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Una Radojičić1, Klaus Nordhausen1,2 and Joni Virta3

1Institute of Statistics & Mathematical Methods in Economics, Vienna University of
Technology, Austria. e-mail: una.radojicic@tuwien.ac.at

2Department of Mathematics and Statistics, University of Jyväskylä, Finland. e-mail:
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Abstract: We study the estimation of the linear discriminant with pro-
jection pursuit, a method that is unsupervised in the sense that it does not
use the class labels in the estimation. Our viewpoint is asymptotic and,
as our main contribution, we derive central limit theorems for estimators
based on three different projection indices, skewness, kurtosis, and their
convex combination. The results show that in each case the limiting covari-
ance matrix is proportional to that of linear discriminant analysis (LDA), a
supervised estimator of the discriminant. An extensive comparative study
between the asymptotic variances reveals that projection pursuit gets arbi-
trarily close in efficiency to LDA when the distance between the groups is
large enough and their proportions are reasonably balanced. Additionally,
we show that consistent unsupervised estimation of the linear discriminant
can be achieved also in high-dimensional regimes where the dimension grows
at a suitable rate to the sample size, for example, pn = o(n1/3) is sufficient
under skewness-based projection pursuit. We conclude with a real data ex-
ample and a simulation study investigating the validity of the obtained
asymptotic formulas for finite samples.
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1. Introduction

Classification and clustering are two central themes in modern data analysis
and can be seen, respectively, as the supervised and unsupervised versions of
the same problem: In classification, the group memberships, or labels, of the
training data points are known and the objective is to use the training data to
form a classification rule for future observations, some of the standard methods
including, e.g., linear discriminant analysis, support vector machines, and ran-
dom forests, see [20]. Whereas in clustering, no labels for the data points are
known but we postulate that a reasonable grouping exists and aim to find it,
with, e.g., k-means clustering or spectral clustering, see [20, 64].

In this paper, we work under a clustering context and the assumption that
the data admit a natural grouping but that their labels are indeed unknown
to us. In their seminal work, [51] studied in this setting the use of projection
pursuit (PP), a general family of methods searching for a projection direction
that maximizes the value of the so-called projection index, see, e.g., [26, 11, 9, 17]
and the references therein. Namely, denoting the within-class covariance matrix
by Σ and the two group means by μ1,μ2, [51] established that using kurtosis as
the projection index in projection pursuit allows the unsupervised estimation of
the projection direction θ := Σ−1(μ2 − μ1) that is used in linear discriminant
analysis to construct the optimal Bayes classifier, in the full absence of any label
information. In other words, projection pursuit essentially allows conducting
LDA in a unsupervised fashion to recover the subspace that optimally separates
the two groups. Afterward, various clustering methods can then be applied to
the projected data to conduct efficient clustering.

While very interesting, the result of [51] raises a natural question regarding
the efficiency of the procedure. Namely, how much does one lose by not knowing
the labels and relying on projection pursuit compared to using LDA to recover
the same direction θ when the group memberships are known? This is the main
question we study in the current paper, working, for simplicity, under the as-
sumption of two-group normal mixtures. Our approach is asymptotic in nature
and we perform the comparison through the limiting covariance matrices of the
estimators in question. In particular, we show that the limiting covariance ma-
trices of projection pursuit and LDA are proportional, allowing us to conduct
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the comparisons simply through the corresponding constants of proportionality.
Interestingly, the ratios of these constants depend on the model parameters only
through the mixing proportion and the squared Mahalanobis distance (MD) be-
tween the group means, τ := (μ2 −μ1)

′Σ−1(μ2 −μ1). In particular, the ratios
do not depend directly on the dimension p of the data. As our second contribu-
tion, we show that projection pursuit can be used to consistently estimate the
optimal direction even in the high-dimensional regime where p ≡ pn → ∞ as
long as the dimension grows at a suitable rate to the sample size n.

The present work can thus be seen as a continuation to the classical liter-
ature on confirmatory (or inferential) projection pursuit. However, unlike the
present study that focuses on asymptotic efficiencies, the main question in con-
firmatory PP is typically to assess whether the found projections reflect actual
structures in the population and are not simply artifacts caused by noise. For
example, to assess the significance of the obtained results, [21] uses a bootstrap-
like procedure and compares the observed value of the projection index to the
one obtained by applying the procedure to the corresponding Gaussian data.
Similar problems are discussed also in, e.g., [58, 46, 36]. To illustrate the impor-
tance of assessing the significance of the obtained results, [14] give cautionary
examples in which they show how exploratory projection pursuit can always
find structures when applied to sparse, high-dimensional data.

Besides the confirmatory projection pursuit, asymptotic results for general
projection indices have been derived earlier also in the context of independent
component analysis (ICA), see, e.g., [50, 16, 45, 63]. In ICA, one assumes that
the observed random p-vector x is an independent component (IC) model, i.e.,
there exists a full rank p× p matrix Γ such that Γ{x− E(x)} has independent
components. The IC model is a rather wide family of distributions and, in par-
ticular, contains our model of choice, the multivariate normal mixture. This,
apparently novel, result is given as Lemma B.1 in the Appendix A and reveals
that the multivariate normal mixture decomposes into p− 1 independent stan-
dard normals and a non-Gaussian component which corresponds, up to the scale
and sign, to the optimal linear discriminant projection of the data. This connec-
tion between the two models implies that the results of the current paper are
intimately related to [63] who considered (in the context of ICA) the same pro-
jection indices as we do here. However, we remark that our contributions surpass
those of [63] in two critical regards: 1) [63] derived only the asymptotic vari-
ances of the ICA parameters (ignoring their covariances), whereas we give the
full limiting distribution of the estimated projection direction. Besides complet-
ing the asymptotic story, knowledge of the full distribution is crucial concerning
the comparison of PP and LDA as it reveals that the limiting covariance matrix
of PP is exactly proportional to the limiting covariance of LDA, see Theorems
1–4 later on. 2) From a technical viewpoint, the derivation of the convergence
rates of the estimators was in [63] left implicit and our proofs provide a rigorous
treatment of this. In particular, to guarantee well-defined Taylor expansions of
the objective functions, we need to establish the almost sure convergence of the
projection pursuit estimates and, as far as we are aware, such results have not
been given previously either in ICA or PP-literature. Finally, we note that the
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link between the two models furthermore implies that any projection index ca-
pable of recovering independent components in an IC model can, in this setting,
be used to recover the optimal linear discriminant (assuming the index yields
distinct values for the mixture and Gaussian noise). For example, [54] show that
any increasing function of a subadditive squared dispersion measure can be used
for such a purpose.

While kurtosis is the most popular choice for the projection index in projec-
tion pursuit, also several alternatives are commonly used. In particular, skewness
is a somewhat standard choice, see, for example, [40], and was shown in [38] to
have the same property of being able to find the optimal projection direction
without the label information as possessed by kurtosis. As such, we study also
skewness-based projection pursuit in the current work. We also note that, prior
to their use in projection pursuit, both skewness and kurtosis have a rich his-
tory as test statistics when testing for (multivariate) normality. For example,
[43] first introduced the maximal kurtosis and skewness obtained by projections
as test statistics when testing for multivariate normality and, using Monte Carlo
methods, compared the power of the obtained tests to other common tests for
normality against various alternatives, including several two-dimensional Gaus-
sian mixtures. Distributional properties of the statistics introduced by [43] were
later studied in [42] and [7], under the null hypotheses of multivariate normality
and elliptical symmetry, respectively. See also the conjecture by [40] that the
limiting distribution of the maximal skewness attainable by a linear combination
of normal variables is skew-normal.

Despite their ubiquitousness, as shown by [51, 38], for both kurtosis and
skewness there exist particular values of the mixing proportion under which the
two indices are unable to recover the optimal projection direction (for exam-
ple, skewness fails to produce a consistent estimate of θ when the two groups
have equal proportions). These drawbacks can be mitigated by combining both
cumulants into a single projection index, in a form of a weighted linear com-
bination. This combined projection index was first proposed in [29] and some
of its distributional properties were discussed in [36]. Our results show that
with a proper choice of weighting, a rather efficient unsupervised competitor for
the LDA-based supervised estimator can be obtained with the combined index.
Indeed, in the extreme case where the distance between the group means is
large enough and the group sizes are reasonably balanced, projection pursuit is
able to achieve efficiency arbitrarily close to LDA. As remarked in the previous
paragraph, the asymptotic properties of the hybrid index have been studied also
earlier, in the context of independent component analysis, in [63].

We note that despite the theoretical guarantees of projection pursuit, the
most common unsupervised method for revealing clusters is still arguably PCA,
see, e.g., [28]. However, it is also well known that PCA does not, in general, yield
a consistent estimator of the linear discriminant direction. A standard example
demonstrating this is the extreme case where the within-group covariance matrix
Σ is heavily concentrated on a direction orthogonal to the difference of the
group means μ2 − μ1. In such a case, the projections of the two group means
onto the first principal component direction overlap, making clustering based
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on the direction impossible. Hence, due to its unreliability in estimating the
linear discriminant, PCA cannot truly be seen as a unsupervised estimator of
the separating direction and, as such, we do not include it in the comparisons in
the current paper. However, we have still included, for completeness, equivalent
asymptotic results for PCA as we state for the other methods, and these are
given in Appendix A.

In recent years there has been a large amount of work on parameter esti-
mation in Gaussian mixture models [68, 35, 33, 1, 24, 30, 23], particularly in
high-dimensional settings and by the EM-algorithm, see for example [71, 65, 69,
70, 12] and references therein. It is worth mentioning how, in general, methods
for parameter estimation in Gaussian mixture models can also be used for unsu-
pervised estimation of the linear discriminant in this setting, with the potential
estimator being the plug-in estimator in which the group means and the common
covariance are estimated by the method of choice. Some statistical guarantees
and properties of EM-based estimators of parameters in Gaussian mixtures can
be found in, e.g., [6, 48], and are beyond the scope of this paper. However, un-
der the real data example of Section 6, we compare the results obtained by the
projection pursuit approach to those obtained using the EM-algorithm when
estimating the optimal linear discriminant.

The rest of the manuscript is organized as follows. In Section 2 we derive
the asymptotic behavior of three estimators of the linear discriminant direction:
LDA and kurtosis- and skewness-based projection pursuit. A short comparison
of the results is also presented. In Section 3, we give the corresponding results for
projection pursuit based on a weighted combination of skewness and kurtosis and
conduct a more extensive set of asymptotic comparisons between all considered
methods. In Section 4 we show that both kurtosis- and skewness-based PP,
as well as the PP based on the convex combination of those produce consistent
estimators of the linear discriminant in the high-dimensional setting, where both
the sample size n and the dimension p diverge to infinity in a suitable ratio.
Simulation studies exploring both the finite-sample performance of the methods
and the applicability of our asymptotic results to practice are given in Section 5,
while the performance and the applicability of presented methods to a real data
example, as well as the comparison to the PCA, are given in Section 6. Finally,
we conclude with some discussion in Section 7. All proofs of the technical results
are postponed to Appendix B.

2. Estimation of the linear discriminant

Let (Ω,F ,P) be a probability space. Throughout the following, we assume that
the (p+ 1)-dimensional pair (x, y) obeys the following model:

y ∼ Ber(α1) and x | y ∼ Np{yμ1 + (1− y)μ2,Σ}, (1)

for 0 < α1 < 1, μ1,μ2 ∈ R
p, μ1 �= μ2, and a full rank Σ ∈ R

p×p. The marginal
distribution of x is then the multivariate normal mixture,

x ∼ α1Np(μ1,Σ) + α2Np(μ2,Σ),



6682 U. Radojičić et al.

where α2 := 1 − α1. Under model (1), the classification of x is usually based
on its projection onto the linear discriminant direction θ = Σ−1(μ2−μ1). This
projection direction is optimal in the sense that the optimal Bayes classifier
(having the minimal miss-classification rate out of all classifiers) depends on the
data only through the projection θ′x, see, e.g., [44].

