambiguous procedure. Several justified
strategies can be introduced to define the concentration dependence of the parameters ϵc, ϵ̄c, and ∆ϵc. We study
four different fitting schemes and compare their results with the data obtained from impurity calculations for Ag-Pd
system. In three first fitting schemes we take ϵc and ϵ̄c to be constants whereas different boundary conditions for ∆ϵc
are introduced.

i) The choice ∆ϵc(1) = ∆ϵc(0) = 0 leads to the correct linear form of the total energy in the limit of noninteracting
atoms. This leads to tenth degree interpolation polynomial for ∆ϵc(c).

ii) Since the term c2∆ϵc(c) vanish at c = 0 the above constraint can be lifted to ∆ϵc(1) = 0. This leads to ninth
degree interpolation polynomial for ∆ϵc(c).

iii) Fitting of eight degree polynomial to the data in Table I and interpreting the two terms of lowest degree as ϵc
and ϵ̄cc, now neither ∆ϵc(0) = 0 nor ∆ϵc(1) = 0.

iv) Redlich-Kister (RK) parameterization42 for Eq. (22)

unc(c) =
1

2
νν∗[ϵRK + ϵ̄RKc+ c(1− c)∆ϵRK(c)]. (24)

Part of the linear term in (22) is included to the RK-interaction term. Note, that here ϵRK and ϵ̄RK are
constants. Thus ϵc = ϵRK , ϵ̄c = ϵ̄RK +∆ϵRK and ∆ϵc(c) = −∆ϵRK . The RK-parameterization is symmetric in
the exchange of Pd↔Ag.

To decide which one of the above fitting procedures describes best the energy of Ag-Pd alloy we compare the
parameters ϵ(c), ϵ̄(c), and ∆ϵ(c) at both ends (c = 0, c = 1) with the corresponding calculated data of Ag-Pd. The
reference parameters are shown in Table II.
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c = 0 c = 1

ϵcomp [Ry] -143.8171426 -143.8171231

ϵ̄comp [Ry] -3.7515816 -3.7516004

∆ϵcomp [µRy] 0.0 60.417

TABLE II: Energy parameters ϵ, ϵ̄ and ∆ϵ of AgcPd1−c obtained from Refs. 43 and 44.

c ϵ[Ry] ϵ̄[Ry] ∆ϵ[µRy]

0.00 -143.817139 -3.75158336 -5.555558

0.05 -143.817143 -3.75159123 -9.490742

0.10 -143.817147 -3.75159910 -13.425927

0.20 -143.817154 -3.75161484 -21.296297

0.40 -143.817159 -3.75162327 -25.513510

0.50 -143.817159 -3.75162367 -25.712963

0.60 -143.817153 -3.75161104 -19.396219

0.70 -143.817144 -3.75159374 -10.747355

0.80 -143.817135 -3.75157664 -2.199074

0.90 -143.817128 -3.75156189 5.178326

1.00 -143.817123 -3.75155107 10.587963

TABLE III: Energy parameters ϵ, ϵ̄, and ∆ϵ of AgcPd1−c as a function of concentration according to the fitting scheme (iii)
with k = 1.

It turns out that the fitting procedure (iii) gives the best overall agreement with the ab initio impurity data. The
BPW parameters obtained from the fit (iii) are shown in Table III. Using the BPW parameters various thermodynamic
and statistical quantities can be calculated for AgcPd1−c. Figures 1 and 2 show the mixing energy and the Warren-
Cowley parameter at different temperatures.
At low temperatures the mixing energy and the Warren-Cowley parameter are positive suggesting that the BPW

multisite interactions drive substitutional fcc Ag-Pd to favor an atom and its neighbors to be of the same type.
This suggests phase separation or segregation tendency for Ag-Pd alloys within substitutional fcc structures at low
temperatures in agreement with the results of Refs. 16 and 17. However, as the recent investigations of Delczeg-Cirjak
et al.45 show the ground state structure of Ag0.5Pd0.5 is not a substitutional fcc type structure but the L11 type
structure with c/a larger than its ideal value. Here c and a are the lattice parameters in hexagonal representation.
In conventional cubic coordinate system c axis is along the [111] direction and the lattice parameter a is in the (111)

plane. For ideal fcc structure c/a =
√
6, where c is the diagonal of the conventional cube and a is the nearest neighbor

