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Abstract: Correlative light and electron microscopy (CLEM) is revolutionizing how cell samples are
studied. CLEM provides a combination of the molecular and ultrastructural information about a
cell. For the execution of CLEM experiments, multimodal fiducial landmarks are applied to precisely
overlay light and electron microscopy images. Currently applied fiducials such as quantum dots and
organic dye-labeled nanoparticles can be irreversibly quenched by electron beam exposure during
electron microscopy. Generally, the sample is therefore investigated with a light microscope first
and later with an electron microscope. A versatile fiducial landmark should offer to switch back
from electron microscopy to light microscopy while preserving its fluorescent properties. Here, we
evaluated green fluorescent and electron dense nanodiamonds for the execution of CLEM experiments
and precisely correlated light microscopy and electron microscopy images. We demonstrated that
green color emitting fluorescent nanodiamonds withstand electron beam exposure, harsh chemical
treatments, heavy metal straining, and, importantly, their fluorescent properties remained intact for
light microscopy.
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1. Introduction

Correlative light and electron microscopy (CLEM) is gaining popularity as a microscopy technique
to study functional and ultrastructural aspects of a cell [1–9]. CLEM is enabling researchers to combine
the strengths of light and electron microscopes, and subsequently limiting the shortcomings with the
respective technique. CLEM combines the power of both techniques and opens up the opportunity
to visualize rare events in cells. CLEM is usually performed to study cells under living or fixed
conditions with light microscopy (LM). LM is used to rapidly visualize a large field of view to
locate fluorescent molecules of interest in cells [3,10]. Light microscopy (LM) allows the selection
of regions of interest in cells for further investigation. Subsequently, the same cell is investigated to
provide corresponding ultrastructural information at a much-improved resolution with a transmission
electron microscopy (TEM) or scanning electron microscopy (SEM). There are numerous methods
developed to successfully perform CLEM experiments [1,4,6,11–13]. These developed methods have
applied the latest technical improvements of light and electron microscopes. One of the recent
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focuses of CLEM method development lies with obtaining an improved resolution with LM to
bridge the existing resolution gap with electron microscopy (EM). The traditional LM is restricted in
resolution due to the diffraction limit [14–16]. Some CLEM methods have emphasized the application of
super-resolution light microscopes to overcome the latter [17–25]. Moreover, on the electron microscopy
front, techniques such as cryo-electron microscopy (cryo-EM) and automated serial sectioning were
employed to obtain the structure preservation and sectioning of the whole-cell volume [24,26,27].
Thus, maximizing the technical capability to obtain cellular information in their native state by
cryo-EM [11,25,28,29], while automated serial sectioning by scanning electron microscopy (SEM)
provides information across all three dimensions of a cell [30–33].

Successful execution of CLEM experiments requires a series of steps, including suitable subcellular
labeling, sample processing, multimodal imaging, and precise image correlation. The multimodal
imaging platforms require common landmarks to correlate cellular features. In most existing CLEM
methods, the multimodal (LM and EM) image is correlated by externally applying fluorescent beads
(100 nm) [34]; gold nanoparticles attached with organic dyes [11,35,36] or quantum dots (QDs) as
fiducials [37,38]. The limitations of using organic dyes and QDs as fiducial markers are the instability of
photobleaching and electron beam exposure [39–41]. These fiducials can be irreversibly quenched after
exposure to the electron beam generated during electron microscopy [42,43]. Hence, these fiducials are
not robust for successive LM after electron beam exposure. Other practical limitations of externally
applied fiducials are the improper distribution of fluorescent beads on the target sample and potential
cytotoxicity concerns with QDs [44–46]. These current limitations with applied fiducials for image
correlation can be addressed by substituting it with an intracellular fluorescent and electron dense
landmark that offers chemical robustness, optical photostability, and potential for immunolabeling.
Attachment of antibodies to fiducials would greatly enhance the applicability for targeted imaging of
biomolecules in CLEM experiments.