Our objective throughout the paper is the estimation of the standardized
projection direction θ/‖θ‖ (the scale of the projection direction is irrelevant,
meaning that the unit length constraint is without loss of generality). As de-
scribed in Section 1, we will consider two types of estimators, unsupervised ones
which use only the random vector x (a sample from its distribution) in the esti-
mation, and an supervised one which bases the estimation on the full pair (x, y).
The supervised method is allowed more information in the estimation and is,
naturally, expected to provide a more efficient estimator, a fact that is verified
by our comparisons later on.

2.1. Supervised estimation of the linear discriminant

If we have a sample (x1, y1), . . . , (xn, yn) from the distribution of the full pair
(x, y) available, the standard estimator of Σ−1(μ2−μ1) is the plug-in estimator
(which is also its MLE, up to the scaling of the pooled covariance matrix) used
in standard LDA. That is, using the notation,

x̄n1 :=
1∑n

i=1 yi

n∑
i=1

yixi, x̄n2 :=
1∑n

i=1(1− yi)

n∑
i=1

(1− yi)xi,

Sn :=
1

n− 2

{
n∑

i=1

yi(xi − x̄1)(xi − x̄1)
′ +

n∑
i=1

(1− yi)(xi − x̄2)(xi − x̄2)
′

}
,

we consider the estimator,

wn := S−1
n (x̄n2 − x̄n1).

Asymptotic results for LDA are very standard in the literature, see for example
[4]. However, these results are usually given in the case of fixed group sizes,
whereas in our model the group sizes are determined by the indicator variables
y1, . . . , yn and are, as such, random. Hence, as far as we know, the following
theorem is, if not particularly groundbreaking in its conclusions, a novel one.

Theorem 1. Under model (1), we have, as n → ∞,

√
n(wn/‖wn‖ − θ/‖θ‖) � Np(0,ΨU ),

where

ΨU :=

(
1 + βτ

‖θ‖2β

)(
Ip −

θθ′

‖θ‖2
)
Σ−1

(
Ip −

θθ′

‖θ‖2
)
,

β := α1α2 and τ := (μ2 − μ1)
′Σ−1(μ2 − μ1).
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The form of the limiting covariance matrix in Theorem 1 is rather simple
and inspection of the proof of the result reveals that the involved projection
matrices onto the orthogonal complement of the direction θ/‖θ‖ are simply
consequences of the standardization of the estimator to unit length. Note also
that the scalar factor in front can be written as 1/(‖θ‖2β)+(θ/‖θ‖)′Σ(θ/‖θ‖),
the two summands of which have the following rough interpretations: If the
groups are imbalanced, β is small, making the first summand large and inflating
the asymptotic variance. Similarly, if the data exhibit a large amount of variation
in the direction of the optimal discriminant direction, i.e., (θ/‖θ‖)′Σ(θ/‖θ‖) is
large, the second term increases the magnitude of the asymptotic variance.

2.2. Unsupervised estimation of the linear discriminant

Kurtosis-based projection pursuit

Let δ1 := 1/2 − 1/
√
12, δ2 := 1/2 + 1/

√
12 and x̃ := x − E(x). The kurtosis

κ : Sp−1 → R of the projection of x on a given direction u ∈ S
p−1 is then defined

as,

κ(u) =
E{(u′x̃)4}

[E{(u′x̃)2}]2 .

The fact that projection pursuit based on kurtosis is Fisher consistent for the
linear discriminant under normal mixtures was first shown in [51, Corollary 2].
However, the successful use of their result in practice requires knowing some-
thing about the mixing proportion α1. Namely, if α1 ∈ (δ1, δ2) then the linear
discriminant θ/‖θ‖ is found as the minimizer of κ, whereas if α1 ∈ (0, δ1)∪(δ2, 1)
then θ/‖θ‖ is found as the maximizer of κ. Naturally, as a workaround, one could
in practice always search for both the minimizer and the maximizer of κ but,
even in this case, it might be non-trivial to recognize the linear discriminant
amongst the two. Thus, to obtain a truly unsupervised estimator, we propose
instead using the squared excess kurtosis {κ(u)− 3}2 as an objective function.
Indeed, the next lemma reveals that the squared excess kurtosis yields a Fisher
consistent estimate of the linear discriminant, apart from the degenerate cases
α1 ∈ {δ1, δ2} where excess kurtosis vanishes, without the need to choose between
minimization and maximization.

Lemma 1. Given model (1),

1) if α1 /∈ {δ1, δ2}, then the function u �→ {κ(u)− 3}2 is uniquely maximized
by ±θ/‖θ‖,

2) if α1 ∈ {δ1, δ2}, then {κ(u)− 3}2 = 0 for all u ∈ S
p−1.

Moving next to study the asymptotic properties of κ, let x1, . . . ,xn be a
random sample from the marginal distribution of x in the model (1). The sample
counterpart of κ is

κn : Sp−1 → R, κn(u) =
(1/n)

∑n
i=1(u

′x̃i)
4

{(1/n)
∑n

i=1(u
′x̃i)2}2

,
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where x̃i := xi − x̄. If n ≥ p the denominator of the random function κn is a.s.
positive, making κn well-defined and an estimator for θ/‖θ‖ is then obtained
as any maximizer of u �→ {κn(u) − 3}2 (note that if n ≥ p, a maximizer exists
almost surely due to the compacity of Sp−1). The following theorem shows that
any sequence of such maximizers has a limiting normal distribution. Note that
the need to include the “corrective” signs sn in Theorem 2 stems from the
sign-invariance of the objective function (which also causes the existence of two
maximizers in Lemma 1).

Theorem 2. Given model (1), assume that α1 /∈ {δ1, δ2} and let un be any
sequence of maximizers of u �→ {κn(u) − 3}2. Then, there exists a sequence of
signs sn ∈ {−1, 1} such that, as n → ∞,

1) snun → θ/‖θ‖, almost surely.
2)

√
n(snun − θ/‖θ‖) � Np(0,Ψκ), where

Ψκ := CκΨU ,

and

Cκ :=
6 + 24βτ + 9β(1− 2β)τ2 + β(1− 3β)τ3

βτ3(1− 6β)2
,

with ΨU , β and τ as in Theorem 1.

The limiting covariance matrices in Theorems 1 and 2 are proportional, the
only difference being the factor Cκ. This makes their comparisons in Subsection
2.3 particularly straightforward. However, even without the formal comparisons,
it is evident that the kurtosis-based estimator has a clear flaw in that it fails to
be consistent for the mixing proportions α1 ∈ {δ1, δ2} (for these values of α1,
we have 1− 6β = 0 in the denominator of Cκ in Theorem 2). And even though
these are only two points in the continuum (0, 1), the continuity of Cκ in α1

outside of these points implies that the estimator is highly inefficient for values
of α1 near δ1 or δ2. Hence, we will next discuss an alternative estimator that
is consistent when α1 ∈ {δ1, δ2} (at the price of lacking consistency in another
point).

Skewness-based projection pursuit

To complement the kurtosis-based projection pursuit, we next consider skewness-
based projection pursuit. Note that, despite its dependency on lower moments,
this form of PP is less studied in the literature (see the references in Section 1).

The skewness of the projection of x on a given direction u ∈ S
p−1 is measured

by the objective function γ : Sp−1 → R defined as,

γ(u) =
E{(u′x̃)3}

[E{(u′x̃)2}]3/2 ,
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where again x̃ = x − E(x). Similarly to kurtosis, also with skewness it is more
convenient to work with its squared value. The next lemma presents the Fisher
consistency of the corresponding estimator and reveals that the mixing propor-
tion 1/2 plays the role of the proportions δ1, δ2 for skewness. The reason for
this is intuitively clear as, under the choice α1 = 1/2, the normal mixture is
perfectly symmetrical, explaining the vanishing of the skewness. The result ap-
peared originally as Proposition 1 in [38] but we give, for completeness, a proof
in Appendix B.

Lemma 2. Given model (1),

1) if α1 �= 1/2, then the function u �→ γ(u)2 is uniquely maximized by
±θ/‖θ‖,

2) if α1 = 1/2, then γ(u)2 = 0 for all u ∈ S
p−1.

Finally, we derive in Theorem 3 below the strong consistency and limiting
distribution of the corresponding sample estimator, obtained through the max-
imization of the square of the sample skewness, defined as,

γn : Sp−1 → R, γn(u) =
(1/n)

∑n
i=1(u

′x̃i)
3

{(1/n)
∑n

i=1(u
′x̃i)2}3/2

.

Theorem 3. Given model (1), assume that α1 �= 1/2 and let un be any sequence
of maximizers of u �→ γn(u)

2. Then, there exists a sequence of signs sn ∈ {−1, 1}
such that, as n → ∞,

1) snun → θ/‖θ‖, almost surely.
2)

√
n(snun − θ/‖θ‖) � Np(0,Ψγ), where

Ψγ := CγΨU ,

and

Cγ :=
2 + 6βτ + βτ2

βτ2(1− 4β)

with ΨU , β, τ as in Theorem 1.

Interestingly, also the limiting covariance of the skewness-based estimator is
proportional to that of LDA, meaning that the main object of interest in the
result is the factor Cγ . These factors will be compared in the next section to make
statements about the relative asymptotic efficiencies (ARE) of the estimators
under various scenarios where, for two unbiased estimators with proportional
covariance matrices, the asymptotic relative efficiency of one over the other
is calculated as the inverse of the ratio of the corresponding proportionality
constants.

2.3. Asymptotic comparison of the three estimators

Theorems 1, 2 and 3 show that the limiting distributions of the supervised
and unsupervised estimators of θ/‖θ‖ all have proportional covariance matri-
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Fig 1. The relative asymptotic efficiency of the unsupervised vs. supervised estimation of
θ/‖θ‖ under different Mahalanobis distances τ between the two group means. The three gray
vertical reference lines mark those values of α1 where kurtosis (1/2 ± 1/

√
12) or skewness

(1/2) of all projections is a constant.

ces. Thus, their efficiencies may be compared simply through the correspond-
ing constants of proportionality which depend on the problem parameters only
through the mixing proportion (β = α1α2) and the degree of separation be-
tween the two groups, as measured by the (squared) Mahalanobis distance
τ = (μ2 − μ1)

′Σ−1(μ2 − μ1). The relative asymptotic efficiencies (pair-wise
ratios of the constants) of the unsupervised estimators vs. the supervised esti-
mator (LDA) are simply C−1

κ and C−1
γ where the values of the constants are

given in Theorems 2 and 3. Especially the former expression is somewhat com-
plicated for arbitrary β and τ but both simplify greatly if we consider the case
where the Mahalanobis distance τ is large. That is, letting τ → ∞, the relative
asymptotic efficiencies are simply

Effκ =
(1− 6β)2

1− 3β
and Effγ = 1− 4β.

Figure 1 plots the relative efficiencies as a function of the first mixing propor-
tion α1 in the cases τ = 5, 15 and τ → ∞. The plots verify that, for any practical
value of the Mahalanobis distance, LDA is always asymptotically highly supe-
rior to both unsupervised methods. However, in the extreme case where the two
groups are well-separated to an arbitrarily large degree, we see, in particular,
that the kurtosis estimator is asymptotically equally efficient to LDA in the
balanced case α1 = 1/2, and also in the limits α1 → 0 and α1 → 1 (although, in
these cases, the actual asymptotic covariance matrices themselves grow without
bounds).