distance. Since the L11 structure is composed of alternating Ag and Pd (111) layers the increasing of c/a compared
to the ideal value means, that the nearest neighbor distance of unlike pairs becomes larger than that of like pairs.
This shifts more weight on the like-pair interaction than on the mixed-pair interaction. Therefore, the results of BPW
model are consistent with the predicted tendency of Ag0.5Pd0.5 at lower temperatures to order in L11 structure with
increased c/a.
At medium temperatures (50 – 100 K) the mixing energy is negative but the maximum at about c = 0.5 suggests

a slight tendency of phase separation. At high temperatures the BPW mixing energy approaches the experimental
mixing enthalpy46 which has its minimum at about c = 0.6.
As a further test of the feasibility of the present method we perform the above survay also for Ag-Au alloys which

differ from Ag-Pd alloys in many respects: The lattice parameters of Ag and Au are quite similar whereas the lattice
parameter of Pd is considerably smaller than that of Ag. The atomic number of Au is much larger than that of Ag
which leads to a steep slope in the internal energy of Ag-Au (Table I). The steep slope of the internal energy combined
with the small mixing energy makes the fitting procedure more challenging for the Ag-Au systems compared to the
Ag-Pd case. The mixing energy of Ag-Au is almost symmetric with the minimum at 50 at. % Ag compared to the
skew shaped mixing energy with the minimum at about 60 at. % Ag in Ag-Pd alloys. The topology of the Fermi
surface as a function of the concentration is also different in these two alloys. While in Ag-Au the valence d-band
is completely filled within the whole concentration range, in Ag-Pd the top of the valence d-band is pushed above
the Fermi energy as the Pd content is increased. Ag-Pd and Ag-Au show also different ordering behaviour at low
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temperature. At c = 0.25 Ag-Pd is predicted to have L1+1 structure11 whereas Ag-Au has the L12 structure. At
c = 0.50 the low temperature structures of Ag-Pd and Ag-Au are L11 and L10, respectively.
As Ag-Au interactions are dominated by first coordination shell, we leave control parameter k free. The energy

parameters obtained from (22) as a function of concentration (ϵ, ϵ̄ and ∆ϵ, Table IV) of Ag-Au are calculated using
the ab initio internal energy of Ag-Au (Table I) and the fitting sheme (iii) with k = 1. More generally, energy
parameters for k ̸= 1 are to be calculated by scaling ϵ → ν

ν∗
ϵ etc. In Table V the pair correlation function (gi,i1) and

Warren-Cowley short-range-order parameter (α110) for the typical structures of Ag-Pd and Ag-Au alloys are shown.

c ϵ[Ry] ϵ̄[Ry] ∆ϵ[µRy]

0.00 -338.301871 190.667987 83.68056

0.05 -338.301874 190.667981 80.55556

0.10 -338.301877 190.667974 77.43056

0.20 -338.301883 190.667962 71.18055

0.30 -338.301886 190.667955 67.97839

0.40 -338.301890 190.667948 64.19270

0.50 -338.301893 190.667942 61.29166

0.60 -338.301895 190.667938 59.02777

0.70 -338.301897 190.667934 57.22789

0.80 -338.301898 190.667931 55.76714

0.90 -338.301900 190.667929 54.56532

1.00 -338.301901 190.667927 53.55208

TABLE IV: Energy parameters ϵ, ϵ̄, and ∆ϵ of AgcAu1−c as a function of concentration according to the fitting scheme (iii).

c alloy structure < σi >,< σi1 > < σiσi1 > gi,i1 α110

0.00 Au, Pd A1 -1 1 0 0

0.25
Ag-Au, Ag-Pd d.o -0.5 0.25 0 0

Ag1Au3 L12 -0.5 0 -0.25 -0.33

Ag1Pd3 L1+1 -0.5 0.25 0 0

0.50
Ag-Au, Ag-Pd d.o. 0 0 0 0

AgAu L10 0 -0.33 -0.33 -0.33

AgPd L11 0 0 0 0

0.75
Ag-Au, Ag-Pd d.o. 0.5 0.25 0 0

Ag3Au1, Ag3Pd1 L12 0.5 0 -0.25 -0.33

1.00 Ag A1 1 1 0 0

TABLE V: Correlator gi,i1 and Warren-Cowley short-range-order parameter α110 for binary alloy AcB1−c (A=Ag, B=Au/Pd
σ(A) = +1, σ(B) = −1) calculated for the typical structures found in Ag-Pd and Ag-Au alloys, here d.o. refers to disordered
system.