Fluorescent nanodiamonds (FNDs) are unique carbon-based nanomaterials that are both
fluorescent and electron-dense [19,47–50] and thus, detectable with LM and EM [19,51–53]. They are
well studied for their unique photostability [54–58]. The origin of fluorescence lies in the complexes
formed by vacancies and impurities in a diamond crystal [59–61]. These unique complexes are known
as color centers in FNDs. FNDs are well compatible with multimodal imaging techniques such
as stimulated emission depletion microscopy (STED) [19,50,62,63], two-photon microscopy [64,65],
photoacoustic microscopy [66,67], and live-cell fluorescence microscopy [19]. The notable color centers
are those emitting in blue, green, yellow, red, and near-infrared spectral regions [68–70]. For cell
imaging, FNDs are biocompatible, non-toxic, and can be internalized efficiently in the cell via
endocytosis [47,71–75]. The FNDs are compatible with immunolabeling [76–79]. FNDs are applied for
direct targeting of a biological molecule by attaching a standard antibody using a streptavidin
conjugation. These attractive multicolor optical bioimaging [80] and along the electron-dense
nature allows detectability with electron microscopy make them suitable for application in CLEM
experiments [19,51,81,82]. Recently several attempts were made to utilize only red color emitting
FNDs for CLEM [19,51,52,81–83]. H-C Chang et al., 2018, demonstrated the application of biotinylated
lipids encapsulated red FNDs for subdiffraction imaging of antigens on the cell surface with correlative
light-electron microscopy (CLEM) with a scanning electron microscopy [52]. Han et al. 2019,
demonstrated the individual red FNDs were directly visualized by energy-filtered transmission
electron microscopy [82]. We have previously reported the application red fluorescent FNDs for super
resolution CLEM [19].

However, our CLEM application is based on green color emissive FNDs. Green color FNDs
are structurally and chemically similar to red FNDs, whereas optical properties are different. In this
paper, we demonstrate the potential of green color emitting FNDs (green FNDs) as robust fiducials
for single-cell correlative microscopy. We have generated a workflow by performing TEM imaging
of intracellular green FNDs and successive LM over the electron beam exposed 100 nm thin section.
The TEM and LM images were precisely correlated using green FND landmarks.
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2. Results

2.1. TEM of Green FNDs in Cells

A 100 nm thin TEM sections of green FND internalized MDA-MB-231 cells were prepared for
TEM imaging. The section was placed over a formvar-coated marked EM grid to select the cell for
correlative TEM and LM (Figure 1). The cell of interest for the image correlation was selected in
Figure 1A. The low magnification TEM image in Figure 1A shows the cell of interest (yellow square).
The green FNDs are visible as dark spots in Figure 1B. In this Figure (Figure 1B), two regions of interest
(ROIs) are marked by the green and red squares. These ROIs were later used to correlate with the
corresponding ROIs from LM images. In Figure 1C, a high magnification TEM image shows green
FNDs localized within vesicular space. FNDs have a general tendency to localize in an aggregated
manner in cellular vesicles (Figure S1A,B) [47,63].

Molecules 2020, 25, x FOR PEER REVIEW 3 of 11 

 

of intracellular green FNDs and successive LM over the electron beam exposed 100 nm thin section. 
The TEM and LM images were precisely correlated using green FND landmarks. 

2. Results 

2.1. TEM of Green FNDs in Cells 

A 100 nm thin TEM sections of green FND internalized MDA-MB-231 cells were prepared for 
TEM imaging. The section was placed over a formvar-coated marked EM grid to select the cell for 
correlative TEM and LM (Figure 1). The cell of interest for the image correlation was selected in Figure 
1A. The low magnification TEM image in Figure 1A shows the cell of interest (yellow square). The 
green FNDs are visible as dark spots in Figure 1B. In this Figure (Figure 1B), two regions of interest 
(ROIs) are marked by the green and red squares. These ROIs were later used to correlate with the 
corresponding ROIs from LM images. In Figure 1C, a high magnification TEM image shows green 
FNDs localized within vesicular space. FNDs have a general tendency to localize in an aggregated 
manner in cellular vesicles (Figure S1A,B) [47,63]. 