Figure 1 also shows that, depending on the Mahalanobis distance, around
the point α1 ≈ 0.30 there is a mixing proportion for which κ and γ are asymp-
totically equally efficient. Figure 2 plots these proportions (and their mirror
images on the upper half of the region (0, 1)) as a function of the Mahalanobis
distance. The plot reveals that the region of mixing proportions for which κ is
asymptotically superior choice to γ (the gray inner region) gets wider as the
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Fig 2. The two solid curves trace the values of the mixing proportion α1 (y-axis) for which κ
and γ are asymptotically equally efficient as a function of the Mahalanobis distance between
the two group means (x-axis). The shaded region represents the values of α1 for which κ is
the superior choice over γ. The two horizontal dashed lines indicate the limits 1/2 ± 1/

√
24

of the two curves.

groups get more well-separated, finally approaching the region 1/2 ± 1/
√
24 in

the limit τ → ∞ (the two horizontal dashed lines).

3. Convex combination of skewness and kurtosis

3.1. Theoretical properties

Based on Figure 1, the objective functions κ and γ produce, especially for well-
separated groups, fairly efficient estimators of the linear discriminant in the
absence of any grouping information. However, for this, it is crucial to have at
least an approximate idea of the mixing proportion α1 in order to choose the
more efficient of the two objective functions and to avoid the points where a
particular estimator becomes completely inefficient (for example, if the groups
are close to being balanced, one wants to use kurtosis as skewness contains no
information when γ = 1/2, see Lemma 2 and Figure 1). As the mixing proportion
is rarely known in practice, this makes the procedure difficult to implement.

A natural way to overcome this weakness is to, instead of choosing between γ
and κ, use them both simultaneously, through a objective function η : Sp−1 → R

that is a convex combination of the two squared cumulants,

η(u) = η(u;w1) := w1γ(u)
2 + w2{κ(u)− 3}2,
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where w1, w2 ≥ 0, w1 + w2 = 1. Naturally, the cases w1 = 0 and w2 = 0 simply
correspond to the two individual objective functions and, hence, we will in the
following assume that w1, w2 > 0. The next result, following straightforwardly
from Lemmas 1 and 2, shows that η indeed allows the completely unsupervised
recovery of the linear discriminant regardless of the mixing proportion α1 ∈
(0, 1).

Lemma 3. Given model (1), η is uniquely maximized by ±θ/‖θ‖.
The sample version of the hybrid objective function is ηn : Sp−1 → R, defined

as ηn(u) = ηn(u;w1) := w1γn(u)
2+w2{κn(u)−3}2, and we next give the limit-

ing behavior of its maximizer. Unsurprisingly, the resulting limiting covariance
matrix is up to a multiplicative constant equal to the previous ones.

Theorem 4. Given model (1), let un be any sequence of maximizers of ηn.
Then, there exists a sequence of signs sn ∈ {−1, 1} such that, as n → ∞,

1) snun → θ/‖θ‖, almost surely.
2)

√
n(snun − θ/‖θ‖) � Np(0,Ψη), where

Ψη := CηΨU ,

and

Cη =
(1 + βτ)(1− 4β)

(
9w2

1(1 + βτ)(2 + 6βτ + βτ2)
)

βτ2{3w1(1 + βτ)(1− 4β) + 4w2τ(1− 6β)2}2

+
(1 + βτ)(1− 4β)

(
24w1w2τ

2β(1− 6β)(6 + τ)
)
+ 16w2

2τ(1− 6β)2Δ

βτ2{3w1(1 + βτ)(1− 4β) + 4w2τ(1− 6β)2}2 ,

where Δ := 6 + 24βτ + 9β(1 − 2β)τ2 + β(1 − 3β)τ3 and ΨU , β, τ are as
in Theorem 1.

The constant of proportionality Cη in Theorem 4 is again rather complicated
but simplifies in the limit τ → ∞ to the more manageable, if not intuitive, form,

9w2
1β

2(1− 4β) + 24w1w2β(1− 4β)(1− 6β) + 16w2
2(1− 6β)2(1− 3β)

{3w1β(1− 4β) + 4w2(1− 6β)2}2 .

3.2. Asymptotic comparisons

We next investigate how the efficiency of the hybrid estimator compares to its
competitors. Figure 3 shows the relative asymptotic efficiency of the hybrid
estimator vs. LDA as a function of the mixing proportion α1 for the same
values of τ as in Figure 1 and for w1 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Note that the
extreme cases w1 = 0 and w1 = 1 are equivalent to using the individual objective
functions u �→ {κ(u) − 3}2 and u �→ γ(u)2, respectively. The curves show
somewhat erratic behavior around the points δ1, δ2 where kurtosis vanishes but
otherwise seem to convey a clear message: inside the interval (δ1, δ2) the hybrid
estimator is, in general, a superior choice over the individual estimators, whereas
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Fig 3. The relative asymptotic efficiency of the hybrid estimator vs. LDA under different
Mahalanobis distances τ between the two group means. The color and type of the lines de-
note the weighting parameter w1.The solid black line titled “optimal” traces the efficiencies
obtained using the optimal choice of weighting for a given pair (α1, τ).

outside of the interval the choice w1 = 1 (corresponding to using skewness only)
is preferable over the hybrid estimator.

To obtain a “universal” value of w1 that yields (in some sense) on average the
most efficient estimator over all α1, we compute with numerical integration the
“average efficiency” A(w1, τ) of the weight w1 for a given value of τ as the area
between the x-axis and the corresponding efficiency curve. For example, A(0, 15)
is the area under the red solid curve in the middle panel of Figure 3. Figure 4
then plots the weights w1 yielding the maximal value of A(w1, τ) as a function
of the Mahalanobis distance τ and reveals that, regardless of the separation
of the groups, one should optimally consider weights only in the range around
τ ∈ (0.725, 0.825). This conclusion is rather predictable as kurtosis is based on a
higher moment than skewness, meaning that the latter should be given a larger
weight in order to obtain a “balanced” combination. As a further interesting
observation, when τ → 0, i.e., when the mixture model approaches the multi-
variate normal model, the limit of the optimal weight seems to approach the
value 0.8, which is the exact weighting used in the Jarque-Bera test statistic for
testing normality, (n/6)γ2

n+(n/24)(κn−3)2 [27]. Moreover, the same weighting
was also recommended by [29] as an approximation to an entropy-based index.

Whereas Figure 4 aims to obtain a single universally useful value of w1, in
the optimal situation one would always use the particular weighting yielding
the highest relative asymptotic efficiency for a given combination of mixing
proportion and Mahalanobis distance. The optimal weights are plotted as a
function of (α1, τ) in the heatmap of Figure 5, the most striking features of which
are the discontinuities at the horizontal lines α1 = δ1, α1 = 1/2 and α1 = δ2.
These are caused by the fact that the coefficient Cη in Theorem 4 becomes a
constant function of w1 at each of these values of α1 (where either the skewness
or excess kurtosis vanishes). Consequently, there is no unique maximizer w1 at
these points and to emphasize their nature we have chosen to color them in
Figure 5 with the corresponding extreme color (e.g., black for α1 = 1/2 where
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Fig 4. The weight w1 yielding the maximal area under the corresponding efficiency curve as
a function of the Mahalanobis distance τ . The horizontal dashed line indicates the limit of
the curve as τ → ∞ (approximately 0.7242).

Fig 5. The heatmap shows as a function of (α1, τ) the weighting w1 yielding the highest
relative asymptotic efficiency compared to LDA. The three discontinuities correspond to the
lines α1 = δ1, α1 = 1/2 and α1 = δ2.

skewness carries no information). However, more puzzling are the differing limits
when approaching the points δ1, δ2 from below and above. Essentially, when one
approaches either of these points from inside the interval, the highest efficiency
is obtained by focusing all weight on kurtosis which seems very counter-intuitive
as in the limit kurtosis carries no information at all. This behaviour is visualized
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Fig 6. Relative asymptotic efficiencies of the hybrid estimator as a function of w1 when τ = 5
and α1 = δ1 + ε, where ε ∈ {0.001, 0.002, 0.005, 0.010}. The value of the weight w1 achieving
the maximal efficiency can be seen to approach zero when ε → 0.

still in more detail in Figure 6 which plots the relative asymptotic efficiency C−1
η

as a function of w1 for τ = 5 and α1 − δ1 =: ε ∈ {0.001, 0.002, 0.005, 0.010}.
The weight achieving the maximal efficiency indeed approaches zero as ε → 0.
Algebraically, it is easy to see what is happening: For τ → ∞ and β ≈ 1/6,
the approximation of Cη, obtained by ignoring the terms of order (1− 6β)2 and

higher is Cη ≈ 1
1−4β +

8
3
1−w1

w1

1−6β
β(1−4β) . For α1 → δ1 from the inside of the interval

we have 1 − 6β < 0, which yields that Cη is minimized for w1 → 0. Similarly,
for α1 → δ1 from the outside of the interval we have 1 − 6β > 0, which yields
that Cη ≥ 0 and shows that it is minimized for w1 = 1. Also, as β → 1/6, no
matter from which side, Cη converges to constant in w1, implying that there
is no discontinuity in the efficiency value itself. No such behavior is observed
for α1 → 0.5 and the reason for this is that 1 − 4β ≥ 0, implying that no sign
change occurs when passing the critical value α1 = 1/2.

The efficiencies achieved by the optimal weighting are shown by the solid
black line in Figure 5 and indicate that the hybrid estimator is able to reach
satisfying levels of efficiency, particularly when the mixing proportion lies in the
interval (δ1, δ2). Indeed, in the limit τ → ∞, within the interval there always
exists a weighting that reaches efficiency equal to LDA, as evidenced by the
right-most panel of Figure 5. On the other hand, outside of the interval (δ1, δ2),
LDA is still, even in the limit τ → ∞, a superior choice. We conjecture that the
reason for this critical difference in behavior inside and outside of the interval
is that when the value of α1 is extreme, one of the groups is small, making the
pin-pointing of the optimal direction difficult in general, but even more so for
the unsupervised methods which have no class information available. However,
it is not clear why the particular points δ1, δ2 serve as the cut-off values for this



6692 U. Radojičić et al.

behavior.
Finally, note that the discontinuities make the use of the optimal choice of

weighting somewhat difficult in practice, as, if one’s prior information/guess
on the value of the mixing proportion α1 is even slightly off, relying on the
seemingly optimal choice can in the worst case lead to relative efficiency close to
zero. Moreover, recall that the previous experiments were asymptotical in nature
and do not necessarily reflect the behavior of the method under sample sizes
encountered in practical situations. Hence, we suggest using a “safe” universal
value of w1, most preferably falling in the interval (0.725, 0.825) identified in
conjunction with Figure 4. For example, Figure 3 shows that the value w1 = 0.80
delivers, for finite τ , performance not far behind the optimal choice for any α1.
However, if one is reasonably certain about the value of α1 (which, optimally, is
far away from δ1, δ2) and has n sufficiently large, resorting to the optimal choice
is, of course, also possible.

4. High-dimensional projection pursuit

In this section, we study projection pursuit in a high-dimensional regime where
both the sample size n and the dimension p ≡ pn diverge to infinity in a suitable
rate. That is, we will work with the n-indexed sequence of high-dimensional
centered normal mixtures,

xn ∼ α1Npn(−α2hn,Σn) + α2Npn(α1hn,Σn), (2)

where the parameters pn ∈ N, hn ∈ R
pn and Σn ∈ R

pn×pn are all functions of
the sample size n, and where α1, α2 ∈ (0, 1) are taken to be fixed. The notation
S
p−1 refers to the unit sphere in R

p and ‖Σn‖2 denotes the spectral norm of
the matrix Σn. The specific forms for the two locations guarantee that xn has
zero mean and is without loss of generality.