We have studied Warren-Cowley parameter at T = 500 K for several different values of the control parameter k
and compared it with the experimental value at c = 0.5, T = 502 K read out from Table VI. Evidently the case
k = 1 representing the full coupling of the neighbors to the average field overestimates the importance of the second
coordination shell; the Warren-Cowley parameter (α110 = −0.0097) is far too large compared to the experimental
value. Likewise k = 0 ingnoring totally the second coordination shell contribution leads astray as the Warren-Cowley
parameter α110 = −0.1156 is too small. The BPW model optimal value coinciding with the measured Warren-Cowley
parameter is achieved when k = 0.039. This reflects the dominant contribution of the nearest neighbors with a small
but non-ignorable effect of the next-to-nearest sites. The curves for the three cases k = 1, k = 0.039 and k = 0 are
presented in Fig. 3. The k = 0.039 result compares well with the theoretical value shown in Ref. 47.
The Warren-Cowley parameters of Ag-Au calculated using the BPW results for the nearest neighbor correlator

gi,i1 with k = 0.039 are collected into Table VI for some values of Ag content c. Experimental results are also shown
for comparison. For c = 0.25 and 0.50 the agreement with experiments is good but for c = 0.75 the BPW α110
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is somewhat higher than the corresponding experimental value. The BPW results can also be compared with the
ordering transition temperature calculated by using the Monte Carlo method. As seen in Table V the α110 parameter
is −0.33 for the ordered L10 and L12 structures. The BPW model predicts α110 of this magnitude at slightly above
100 K for c = 0.50 in agreement with the Monte Carlo transition temperature. For c = 0.25 and 0.75 the BPW
model predicts transition temperatures to be about 50 K which is considerably lower than the Monte Carlo results.
Moreover, Fig. 4 shows the calculated mixing energy of Ag-Au at various temperatures showing good agreement with
other theoretical and experimental results.3,46–49

c

T [K] 0.25 0.50 0.75

20 -0.3392 -0.9661 -0.3388

50 -0.3207 -0.6708 -0.3053

100 -0.2432 -0.3851 -0.2145

300 -0.1035 -0.1345 -0.0862

500 -0.0646 -0.0810 -0.0533

exp.
(488 K) (502 K) (513 K)

(25.0 at.%) (47.7 at.%) (74.7 at.%)

-0.0677 -0.0810 -0.0720

L12, L10 ↔ d.o. 155 K 115 K 115 K

TABLE VI: The nearest neighbor Warren-Cowley short-range-order parameters (α110) of AgcAu1.c calculated using the BPW
nearest neighbor correlator gi,i1 with k = 0.039. Bottom part of the Table shows experimental results of α110 based on diffuse
x-ray scattering data and Monte Carlo order-disorder transition temperatures based on effective potentials obtained by using
experimental short-range order parameters.14

IV. SUMMARY

We have used the Bethe-Peierls-Weiss model to investigate the effect of multisite interactions on the ordering in
AgcPd1−c and AgcAu1−c alloys. The mean field ab initio data has been used to determine the parameters of the
BPW model. The BPW mixing energy, neighbor correlator and nearest-neighbor Warren-Cowley short-range-order
parameter for substitutional fcc alloys of Ag-Pd and Ag-Au have been calculated. The correlator of Ag-Pd is positive
at low temperatures supporting the stability of the L11 structure of Ag0.5Pd0.5 with elongation along the hexagonal
[111] axis. For Ag-Au the BPW model predicts the short-range order and order-disorder transition temperature for
c = 0.50 alloy quite well compared to experiments and other theoretical results. For c = 0.25 and 0.75 alloys the BPW
model predicts the short-range-order parameter reasonably well but the BPW order-disorder transition temperature
for these alloys is too low. Some straightforward extensions of the BPW-model to a larger exact cluster may remedy
these inaccuracies. In spite of this, the presented BPW formalism is shown to be a promising technique to extract
and analyze the short-range order of random substitutional metallic alloys using as an input the mixing energies at
the mean field approximation level.
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FIG. 3: (Color online) Warren-Cowley parameters of AgcAu1−c for three values of control parameter: k = 1, k = 0.039, k = 0
(from up to down) at 500 K.
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FIG. 4: (Color online) Helmholtz free mixing energy per site fmix of AgcAu1−c at T = 20K, 50K, 100K, 200K, 500K for
k = 0.039 (from up to down).