 
Figure 1. TEM imaging of green fluorescent nanodiamonds (FNDs) internalized in MDA-MB-231 
cells. (A) A 100 nm thin cell section was placed over a marked electron microscopy (EM) grid that 
allowed the identification of the cell for correlation. Yellow box showing the cell of interest. (B) The 
cell of interest with two regions of interest (ROIs; green and red boxes) selected for image correlation 
with the corresponding light microscopy (LM) ROIs. (C) A high magnification TEM image of ROI 
(red box) showing the internalized green FNDs (dark spots) landmarks. 

2.2. LM of Green FNDs 

To evaluate the robustness of green FNDs for CLEM experiments, we demonstrated here that 
green FNDs remained fluorescently stable even after TEM imaging at 80 kV acceleration voltage and 
survive harsh chemical treatment during sample preparation for TEM. Figure 2 shows fluorescence 
imaging of the same region as Figure 1. In Figure 2A, a low magnification overlay image of 
fluorescence and bright field channels shows the marked EM grid with letters and autofluorescence 
originating from the EM section. In Figure 2B, the confocal image of the EM section of the cell of 
interest with green FNDs (green dots) is shown. The green FNDs are seen aggregated and confined 
to a few spots in the cell of interest. The fluorescence signal of individual green FNDs can be 
exceptionally low in comparison to the high background autofluorescence signal due to 
glutaraldehyde fixation and heavy metal staining, makes it challenging to detect smaller aggregates 
precisely. Vesicle aggregated green FNDs provide a high local green FND concentration and stronger 
fluorescence signal for easier detection. Consequently, green FNDs aggregation is ideal for 
simplification of the image correlation between the LM and TEM images. Aggregated green FNDs 
can be visualized as dark spots even in a bright-field image (Figure 2C). The overlay of fluorescence 
and bight field channels is shown in Figure 2D. In Figure 2E the maximum intensity Z-projection 
image of green FNDs is shown with two ROIs (green and red boxes) corresponding to those in the 
TEM image in Figure 1C. 

Figure 1. TEM imaging of green fluorescent nanodiamonds (FNDs) internalized in MDA-MB-231 cells.
(A) A 100 nm thin cell section was placed over a marked electron microscopy (EM) grid that allowed
the identification of the cell for correlation. Yellow box showing the cell of interest. (B) The cell of
interest with two regions of interest (ROIs; green and red boxes) selected for image correlation with the
corresponding light microscopy (LM) ROIs. (C) A high magnification TEM image of ROI (red box)
showing the internalized green FNDs (dark spots) landmarks.

2.2. LM of Green FNDs

To evaluate the robustness of green FNDs for CLEM experiments, we demonstrated here that
green FNDs remained fluorescently stable even after TEM imaging at 80 kV acceleration voltage and
survive harsh chemical treatment during sample preparation for TEM. Figure 2 shows fluorescence
imaging of the same region as Figure 1. In Figure 2A, a low magnification overlay image of fluorescence
and bright field channels shows the marked EM grid with letters and autofluorescence originating
from the EM section. In Figure 2B, the confocal image of the EM section of the cell of interest with
green FNDs (green dots) is shown. The green FNDs are seen aggregated and confined to a few spots
in the cell of interest. The fluorescence signal of individual green FNDs can be exceptionally low
in comparison to the high background autofluorescence signal due to glutaraldehyde fixation and
heavy metal staining, makes it challenging to detect smaller aggregates precisely. Vesicle aggregated
green FNDs provide a high local green FND concentration and stronger fluorescence signal for easier
detection. Consequently, green FNDs aggregation is ideal for simplification of the image correlation
between the LM and TEM images. Aggregated green FNDs can be visualized as dark spots even in
a bright-field image (Figure 2C). The overlay of fluorescence and bight field channels is shown in
Figure 2D. In Figure 2E the maximum intensity Z-projection image of green FNDs is shown with two
ROIs (green and red boxes) corresponding to those in the TEM image in Figure 1C.