For simplicity, we work with the assumption that the location of the data is
known (and equals zero), allowing us to consider non-centered quantities in our
objective functions. For a fixed n, the population and sample skewness-based
objective functions are thus γ2

n0 : Spn−1 → R and γ2
n : Spn−1 → R, with,

γn0(u) =
E{(u′xn)

3}
[E{(u′xn)2}]3/2

and γn(u) =
1
n

∑n
i=1(u

′xni)
3

{ 1
n

∑n
i=1(u

′xni)2}3/2
,

while the population and sample kurtosis-based objective functions are (κn0 −
3)2 : Spn−1 → R and (κn − 3)2 : Spn−1 → R, with,

κn0(u) =
E{(u′xn)

4}
[E{(u′xn)2}]2

and κn(u) =
1
n

∑n
i=1(u

′xni)
4

{ 1
n

∑n
i=1(u

′xni)2}2
.

Furthermore, denote for a fixed n, the population and sample hybrid objective
functions ηn0 : Spn−1 → R and ηn : Spn−1 → R, with,

ηn0(u;w1) = w1γ
2
n0(u) + (1− w1){κn0(u)− 3}2 and
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ηn(u;w1) = w1γ
2
n(u) + (1− w1){κn(u)− 3}2,

respectively. Note that, indeed, also the population objective functions are now
indexed by n since our model evolves with the growing sample size. By Theo-
rems 3, 4 and Lemma 3, the unique maximizers of u �→ γ2

n0(u), u �→ {κn0(u)−
3}2, and u �→ ηn0(u;w1), w1 ∈ (0, 1), for α1 �= α2, α1 �= 1/2 ± 1/

√
12 and

α1 ∈ (0, 1), respectively, are now ±θn where θn := Σ−1
n hn/‖Σ−1

n hn‖.
As our main results in this section, we show that projection pursuits using

all three considered projection indices produce consistent estimates of θn in the
high-dimensional regime (2) where the dimension pn → ∞, as long as its growth
rate is sufficiently slow compared to n and the model parameters are bounded
in size from both above and below. Note that, since the target parameter θn

is indexed by n, by its “consistent estimate” we mean that the angle between
our estimator un and θn gets arbitrarily small in the sense of convergence of
probability, |u′

nθn| − 1 →p 0 as n → ∞.
Our technique of proof is essentially a high-dimensional version of the stan-

dard M-estimator argument where additional care has been taken to accommo-
date the n-indexed model (2).

Theorem 5. Let xn1, . . . ,xnn be a random sample (a triangular array) from
the model (2) where α1 �= α2 and assume that there exists C1, C2 > 0 such that,
for all n,

1/C1 ≤ ‖hn‖ ≤ C1, ‖Σn‖2 ≤ C2, ‖Σ−1
n ‖2 ≤ C2.

Assume further that,

pn → ∞ and pn = o(n1/3).

Then any sequence un of maximizers of u �→ γ2
n(u) satisfies,

|u′
nθn| − 1 →p 0,

as n → ∞.

The equivalent statement to Theorem 5 holds for kurtosis-based projection
pursuit as well and, since the proof of this is exactly analogous to that of The-
orem 5, we have refrained from including it in Appendix B.

Theorem 6. Let xn1, . . . ,xnn be a random sample (a triangular array) from
the model (2) where α1 �= α2 and assume that there exists C1, C2 > 0 such that,
for all n,

1/C1 ≤ ‖hn‖ ≤ C1, ‖Σn‖2 ≤ C2, ‖Σ−1
n ‖2 ≤ C2.

Assume further that,

pn → ∞ and pn = o(n1/4).

Then any sequence un of maximizers of u �→ {κn(u)− 3}2 satisfies,

|u′
nθn| − 1 →p 0,

as n → ∞.
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Theorems 5 and 6 imply the equivalent statement for the hybrid estimator
as well, whose proof we again omit.

Theorem 7. Let xn1, . . . ,xnn be a random sample (a triangular array) from
the model (2) where α1 �= α2 and assume that there exists C1, C2 > 0 such that,
for all n,

1/C1 ≤ ‖hn‖ ≤ C1, ‖Σn‖2 ≤ C2, ‖Σ−1
n ‖2 ≤ C2.

Assume further that,

pn → ∞ and pn = o(n1/4).

Then any sequence un of maximizers of u �→ ηn(u;w1), 0 < w1 < 1, satisfies,

|u′
nθn| − 1 →p 0,

as n → ∞.

We note that while some of the assumptions of Theorems 5 - 7 may seem
counter-intuitive given the nature of the problem (e.g., one might expect that
the problem would get easier when the distance ‖hn‖ between the groups in-
creases), they are in fact needed for controlling the third and fourth moments
of the distribution. Similarly, the growth rates pn = o(n1/3) and pn = o(n1/4)
are indeed a consequence of using third and fourth moment based objective
functions, respectively.

Finally, a natural continuation to the above consistency results would be to
derive limiting distributions for the corresponding quantities |u′

nθn|−1, in order
to allow efficiency comparisons also in the high-dimensional case. However, this
task is beyond our current scope and thus left for future work.

5. Simulations

The three projection pursuit estimators considered here have been discussed in
the context of ICA in detail in [63] where also fixed point algorithms for their
computations are described. For our purpose here we can use their deflation-
based algorithms when only one direction is to be extracted. Projection pursuit
is considered notoriously prone to local optima and therefore it is known that
good initial values for such algorithms are crucial. [63] suggest to use initial
values based on a simple ICA method called FOBI [13]. This is also suitable in
our context as the normal mixture is a sub-model of the IC model, see Lemma
B.1 in Appendix B. The algorithms of [63] are implemented in the package ICtest
[49], which we will use in the following together with R 3.6.1 [59]. Further details
about the software used are contained in the appendix.

Let un be any of the estimators of θ/‖θ‖ discussed in Section 2. The accuracy
of the estimator can in simulations be measured through the inner product
u′
nθ/‖θ‖, which, by the Cauchy-Schwarz inequality, achieves the absolute value

one if and only if the two vectors are parallel. In the continuation, we call the
presented inner product the “Maximal similarity index” (MSI). The following
lemma presents the limiting distribution of this performance measure.
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Lemma 4. Let the unit length vector un satisfy
√
n(snun−θ/‖θ‖) � Np(0,Ψ)

for some sequence of signs sn ∈ {−1, 1} and limiting covariance matrix Ψ. Then,
as n → ∞,

2n(1− snu
′
nθ/‖θ‖) � z′Ψz, (3)

where the random vector z obeys the p-variate standard normal distribution.
Moreover, the expected value of the right-hand side of (3) is tr(Ψ).

Note that the sign correction in Lemma 4 can be incorporated in practice by
choosing the sign sn such that the quantity snu

′
nθ/‖θ‖ is positive. In the simu-

lations, we will evaluate the performances of methods through the left-hand side
of (3). By Lemma 4 the average of this criterion over several replicates should
be close to the trace of the limiting covariance matrix of the corresponding es-
timator, for sample size n large enough. Hence, the simulations also serve to
“verify” our asymptotic results.

In the following simulations four projection pursuit (PP) directions have been
calculated: kurtosis based (obtained by maximization of (κn − 3)2), skewness
based (obtained by maximization of γ2

n), “safe” hybrid estimator (obtained by
maximization of ηn for w1 = 0.8) and “optimal” hybrid estimator (obtained by
maximization of ηn for w1 = w1(α1, τ) which maximizes the relative asymp-
totic efficiency of the hybrid estimator w.r.t. LDA). Sign sn is chosen such that
snu

′
nθ/||θ|| ≥ 0. As discussed, the performances of the four presented PP direc-

tions un are evaluated using the maximal similarity index u′
nθ/||θ|| from above.

For the first simulation setting, the means of maximal similarity indices
snu

′
nθ/||θ|| in the simulations are obtained using 1000 random samples in each

setting. In each (τ, α1, n)-setting, where the Mahalanobis distance between the
group means τ = 1, 2, . . . , 20, mixing proportion α1 = 0.05, 0.1, . . . , 0.45, 0.5 and
sample size n = 500, 1000, 2000, 4000, 8000, 16000, 32000, m = 1000 random
samples are generated from a 10-dimensional normal mixture α1N10(0,Σ) +
(1− α1)N10(μ2,Σ), where Σ is a covariance matrix with autoregression AR(1)
structure with ρ = 0.6, and μ is in each setting chosen randomly such that
μ′Σ−1μ = τ .

The heatmaps of the MSI-values in Figure 7 show that for moderate sample
sizes (n ≥ 2000), both hybrid estimators estimate the optimal LDA direction
very well. It is also visible that kurtosis and skewness based PP directions per-
form very badly when α1 is near their corresponding discontinuity points. The
hybrid estimators suffer from the same problem when α1 is near 1/2− 1/

√
12.

The hybrid estimator with optimal w1 is performing worse when α1 is approach-
ing 1/2 − 1/

√
12 from the inside the interval (1/2 − 1/

√
12, 1/2 + 1/

√
12). It

is important to recall, that the criterion for choosing the optimal weight w1 is
an asymptotic one and thus might not perform well in small sample settings.
Furthermore, to calculate the optimal weight w1 for the hybrid estimator, one
needs to know both the Mahalanobis distance τ between the group means and
the mixing proportion α1, which is a rather unrealistic requirement in practice.
Luckily, the hybrid estimator with the “safe” weight w1 = 0.8 shows a very
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Fig 7. Average values of the MSI snu′
nθ/||θ|| as a function of Mahalanobis distance τ between

the group means and mixing proportion α1, where un is one of the four estimators discussed
above.

good performance in this simulation study and is therefore recommended in
cases where knowledge of α1 and τ is lacking. Another observation based on
this simulation is that for small sample sizes skewness based PP seems to be
preferable. This might be due to the fact that moments of order three are easier
to estimate than moments of order four.

The corresponding heatmap of the standard deviation of MSI can be found in
the Appendix, Figure C.1, and shows that for sample size and distance between
the group means moderately large, deviation of the MSI to the corresponding
mean, which is very close to the optimal value of 1, is negligible, for most
of the values of the mixing proportion α1. Heatmaps of mean and standard
deviation of the MSI in Figures C.3 and C.2 show that for large sample sizes
(n = 8000, 16000, 32000) MSI is virtually 1.

In the next simulation, the theoretic results are to be confirmed by exploiting
the results of Lemma 4. For that purpose we select three values for τ ∈ {1, 5, 10},
to represent hardly, moderately, and clearly separated clusters, respectively.
Then we simulate, for sample sizes n = 500, 1000, 2000, 4000, 8000, 16000, 32000,
from a three-variate Gaussian mixture model as specified above withΣ = I3+13,
where 13 is matrix of ones, μ1 = 0 and μ2 = μ2(τ) is for each τ chosen
such that Mahalanobis distance between the means is equal to τ , i.e., μ2(1) =
(0.68,−0.55, 0.6)′, μ2(5) = (0.81,−2.24,−0.36)′, μ2(10) = (3.06, 1.6,−1.11)′.
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Fig 8. Average values of the MSI snu′
nθ/||θ|| as a function of n, for mixing proportion

α1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and Mahalanobis distance between the group means τ ∈ {1, 5, 10},
where un is one of the four estimators discussed above.

For α1 = 0.1, 0.2, . . . , 0.5 we compute then for sample sizes n = 500, 1000, 2000,
4000, 8000, 16000, 32000 the means of the 2n(1−snu

�
n )θ/‖θ‖ based on 2000 rep-

etitions. The question is then whether those averages for the presented methods
stabilize for the cases they are expected to work. In order not to clutter the
figure we computed only for α1 = 0.1 trace tr(Ψ), for the corresponding matrix
Ψ. Figure 8 shows the results of this simulation and confirms the correspond-
ing theoretic findings from above. The less separated the clusters are the more
difficult the estimation and even for n = 32000 observations there is no sta-
bilization visible. But the more separated the two clusters are, the faster the
stabilization. Also, the closer α1 is to the critical value 1/2− 1/

√
12, the worse

is kurtosis based PP. Skewness based PP similarly is better the more skewed
the distribution and clearly does not work in the symmetric case. Both hybrid
estimators show excellent performance in this setting. It is also clearly visible
that the empirical lines for the mixing proportion α1 = 0.1 correspond to the
theoretically computed dashed lines given that the groups are separated enough
and we assume for τ = 1 the line would be reached for much larger sample sizes.
Though we show the theoretic lines only for one mixing proportion the behavior
is similar for all others naturally with the exception of skewness not working in
the symmetric case.
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Fig 9. PP direction un based on LDA (here denoted as “LDA, sample”), PCA, and one of
the four estimators discussed above.

Principal component analysis (PCA) can also be seen as a projection method
where the variance is maximized. PCA is arguably the most popular dimension
reduction method and is often used before clustering. While skewness and kur-
tosis can be related to mixtures the variance does not have the same connection
with the discriminant direction as the other cumulants. A theoretic considera-
tion of when PCA can be used to estimate the discriminant is in Appendix A.
Here we show an example where PCA fails.

Figure 9 visualizes a sample of size n = 100 from our Gaussian mixture model
with

μ1 = (0, 0)′, μ2 = (0, 5)′, Σ =

(
10 0.3
0.3 1

)
and mixing proportion α1 = 0.3. The figure contains then the direction θ/‖θ‖ of
the population LDA as well as its estimate together with our four PP methods
considered in this section and the direction of the first principal component. As
it is clearly visible here, there is no big difference between the methods except for
PCA which points in a direction that contains no information for the separation
of the two groups.

6. Real data example

To evaluate the performance of the hybrid estimator in a real data set we con-
sider the finance data set available in the R package Rmixmod [37], which con-
sists of 889 records of companies where based on four numeric summary statis-
tics, it should be decided if the company is financially healthy or not, where the
information is provided in the data set.
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The scatter plot matrix is given in the Appendix as Figure C.4 and shows no
clear clusters. As a reference we compute for the data set LDA and then compare
this supervised estimate via the estimate snu

′
nθn/‖θn‖ of the MSI to our hybrid

estimator for different weights, to PCA and to an estimate obtained by fitting
a two-component Gaussian mixture model via the expectation - maximization
(EM) algorithm. Namely, since the nature of the presented problem is essentially
clustering, it is only natural to consider also the classification by EM-algorithm
[18]. We consider the EM-algorithm implemented in R package mclust [57],
where it is being initialized using the initial partitions from model-based hierar-
chical agglomerative clustering. By assuming the model (1), the EM-algorithm
estimates the parameters of the Gaussian mixture; covariance matrix ΣEM and
group means μ1,EM and μ2,EM . Then, the estimated mean and the covariance
matrix can be used in order to estimate the linear discriminant direction

uEM = Σ−1
EM (μ2,EM − μ1,EM )/‖ΣEM (μ2,EM − μ1,EM )‖.

We further refer to the estimator uEM of the LDA direction as the mclust-based
estimate. Figure 10 shows obtained MSI values for the discussed estimators.
The figure clearly shows that as long as enough weight is given to kurtosis,
the hybrid estimator based PP clearly outperforms both PCA and mclust based
estimators, while its performance is poor if skewness gets too much weight. This
is not surprising as the amount of healthy (457) and bankrupt (432) companies
is almost equal. The weight of 0.8 gives again a good performance. Nevertheless,
even though for most values of w1, and especially for suggested w1 ∈ [0.7, 0.8],
hybrid estimators clearly outperform both PCA and mclust based estimators,
the achieved MSI values of around 0.5 are not ideal. Such performance can be
explained by the low sample size and that the cluster centers are not that far
apart, as is shown in the boxplots of Figure C.5 in the Appendix C, which
also indicates that the results obtained by mclust based estimation are not
satisfactory.

7. Discussion

In this paper, we conducted an asymptotic comparison of two popular estimators
of the linear discriminant direction, LDA, and projection pursuit based on skew-
ness and kurtosis. For the latter, we proposed using the weighted combination of
kurtosis and skewness as the projection index (giving the individual cumulants
as special cases). Both the theoretical results and simulations indicate that, with
a suitable choice of weighting, such projection pursuit achieves reasonably good
performance compared to LDA (e.g., around 15% relative asymptotic efficiency
if the Mahalanobis distance between the groups is 5, see Figure 3), considering
it operates in the complete absence of any label information. Moreover, in the
extreme case of balanced and infinitely well-separated groups, projection pur-
suit is able to reach asymptotic efficiency equal to LDA with an optimal choice
of weighting.
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Fig 10. MSI snunθn/‖θn‖ for the finance data, where un is the direction based on PCA and
PP estimators for w1 = 0, 0.1, 0.2, . . . , 0.9, 1. θn is the direction based on LDA.

The use of our optimal weighting results is difficult in practice by the disconti-
nuities around the mixing proportions δ1, δ2 observed in Section 3, see Figure 5.
As such, unless one is sure that the mixing proportion is not in these regions,
our recommendation is to use a universal choice of weighting, anything between
0.7 and 0.8 (as the weight for skewness) likely being a good choice.

At first, we thought that the discontinuities, and the surprising recommen-
dation to favor kurtosis just outside the interval (δ1, δ2), might be caused by the
uneven robustness properties of skewness and kurtosis in the objective function.
Namely, being based on fourth moments, kurtosis is more affected by outliers
than skewness (despite the standardization with second moments). Hence, we
also considered using the “balanced” objective function,

η∗(u) := w1γ(u)
8/3 + w2{κ(u)− 3}2,

in an attempt to put skewness and kurtosis on an equal footing. However, the
asymptotic properties of η∗ (not shown here) turn out to be essentially the same
as for η, including the discontinuities which are also observed for it. Note also
that the discontinuous behavior was observed also in [63], where the normal
mixture model was studied using independent component analysis.

Similarly one could extend our considerations here to many other PP indices
as well, which often are modifications of skewness or kurtosis (see e.g. [25]) or
otherwise motivated to be useful in clustering or structure detection, see, for
example, [14, 17] and references therein for alternative indices. These indices
are however often computationally expensive and therefore much less popular
than skewness and kurtosis.

Finally, besides projection pursuit, there exist also other unsupervised es-
timators of the linear discriminant. For example, it is known that the linear
discriminant can be reconstructed using invariant coordinate selection (ICS)
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[60] where two scatter matrices are jointly diagonalized. Especially when using
the regular covariance matrix and the scatter matrix of fourth moments in this
context as, for example, suggested in [2, 52], would allow a theoretic comparison
(actually, this combination corresponds to the FOBI-method mentioned in Sec-
tion 5). Comparisons of LDA to other supervised and unsupervised classification
methods are given for example in [10, 18].

Another prospective line of work is the extension of our asymptotic results
to location mixtures of Gaussians with proportional covariances. Such a model
was, for example, considered in [53] while studying the multivariate-outlier de-
tection problem, as well as in [41]. [55] argues how this model is particularly
difficult to analyze from an outlier-detection point of view since it corresponds
to a situation where the outliers form a cluster with the same shape as the bulk
of the data. Another natural extension is then in the direction of mixtures of
elliptical distributions, as [51] indeed showed that projection pursuit yields a
Fisher consistent estimator of the linear discriminant also in the case of general
elliptical families. Additionally, [39] studied estimation of linear discriminant
using skewness-based projection pursuit in mixtures of two symmetric distri-
butions with unequal means and proportional covariances. Similarly, another
possible extension is to the case of multiple groups instead of just two or to
groups with unequal covariance matrices.

Appendix A: Equivalent results for PCA

While PCA manages to capture the linear discriminant direction only under
very specific conditions, and cannot thus be reasonably seen as a “unsuper-
vised” estimator of it, we still give for it in the following, for completeness,
equivalent results to the ones in Sections 2 and 3. The first result, detailing con-
ditions required for the Fisher consistency of PCA, is qualitatively well-known
in the literature (see, e.g., Section 9.1 in [28]), but, as far as we know, the exact
eigenvalue bound is novel.

Lemma A.1. Given model (1), the following two are equivalent:

i) The vector h := μ2 − μ1 is an eigenvector of Σ and, denoting the corre-
sponding eigenvalue with φ, the second-to-largest eigenvalue φ2{Cov(x)}
of Cov(x) satisfies

φ2{Cov(x)} < φ(1 + βτ),

where β and τ are as in Theorem 2.
ii) The unique leading unit length eigenvectors of Cov(x) are ±θ/‖θ‖.

Lemma A.1 states that for the first PC to recover the discriminant direction,
it is necessary that the difference μ2−μ1 between the group means is an eigen-
vector of Σ. However, it is not necessary for it to be the leading eigenvector but
instead, roughly, the more well-separated the groups are (large Mahalanobis
distance τ) and the more balanced the groups are (large β), the smaller the



6702 U. Radojičić et al.

corresponding eigenvalue can be relative to the rest of the spectrum. Note also
that in the spherical case, Σ ∝ Ip, the first part of condition i) in Lemma A.1
is trivially satisfied.

Asymptotic results for PCA are also well-known, see, e.g., [3, 15], and the
following theorem details the strong consistency and the limiting normality of
the first PC in our particular scenario. For completeness, we provide a proof.

Theorem A.1. Given model (1), assume that the condition i) (or, equivalently,
ii)) holds and let un be any sequence of leading unit-length eigenvectors of the
sample covariance matrix Cn of x1, . . . ,xn. Then, there exists a sequence of
signs sn ∈ {−1, 1} such that, as n → ∞,

1) snun → θ/‖θ‖, almost surely.
2)

√
n(snun − θ/‖θ‖) � Np(0,ΨPCA), where

ΨPCA :=

(
1 + βτ

‖θ‖2
)
M† [τ(Σ− τ−1hh′) + (1 + βτ){κ(θ)− 1}hh′]M†,

where M := Σ+βhh′−λ1Ip, λ1 is the eigenvalue of Cov(x) corresponding

to the eigenvector θ/‖θ‖, M† denotes the Moore-Penrose pseudoinverse
of M and κ(θ) is the kurtosis of x in the direction θ.

It is evident from part 2) of Theorem A.1 that the limiting covariance matrix
of the PCA-based estimator is not proportional to the four others derived in
Theorems 1, 2, 3 and 4. However, proportionality is reached in the special case
where the group covariance matrix is spherical, Σ = σ2Ip, for some σ2 > 0.
In this case, h/‖h‖ = θ/‖θ‖, the Moore-Penrose pseudoinverses in Theorem
A.1 equal (Σ + βhh′ − φIp)

† = −1/(β‖h‖2)(Ip − hh′/‖h‖2) and the limiting
covariance matrix ΨPCA can be expressed as

ΨPCA =
1

τβ

(
1 + βτ

‖θ‖2β

)(
Ip −

θθ′

‖θ‖2
)
Σ−1

(
Ip −

θθ′

‖θ‖2
)
.