2.3. Correlation between TEM and LM Images

The green FNDs based CLEM method for multimodal image correlation was performed with a
dedicated software plugin “eC-CLEM” [84]. The LM images were preprocessed to enhance brightness
and contrast with ImageJ, and prealigned to match orientation with TEM images. The efficiency and
precision of a non-rigid image correlation can be enhanced by maximizing the number of fiducial
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landmarks available for correlation with both modalities. We used 10–19 FNDs fiducial landmarks
in our CLEM experiments, which resulted in a highly precise image correlation. In Figure 3A,B,
the corresponding green FNDs (red boxes) from LM and TEM were matched by selecting individual
green FNDs in the automatic mode of eC-CLEM. In Figure 3C, the overlay of correlated LM and TEM
images is shown. The ROIs (green and red boxes) from TEM (Figure 1B) and LM (Figure 2E) were
matched point-by-point using green FNDs as fiducials to generate a highly precise overlay. Similarly,
ROI (green boxes) in Figure 3D,E were matched using common green FNDs as landmarks. The results
of the image correlation of Figure 3D,E is shown in Figure 3F.
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Figure 2. LM performed over a 100 nm thick section on the TEM grid. (A) Low magnification overview
of the cell of interest located over the TEM grid. (B) LM of the cell of interest (rotated view) that showed
the fluorescence from green FNDs is localized in a few spots. The sample generated an extremely high
background signal, which also facilitated the visualization of the cell of interest. (C) Dark spots of green
FNDs can be even visualized in the bright-field image. (D) Overlay of B&C. (E) Maximum intensity
z-projection of the green FNDs signal with two corresponding ROIs (green and red boxes), selected for
image correlation with respective TEM ROIs. The image is aligned to match with the corresponding
TEM ROIs (Figure 1C).
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Figure 3. Image correlation facilitated by green FNDs for two different (green and red) ROIs of the cell
of interest. (A) TEM image were intracellular green FNDs can be seen in ROI (red box). (B) LM image
of the green FNDs (red box). (C) Correlated image of ROI (red box) aligned by using common green
FNDs landmarks present in both TEM (A) and LM (B) images. (D) TEM image of intracellular green
FNDs can be seen in ROI (green box). (E) LM of green FNDs (green box). (F) Correlated image of ROI
(green box) aligned by using common green FNDs landmarks present in both TEM (D) and LM Image
(E) images.
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3. Discussion

We demonstrated that green FNDs could facilitate intracellular image correlation by accurately
overlaying LM and TEM images. The green FNDs are potent landmarks in CLEM experiments, which
can be easily detected with both LM and TEM. The presented method is straightforward to perform
within regular microscopy facilities. We also showed that green FNDs were resistant to degradation
under electron beam exposure and fluorescence properties remained intact upon chemical treatments
used in TEM sample processing. The robustness of green FNDs allowed them to be imaged by
electron exposure with EM and successive imaging with a fluorescence microscope. This advantage can
potentially be used in immunoelectron microscopy on EM grids (e.g., Tokuyasu method). The chemically
active surface of green FNDs is versatile and known to be suitable for the attachment or delivery
of biomolecules [53,79,80,82,83]. In such a case, antibody conjugated green FNDs could recognize
the molecule of interest and enable detection with an EM. Furthermore, the fluorescence stability of
green FNDs would allow imaging with a fluorescence microscope. Therefore, in the future, antibody
conjugated green FNDs would be a well-suited immunolabeling method for performing correlative
light and electron microscopy. Moreover, dual antigen detection can be performed by using two
distinct color FNDs (red and green), conjugated with two antibodies. Furthermore, the green FNDs
could enable 3-dimensional CLEM imaging methods, where the 3D information from both electron
microscopy (serial sectioning) and fluorescence microscopy (volume stack) can be combined for
investigating the complex cellular processes across the full volume of a cell.