Comparison to Theorem 1 now reveals that the relative asymptotic efficiency
of PCA vs. LDA equals τβ, showing, in particular, that in the balanced case
with α1 = α2 PCA surpasses LDA in asymptotic efficiency as soon as the
Mahalanobis distance between the groups is greater than 4. Moreover, in the
limit τ → ∞, PCA is infinitely more efficient than LDA regardless of the mixing
proportion. This counterintuitive result is, of course, not something one should
rely on in practice, as the conditions required to achieve the situation are being
very restrictive.

Appendix B: Proofs of technical results

Lemma B.1. Let x ∼ α1Np(μ1,Σ)+α2Np(μ2,Σ), where α1, α2 > 0, α1+α2 =
1, μ1,μ2 ∈ R

p, μ1 �= μ2, and Σ ∈ R
p×p is full rank. Then x is an independent

component model, i.e., there exists an invertible matrix Γ ∈ R
p×p such that

Γ{x− E(x)} has independent components.
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Proof of Lemma B.1. We have

x− E(x) ∼ α1Np(−α2h,Σ) + α2Np(α1h,Σ),

where h := μ2 − μ1. Let then Γ := U′Σ−1/2 where U is an orthogonal matrix

satisfying U′Σ−1/2h ∝ e1 and e1 is the first canonical basis vector of Rp (such
an U always exists as Σ is full rank and h �= 0). Now,

Γ{x− E(x)} ∼ α1Np(−α2be1, Ip) + α2Np(α1be1, Ip),

for some b �= 0. The result now follows by writing out the density function of
Γ{x − E(x)} and observing that it factors into a product of the density of a
univariate Gaussian mixture and the densities of p−1 univariate Gaussians with
zero means.

Proof of Theorem 1. The estimator w is translation invariant, meaning that we
may, without loss of generality, assume that E(x) = 0. Under this, the model
(1) takes the form

y ∼ Ber(α1) and x | y ∼ Np{−yα2h+ (1− y)α1h,Σ}, (B.1)

where h := μ2 − μ1. Concurrently, x ∼ α1Np(−α2h,Σ) + α2Np(α1h,Σ) and
Cov(x) = Σ+ βhh′.

We begin by deriving asymptotic linearizations for x̄n2 − x̄n1. Let in the
following β := α1α2. By LLN, ȳn →p α1 and (1/n)

∑
i yixi →p −βh. Hence,

the relation ȳnx̄n1 = (1/n)
∑

i yixi shows that x̄n1 →p −α2h. We further have
the expansion,

√
n

(
1

n

n∑
i=1

yixi + βh

)
=

√
n (ȳn − α1) x̄n1 + α1

√
n(x̄n1 + α2h),

which, by CLT, shows that x̄n1 is asymptotically normal,

α1

√
n(x̄n1 + α2h) =

√
n

(
1

n

∑
i

yixi + βh

)
+
√
n(ȳn − α1)α2h+ op(1).

One can similarly show that,

α2

√
n(x̄n2 − α1h) =

√
n

{
1

n

∑
i

(1− yi)xi − βh

}
+

√
n(ȳn − α1)α1h+ op(1).

Defining an1 :=
√
n{(1/n)

∑
i yixi + βh}, an2 :=

√
n{(1/n)

∑
i(1− yi)xi − βh}

and an3 :=
√
n(ȳn−α1), the previous two can be written as α1

√
n(x̄n1+α2h) =

an1 + an3α2h+ op(1) and α2
√
n(x̄n2 − α1h) = an2 + an3α1h+ op(1). The two

in combination yield the desired linearization,

β
√
n(x̄n2 − x̄n1 − h) = α1an2 − α2an1 + (α1 − α2)an3h+ op(1).
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We then derive a similar expansion for the pooled covariance matrix Sn.
It is straightforwardly seen that

∑n
i=1 yi(xi − x̄n1)(xi − x̄n1)

′ =
∑

i yixix
′
i −∑

i yix̄1x̄
′
1. This together with the equivalent formula for the second group yields

Sn =
1

n− 2

{
n∑

i=1

xix
′
i −

n∑
i=1

yix̄n1x̄
′
n1 −

n∑
i=1

(1− yi)x̄n2x̄
′
n2

}
.

Since
√
n(Sn −Σ) =

√
n[{(n− 2)/n}Sn −Σ] + op(1), we have the expansion,

√
n(Sn −Σ) =

√
n

{
1

n

n∑
i=1

xix
′
i − (Σ+ βhh′)

}

−
√
n

(
1

n

n∑
i=1

yix̄n1x̄
′
n1 − α2βhh

′
)

−
√
n

{
1

n

n∑
i=1

(1− yi)x̄n2x̄
′
n2 − α1βhh

′
}

+ op(1).

The second term above expands as,

√
n

(
1

n

n∑
i=1

yix̄n1x̄
′
n1 − α2βhh

′
)

=α2
2an3hh

′ − β
√
n(x̄n1 + α2h)h

′

− βh
√
n(x̄n1 + α2h)

′ + op(1),

and the third as,

√
n

{
1

n

n∑
i=1

(1− yi)x̄n2x̄
′
n2 − α1βhh

′
}

=− an3α
2
1hh

′ + β
√
n(x̄n2 − α1h)h

′

+ βh
√
n(x̄n2 − α1h)

′ + op(1).

Denoting then An4 :=
√
n{(1/n)

∑
i xix

′
i − (Σ+ βhh′)}, the linearizations de-

rived earlier for x̄n1 and x̄n2 allow us to write,

√
n(Sn −Σ) = An4 + an3(α2 − α1)hh

′ + α2an1h
′ + α2ha

′
n1 − α1an2h

′

− α1ha
′
n2 + op(1).

The above in particular shows that S is asymptotically normal. Hence, the
relation

0 =
√
n(SnS

−1
n − Ip) =

√
n(Sn −Σ)S−1

n +Σ
√
n(S−1

n −Σ−1),

gives
√
n(S−1

n −Σ−1) = −Σ−1√n(Sn −Σ)Σ−1 + op(1).
We are now equipped to derive the limiting distribution of the optimal direc-

tion wn = S−1
n (x̄n2 − x̄n1). Recalling that θ = Σ−1h, we have, by the calculus

of op(1) and Op(1) sequences,

√
n(wn − θ) =

√
n(S−1

n −Σ−1)h+Σ−1√n(x̄n2 − x̄n1 − h) + op(1)



Properties of PP-based estimators of the linear discriminant 6705

= −Σ−1√n(Sn −Σ)θ +Σ−1√n(x̄n2 − x̄n1 − h) + op(1).

Hence,

βΣ
√
n(wn − θ) = −βAn4θ − an3β(α2 − α1)hh

′θ − α2βan1h
′θ

− α2βha
′
n1θ + α1βan2h

′θ + α1βha
′
n2θ

+ α1an2 − α2an1 + an3(α1 − α2)h+ op(1)

= −βAn4θ − an3(α2 − α1)(βh
′θ + 1)h− α2(βh

′θ + 1)an1

+ α1(βh
′θ + 1)an2 − α2βha

′
n1θ + α1βha

′
n2θ + op(1).

By the definitions of an1,an2, an3 and An4 and CLT, the limiting covariance
matrix of βΣ

√
n(w − θ) is

Cov{ − β(θ′x)x− (α2 − α1)Δyh− α2Δyx+ α1Δ(1− y)x− α2βy(θ
′x)h

+ α1β(1− y)(θ′x)h},

where Δ := βλ+1 and λ := θ′h. The covariance matrix is a sum of a total of 36
terms, which we next compute one-by-one. We use the notation γ := α3

1 + α3
2.

(1, 1): β2(1 + 3βλ+ β(γ − β)λ2)hh′ + β2λ(1 + βλ)Σ.
(1, 2): β2(α2 − α1)

2(βλ+ 1)λhh′.
(1, 3): −β2α2λ(βλ+ 1)Σ− β2α2(βλ+ 1){1 + λα2(α2 − α1)}hh′.
(1, 4): −β2α1λ(βλ+ 1)Σ− β2α1(βλ+ 1){1 + λα1(α1 − α2)}hh′.
(1, 5): β3α2λ{λα2(α1 − α2)− 2}hh′.
(1, 6): β3α1λ{λα1(α2 − α1)− 2}hh′.
(2, 1): β2(α2 − α1)

2(βλ+ 1)λhh′.
(2, 2): (α2 − α1)

2(βλ+ 1)2βhh′.
(2, 3): −(α2 − α1)(βλ+ 1)2α2

2βhh
′.

(2, 4): (α2 − α1)α
2
1(βλ+ 1)2βhh′.

(2, 5): −(α2 − α1)(βλ+ 1)α2
2β

2λhh′.
(2, 6): (α2 − α1)(βλ+ 1)α2

1β
2λhh′.

(3, 1): −β2α2λ(βλ+ 1)Σ− β2α2(βλ+ 1){1 + λα2(α2 − α1)}hh′.
(3, 2): −(α2 − α1)(βλ+ 1)2α2

2βhh
′.

(3, 3): α2β(βλ+ 1)2Σ+ α4
2β(βλ+ 1)2hh′.

(3, 4): −β3(βλ+ 1)2hh′.
(3, 5): α2(βλ+ 1)β2(1 + λα3

2)hh
′.

(3, 6): −β4λ(βλ+ 1)hh′.
(4, 1): −β2α1λ(βλ+ 1)Σ− β2α1(βλ+ 1){1 + λα1(α1 − α2)}hh′.
(4, 2): (α2 − α1)α

2
1(βλ+ 1)2βhh′.

(4, 3): −β3(βλ+ 1)2hh′.
(4, 4): α1β(βλ+ 1)2Σ+ α4

1β(βλ+ 1)2hh′.
(4, 5): −β4λ(βλ+ 1)hh′.
(4, 6): α1(βλ+ 1)β2(1 + λα3

1)hh
′.

(5, 1): β3α2λ{λα2(α1 − α2)− 2}hh′.
(5, 2): −(α2 − α1)(βλ+ 1)α2

2β
2λhh′.

(5, 3): α2(βλ+ 1)β2(1 + λα3
2)hh

′.
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(5, 4): −β4λ(βλ+ 1)hh′.
(5, 5): α2β

3λ(1 + λα3
2)hh

′.
(5, 6): −β5λ2hh′.
(6, 1): β3α1λ{λα1(α2 − α1)− 2}hh′.
(6, 2): (α2 − α1)(βλ+ 1)α2

1β
2λhh′.

(6, 3): −β4λ(βλ+ 1)hh′.
(6, 4): α1(βλ+ 1)β2(1 + λα3

1)hh
′.

(6, 5): −β5λ2hh′.
(6, 6): α1β

3λ(1 + λα3
1)hh

′.

Summing the previous terms, we obtain β(1 + βλ)Σ + β2hh′. Hence, the the
limiting covariance of

√
n(wn − θ) is (θ′h+ 1/β)Σ−1 + θθ′.

Finally, the Jacobian of the map θ �→ θ/‖θ‖ is (‖θ‖2Ip − θθ′)/‖θ‖3 and the
delta method then implies that the scaled direction w/‖w‖ has the limiting
covariance matrix,

ΨU := (‖θ‖2Ip − θθ′)/‖θ‖3{(θ′h+ 1/β)Σ−1 + θθ′}(‖θ‖2Ip − θθ′)/‖θ‖3

=

(
θ′Σθ

‖θ‖2 +
1

β‖θ‖2
)(

Ip −
θθ′

‖θ‖2
)
Σ−1

(
Ip −

θθ′

‖θ‖2
)
.

Before proving results regarding the unsupervised estimators, we establish
two auxiliary lemmas.

Lemma B.2. Let A =
∑p

j=2 λjwjw
′
j + w1w

′
1C ∈ R

p×p, where λ2, . . . , λp ∈
R, w1, . . . ,wp constitute an orthonormal set of vectors and C ∈ R

p×p is a
symmetric positive definite matrix. Then A is invertible and

A−1 = B† + (w′
1Cw1)

−1w1w
′
1(Ip −CB†),

where B† =
∑p

j=2 λ
−1
j wjwj is the Moore-Penrose pseudoinverse of the matrix

B :=
∑p

j=2 λjwjwj.

Proof of Lemma B.2. Observe first that BB† = B†B = Ip − w1w
′
1. Then, we

compute the product of the two matrices to be,

(B+w1w
′
1C)

{
B† + (w′

1Cw1)
−1w1w

′
1(Ip −CB†)

}
=Ip −w1w

′
1 +w1w

′
1CB† +w1w

′
1(Ip −CB†)

=Ip.

The opposite product can be verified to equal identity in a similar manner,
proving the claim.

Lemma B.3. Let z ∼ Np(cv, Ip), for some c ∈ R and v ∈ R
p. Then

E{(v′z)kz} = ‖v‖−2E{(v′z)k+1}v, and

E{(v′z)kzz′} = E{(v′z)k}(Ip − ‖v‖−2vv′) + ‖v‖−4E{(v′z)k+2}vv′.
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Proof of Lemma B.3. The conditional distribution of z given v′z is

z | v′z = s ∼ N (‖v‖−2sv, Ip − ‖v‖−2vv′).

Thus,

E{(v′z)kz} = E[E{(v′z)kz | v′z}] = E[(v′z)kE{z | v′z}] = ‖v‖−2E{(v′z)k+1}v.

The second claim is shown analogously and by using the fact that E(zz′ | v′z) =
Cov(z | v′z) + E(z | v′z)E(z′ | v′z).

Proof of Lemma 1. The distribution of the projection u′x̃ is

u′x̃ ∼ α1N (−α2t, g) + α2N (α1t, g),

where t := u′h, g := u′Σu and h := μ2 − μ1. By the moment formulas of
univariate normal distribution, E{(u′x̃)2} = g+βt2, where β := α1α2. Similarly,
E{(u′x̃)4} = β(α3

1+α3
2)t

4+6βt2g+3g2 which can be further simplified by noting
that α3

1 + α3
2 = 1− 3β. Hence,

{κ(u)− 3}2 = β2(1− 6β)2
f4

(1 + βf)4
, (B.2)

where f := t2/g ≥ 0.
If α1 ∈ {δ1, δ2}, then 1 − 6β = 0 making {κ(u) − 3}2 = 0. Assume then

that α1 /∈ {δ1, δ2}, implying that (1 − 6β)2 > 0. The derivative of the map
x �→ x4/(1 + βx)4 is 4x3/(1 + βx)5, showing that the map is strictly increasing
in (0,∞). Hence, {κ(u)− 3}2 is maximal when f is at its largest. Now,

f =
t2

g
=

{(
Σ1/2u

‖Σ1/2u‖

)′

Σ−1/2h

}2

,

showing that, by the Cauchy-Schwarz inequality, f is maximal if and only if
Σ1/2u ∝ Σ−1/2h, i.e., when u = ±θ/‖θ‖ (where θ = Σ−1h).

Proof of Theorem 2. The objective functions are translation invariant, meaning
that we may, without loss of generality, assume that E(x) = 0. This makes
the marginal distribution of x be x ∼ α1Np(−α2h,Σ) + α2Np(α1h,Σ), where
h := μ2 − μ1.

The strong consistency of the estimator can be shown in the usual way by
establishing that the objective function is strongly uniformly convergent in the
compact parameter set Sp−1 (or, more precisely, in its subset where the sign of
the estimator is fixed), that is,

sup
u∈Sp−1

|{κn(u)− 3}2 − {κ(u)− 3}2| → 0, a.s. (B.3)

For simplicity, we give the proof of the uniform convergence only in Theorem 3,
in the context of skewness (having lower moments than kurtosis), and similar
(but lengthier) arguments can be used to show (B.3).
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To show the limiting normality, note that the Largrangian corresponding to
the optimization problem is �n(u) = {κn(u)−3}2+λn(u

′u−1) where λn is the
Lagrangian multiplier. Using some matrix calculus, the corresponding gradient
is seen to be

∇�n(u) =
8

s̃n2(u)3
{κn(u)− 3}{s̃n2(u)m̃n3(u)− s̃n4(u)m̃n1(u)} − 2λnu,

where s̃nk(u) := (1/n)
∑

i(u
′x̃i)

k and m̃nk(u) := (1/n)
∑

i(u
′x̃i)

kx̃i. The gra-
dient vanishes at the (sign-adjusted) sample maximum snun and multiplication
of the gradient from the left with snu

′
n thus yields that 0 = snu

′
n∇�n(snun) =

−2λn, showing that λn = 0.
We next work on the level of individual probability elements ω ∈ Ω. By

Lemma 1, LLN and the strong consistency of snun, there exists a probability one
set H such that snun → u0 and κn(un)−3 → t �= 0 for all ω ∈ H. Thus, for each
ω ∈ H, the maximizer un satisfies, for n large enough, the estimating equation
s̃n2(snun)m̃n3(snun)− s̃n4(snun)m̃n1(snun) = 0. Using Lagrangian multipliers
we can similarly show that the population maximizer u0 := θ/‖θ‖ satisfies
s2(u0)m3(u0) − s4(u0)m1(u0) = 0, where sk(u) = E{(u′x)k} and mk(u) =
E{(u′x)kx}.

Let gnκ : Rp\{0} → R be such that gnκ(u) = s̃n2(u)m̃n3(u)−s̃n4(u)m̃n1(u).
For each ω ∈ H, we have, for n large enough, the Taylor expansion

gnκ(snun) = gnκ(u0) +∇gnκ(u0)(snun − u0)

+ {(snun − u0)
′ ×∇′∇gnκ(ũn)}(snun − u0),

where ∇′∇gnκ(ũn) is the third order tensor of second derivatives of g, the sym-
bol × denotes the vector-by-tensor multiplication (producing a matrix) and ũn

satisfies ‖ũn − u0‖ ≤ ‖un − u0‖, implying that ũn → u0. Multiplying the
expansion by

√
n and using the fact that gnκ(snun) = 0 gives that

{(snun − u0)
′ ×∇′∇gnκ(ũn) +∇gnκ(u0)}

√
n(snun − u0) =

√
ngnκ(u0).

(B.4)

Now, the elements of ∇′∇gnκ(u) are polynomials of the sample moments of
x̃i and the elements of u implying that, by LLN, ∇′∇gnκ(ũn) converges to a
constant and (snun−u0)

′×∇′∇gnκ(ũn) converges to zero, for any ω ∈ H. Now,
by the unit lengths of snun and u0, we have c0h(snun + u0)

′√n(snun − u0) =
0, where c0 := (1/2){3s2(u0)

2 − s4(u0)}‖θ‖(h′Σ−1h)−1 (the inclusion of the
constant c0 simplifies things later on). Summing this with equation (B.4) gives

{(snun − u0)
′ ×∇′∇gnκ(ũn) +∇gnκ(u0) + c0h(snun + u0)

′}
√
n(snun − u0)

=
√
ngnκ(u0).

Assume now for a moment that ∇gnκ(u0) + c0h(snun + u0)
′ converges to a

full-rank matrix G ∈ R
p×p. Then, for n large enough, we have,

√
n(snun − u0) = {(snun − u0)

′ ×∇′∇gnκ(ũn) +∇gnκ(u0) (B.5)
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+ c0h(snun + u0)
′}−1

√
ngnκ(u0). (B.6)

Hence, assuming further that we have
√
ngnκ(u0) � Np(0,Π), then the limiting

distribution of snun is, by Slutsky’s theorem,

√
n(snun − u0) � Np{0,G−1Π(G−1)′}. (B.7)

Thus, to complete the proof, we next derive expressions for G and Π (and show
that the former has indeed full rank).

The Jacobian of gnκ is,

∇gnκ(u0) =2m̃n1(u0)m̃n3(u0)
′ + 3s̃n2(u0)G̃n2(u0)− 4m̃n3(u0)m̃n1(u0)

′

− s̃n4(u0)G̃n0(u0),

where G̃nk(u) := (1/n)
∑

i(u
′x̃i)

kx̃ix̃
′
i. Thus, by LLN and using the population

level estimating equation, s2(u0)m3(u0) = s4(u0)m1(u0), we get

∇gnκ(u0) →p= −2
s4(u0)

s2(u0)
m1(u0)m1(u0)

′ + 3s2(u0)G2(u0)− s4(u0)G0(u0),

(B.8)

where Gk(u) := E{(u′x)kxx′}. Denote next τ := h′Σ−1h.
To compute the moments mk(u0) and Gk(u0), we use Lemma B.3. The for-

mer satisfies Σ−1/2mk(u0) = ‖θ‖−kE{(v′z)kz}, where v := Σ−1/2h and z ∼
α1Np(−α2h, Ip) + α2Np(α1h, Ip). Denoting the components of the mixture by
z1 and z2, we have, by the first part of Lemma B.3, for z1 that E{(v′z1)

kz1} =
‖v‖−2E{(v′z1)

k+1}v, and similarly for z2. Hence,

Σ−1/2mk(u0) = ‖θ‖−k‖v‖−2E{(v′z)k+1}v.

Finally, since sk(u0) = ‖θ‖−kE{(v′z)k}, we get

mk(u0) = ‖θ‖‖v‖−2sk+1(u0)Σ
1/2v = ‖θ‖τ−1sk+1(u0)h. (B.9)

For Gk(u0), we have, using the same notation, that

Σ−1/2Gk(u0)Σ
−1/2 = ‖θ‖−kE{(v′z)kzz′}.

The second part of Lemma B.3 then shows that

Gk(u0) = ‖θ‖−kΣ1/2[E{(v′z)k}(Ip − ‖v‖−2vv′) + ‖v‖−4E{(v′z)k+2}vv′]Σ1/2

= ‖θ‖−k[‖θ‖ksk(u0)(Σ− τ−1hh′) + τ−2‖θ‖k+2sk+2(u0)hh
′]

= sk(u0)Σ+ τ−1{τ−1‖θ‖2sk+2(u0)− sk(u0)}hh′.

(B.10)

Plugging in the expressions to (B.8), we get ∇gnκ(u0) →p (3s22 − s4)Σ
1/2(Ip −

ww′)Σ1/2, where w := Σ−1/2h/‖Σ−1/2h‖ and sk ≡ sk(u0). Moreover, we also
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have c0h(snun + u0)
′ →p (3s22 − s4)Σ

1/2ww′Σ−1Σ1/2. Now G is the sum of
these two, giving,

G = (3s22 − s4)Σ
1/2(Ip −ww′ +ww′Σ−1)Σ1/2.

The invertibility of G now follows from Lemma B.2, which also gives

(Ip −ww′ +ww′Σ−1)−1 = Ip + (w′Σ−1w)−1ww′(Ip −Σ−1)

= Ip + ‖θ‖−2Σ−1/2hh′Σ−1/2(Ip −Σ−1).

Finally, this makes the inverse of G be,

G−1 =
1

3s22 − s4

{
Σ−1 +

1

‖θ‖2 θθ
′(Ip −Σ−1)

}
.

The fact that 3s22 − s4 �= 0 follows from the formulas for sk given later in the
proof.

We next obtain the limiting distribution of

√
ngnκ(u0) =

√
n{s̃n2(u0)m̃n3(u0)− s̃n4(u0)m̃n1(u0)}.