4. Materials and Methods

4.1. Green Fluorescent Nanodiamonds (Green FNDs)

Adámas Nanotechnologies (Raleigh, NC, USA) produced the green FNDs used in the study.
The detailed material synthesis, characterization and optical properties are described in Dei Cas et al.,
2019 [85] and Nunn et al., 2019 [68]. FNDs with green fluorescence emission were produced from
synthetic type Ib high-pressure high temperature (HPHT) nanodiamond particles with an initial
substitutional nitrogen content of 100 ppm and average particle size of 100 nm. Particles were irradiated
with high energy electrons (3 MeV) to generate vacancies and subsequently annealed using previously
reported[85] rapid thermal annealing approach at 1800 ◦C for 2 min in a hydrogen atmosphere.
Subsequent oxidation in a mixture of nitric/sulfuric acids was used to remove graphitic carbon and
provide a carboxylated (-COOH) terminal surface chemistry on the particles.

4.2. Cell Culture

For the experiments, MDA-MB-231 cells, (human breast adenocarcinoma collected from Turku
Biosciences, University of Turku) were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum, 2 mM L-glutamine, and 1% penicillin-streptomycin (v/v).
Of green FNDs particles 10 µg/mL were prepared in 1 mL of cell growth media. Then, the growth
media with particles was added to the cells. The cells were allowed to incubate with FNDs for 24 h [47].

4.3. Transmission Electron Microscopy (TEM)

The cell was fixed with 5% glutaraldehyde s-collidine buffer, postfixed with 1% OsO4 containing
2.5% potassium ferrocyanide, dehydrated with ethanol, and flat embedded in a 45,359 Fluka Epoxy
Embedding Medium kit. Thin sections were cut using an ultramicrotome to a thickness of 100 nm.
The sections were stained using uranyl acetate and lead citrate to enable detection with TEM. The section
was mounted on marked EM grids. The section was examined using a JEOL JEM-1400 Plus transmission
electron microscope operated at 80 kV acceleration voltage [47].
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4.4. Confocal Microscopy

The marked EM grid was imaged with Leica TCS SP8 confocal microscope (Leica Microsystems,
Wetzlar, Germany), using a 100× oil objective. Green FNDs were excited by a 488 nm white light
laser (WLL). Fluorescence emission collected at 510–550 nm with PMTs (photomultiplier tubes) for
green FNDs.

4.5. Image Correlation

The raw images from FM and TEM were preprocessed to enhance brightness and contrast with
ImageJ. The multimodal datasets were registered using the eC-CLEM plugin, a free open-source
software plugin, in the advanced usage mode on the Icy bioimage analysis platform [84]. To match the
large datasets on a desktop (i7, 16 Gb RAM), the EM stack was binned 4 times. In the advanced usage
mode, the eC-CLEM software also evaluated the need to apply non-rigid registration to obtain accurate
registration. The FM stack was matched to the binned dataset using the green FNDs as landmarks,
targeting the center of the green FNDs aggregates both in LM and EM using orthogonal views from Icy.
From 10 to 17 green FNDs aggregates were enough to achieve good overlay accuracy. The weighing of
each landmark operated by eC-CLEM compensate for the shifts observed between the LM and the
EM dataset and rigid registration leads to an accurate full registration. Non-rigid registrations were
performed, to generate the final overlay, the transformation was applied to the LM dataset to match
the original EM dataset using the “apply a reduced scaled transform to a full-size image” function
from eC-CLEM (Advanced usage).

Supplementary Materials: The following are available online, Figure S1: FNDs have a general tendency to
localize in an aggregated manner.
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