Define non-centered counterparts for the sample moments as snk(u) := (1/n)∑
i(u

′xi)
k and mnk(u) := (1/n)

∑
i(u

′xi)
kxi. Then, LLN together with the

calculus of op(1) and Op(1) sequences shows that s̃n2(u) = sn2(u) + op(1/
√
n)

and m̃n1(u) = mn1(u) + op(1/
√
n). However, the same equivalence does not

hold for the terms m̃n3(u) and s̃n4(u) but we instead have

m̃n3(u) = mn3(u)− 3sn1(u)m2(u)− s3(u)mn0(u) + op(1/
√
n),

and

s̃n4(u) = sn4(u)− 4s3(u)sn1(u) + op(1/
√
n).

Using these, we expand
√
ngnκ(u0) to be (dropping u0 from the notation),

√
ngnκ =

√
n(sn2 − s2)m3 + s2

√
n(mn3 −m3)−

√
n(sn4 − s4)m1

− s4
√
n(mn1 −m1) + (4s3m1 − 3s2m2)

√
nsn1 − s2s3

√
nmn0.

(B.11)

Hence, by CLT,
√
ngnκ has a limiting normal distribution with the covariance

matrix,

Π = Cov{(u′
0x)

2m3 + s2(u
′
0x)

3x− (u′
0x)

4m1 − s4(u
′
0x)x

+ (4s3m1 − 3s2m2)(u
′
0x)− s2s3x}.

This matrix consists of 36 terms, which we next present and simplify using (B.9)
and (B.10). We use the notation ψ = ‖θ‖τ−1. Note that s1 = 0, m0 = 0 and
f := 4s3m1 − 3s2m2 = ψs2s3h.
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(1, 1): (s4 − s22)m3m
′
3 = ψ2s24(s4 − s22)hh

′.
(1, 2): s2(m3m

′
5 − s2m3m

′
3) = ψ2s2s4(s6 − s2s4)hh

′.
(1, 3): −(s6 − s2s4)m3m

′
1 = −ψ2s2s4(s6 − s2s4)hh

′.
(1, 4): −s4(m3m

′
3 − s2m3m

′
1) = −ψ2s24(s4 − s22)hh

′.
(1, 5): s3m3f

′ = ψ2s2s
2
3s4hh

′.
(1, 6): −s2s3m3m

′
2 = −ψ2s2s

2
3s4hh

′.
(2, 1): ψ2s2s4(s6 − s2s4)hh

′.
(2, 2): s22(G6 −m3m

′
3) = s22s6Σ+ s22{ψ2(s8 − s24)− τ−1s6}hh′.

(2, 3): −s2(m7m
′
1 − s4m3m

′
1) = −ψ2s22(s8 − s24)hh

′.
(2, 4): −s2s4(G4 −m3m

′
1) = −s2s

2
4Σ− s2s4{ψ2(s6 − s2s4)− τ−1s4}hh′.

(2, 5): s2m4f
′ = ψ2s22s3s5hh

′.
(2, 6): −s22s3G3 = −s22s

2
3Σ− s22s3{ψ2s5 − τ−1s3}hh′.

(3, 1): −ψ2s2s4(s6 − s2s4)hh
′.

(3, 2): −ψ2s22(s8 − s24)hh
′.

(3, 3): (s8 − s24)m1m
′
1 = ψ2s22(s8 − s24)hh

′.
(3, 4): s4(m1m

′
5 − s4m1m

′
1) = ψ2s2s4(s6 − s2s4)hh

′.
(3, 5): −s5m1f

′ = −ψ2s22s3s5hh
′.

(3, 6): s2s3m1m
′
4 = ψ2s22s3s5hh

′.
(4, 1): −ψ2s24(s4 − s22)hh

′.
(4, 2): −s2s

2
4Σ− s2s4{ψ2(s6 − s4s2)− τ−1s4}hh′.

(4, 3): ψ2s2s4(s6 − s2s4)hh
′.

(4, 4): s24(G2 −m1m
′
1) = s2s

2
4Σ+ s24{ψ2(s4 − s22)− τ−1s2}hh′.

(4, 5): −s4m2f
′ = −ψ2s2s

2
3s4hh

′.
(4, 6): s2s3s4G1 = ψ2s2s

2
3s4hh

′.
(5, 1): ψ2s2s

2
3s4hh

′.
(5, 2): ψ2s22s3s5hh

′.
(5, 3): −ψ2s22s3s5hh

′.
(5, 4): −ψ2s2s

2
3s4hh

′.
(5, 5): s2f f

′ = ψ2s32s
2
3hh

′.
(5, 6): −s2s3fm

′
1 = −ψ2s32s

2
3hh

′.
(6, 1): −ψ2s2s

2
3s4hh

′.
(6, 2): −s22s

2
3Σ− s22s3{ψ2s5 − τ−1s3}hh′.

(6, 3): ψ2s22s3s5hh
′.

(6, 4): ψ2s2s
2
3s4hh

′.
(6, 5): −ψ2s32s

2
3hh

′.
(6, 6): s22s

2
3G0 = s22s

2
3Σ+ s22s

2
3(ψ

2s2 − τ−1)hh′.

Summation of the previous 36 terms results in Π = s2(s2s6 − s2s
2
3 − s24)(Σ −

τ−1hh′). Thus, from the reasoning preceding (B.7), we have that
√
n(snun −

u0) has a limiting normal distribution and with the covariance matrix Ψκ =
G−1Π(G−1)′. Plugging now in the values of G and Π and simplifying, we
obtain,

Ψκ =
s2(s2s6 − s2s

2
3 − s24)

(3s22 − s4)2

(
Ip −

θθ′

‖θ‖2
)
Σ−1

(
Ip −

θθ′

‖θ‖2
)
. (B.12)

Now, recall that sk ≡ sk(u0) = E{(u′
0x)

k} = ‖θ‖−kE{(θ′x)k} where θ′x ∼
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α1N1(−α2τ, τ)+α2N1(α1τ, τ) and τ = θ′h = θ′Σθ. Using the moment formulas
for univariate normal distribution we now obtain that

s2 = ‖θ‖−2τ(1 + βτ), s3 = ‖θ‖−3(α1 − α2)βτ
3,

s4 = ‖θ‖−4τ2{βτ2(1− 6β) + 3(1 + βτ)2},

and

s6 = ‖θ‖−6τ3{β(1− 5β + 5β2)τ3 + 15β(1− 3β)τ2 + 45βτ + 15}

where β := α1α2 and we have used the identities α3
1+α3

2 = 1−3β and α5
1+α5

2 =
1 − 5β + 5β2. Plugging these in to (B.12) and simplifying (using (α1 − α2)

2 =
1− 4β), shows that the constant in front is

(1 + βτ)(6 + 24βτ + 9βτ2 + βτ3 − 18β2τ2 − 3β2τ3)

τ3β2(6β − 1)2‖θ‖2

Proof of Lemma 2. The distribution of the projection u′x̃ is

u′x̃ ∼ α1Np(−α2t, g) + α2Np(α1t, g),

where t := u′h, g := u′Σu and h := μ2 − μ1. By the moment formulas of
univariate normal distribution, E{(u′x̃)2} = g+βt2, where β := α1α2. Similarly,
E{(u′x̃)3} = (α1 − α2)βt

3. Hence,

γ(u) = β2(1− 4β)
f3

(1 + βf)3
,

where f := t2/g ≥ 0. Now, if α1 = α2 = 1/2, then clearly γ(u)2 = 0. If α1 �= 1/2,
the derivative of the map x �→ x3/(1 + βx)3 is 3x2/(1 + βx)4, showing that the
map is strictly increasing outside of the origin. The conclusion now follows as
in the proof of Lemma 1.

Proof of Theorem 3. The strong consistency follows as soon as we show the
strong uniform consistency,

sup
u∈Sp−1

|γn(u)2 − γ(u)2| → 0, a.s.. (B.13)

By Theorem 2 and Lemma 1 in [5], (B.13) holds if, 1) the parameter space is
compact, 2) we have γn(u)

2 → γ(u)2, a.s., for all u ∈ S
p−1 (this holds by LLN

and the continuous mapping theorem), 3) γ2 is uniformly continuous in u and, 4)
γ2
n is Lipschitz continuous in the sense that |γn(u1)

2 − γn(u2)
2| ≤ Kn‖u1 −u2‖

for all u1,u2 ∈ S
p−1 and some random variable Kn converging almost surely to

a constant.
We now verify condition 4) above. Using the notation of the proof of Theorem

2, we have

|γn(u1)
2 − γn(u2)

2| =
∣∣∣∣ s̃2n3(u1)

s̃3n2(u1)
− s̃2n3(u2)

s̃3n2(u2)

∣∣∣∣
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≤|s̃2n3(u1)− s̃2n3(u2)|s̃3n2(u2)− s̃2n3(u2)|s̃3n2(u1)− s̃3n2(u2)|
s̃3n2(u1)s̃3n2(u2)

.

Now, s̃n2(u) is, for all u ∈ Sp−1, lower bounded by the smallest eigenvalue of
the sample covariance matrix, which by the continuity of the eigenvalues and
the positive-definiteness of the covariance matrix converges almost surely to a
positive constant. Moreover, we have

|s̃n3(u)| ≤
1

n

n∑
i=1

|u′x̃i|3 ≤ 1

n

n∑
i=1

‖xi − x̄‖3 ≤ 1

n

n∑
i=1

(‖xi‖+ ‖x̄‖)3,

which converges, by LLN, almost surely to a constant, and similar result can be
shown for |s̃n2(u)|. Finally,

|s̃2n3(u1)− s̃2n3(u2)| ≤ |s̃n3(u1)− s̃n3(u2)|
2

n

n∑
i=1

‖xi − x̄‖3,

and

|s̃n3(u1)− s̃n3(u2)| ≤
1

n

n∑
i=1

|(u1 − u2)
′x̃i||(u′

1x̃i)
2 + u′

1x̃iu
′
2x̃i + (u′

2x̃i)
2|

≤ ‖u1 − u2‖
3

n

n∑
i=1

‖xi − x̄‖3,

and putting everything above together, we conclude that the Lipschitz conti-
nuity 4) holds. What remains to be verified is then condition 3), which can be
shown similarly to 4) after recalling that Lipschitz continuity implies uniform
continuity. Hence, the strong consistency of the estimator follows.

Also, the proof of the limiting normality has exactly the same steps as in the
proof of Theorem 2 and we only provide the key steps and expressions, using
the same notation as in the proof of Theorem 2. The gradient of γn is

∇γn(u) =
6

s̃n2(u)5/2
γn(u){s̃n2(u)m̃n2(u)− s̃n3(u)m̃n1(u)},

leading to the estimating equation gnγ(un) = 0, for gnγ(u) := s̃n2(u)m̃n2(u)−
s̃n3(u)m̃n1(u). The Jacobian of gnγ at u0 satisfies (after simplification via the
estimating equation)

∇gnγ(u0) →p −s3(u0)

s2(u0)
m1(u0)m1(u0)

′ + 2s2(u0)G1(u0)− s3(u0)G0(u0).

By formulas for mk(u0) and Gk(u0), the limit equals −s3Σ
1/2(Ip −ww′)Σ1/2.

Using the same trick as in the proof of Theorem 2 to make the Jacobian full
rank (addition of c0h(snun + u0)

′√n(snun − u0) = 0 for suitably chosen c0 to
the Taylor expansion), we obtain the corresponding matrix G to be

G = −s3Σ
1/2(Ip −ww′ +ww′Σ−1)Σ1/2,
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with the inverse,

G−1 = − 1

s3

{
Σ−1 +

1

‖θ‖2 θθ
′(Ip −Σ−1)

}
.

Moving to study the limiting distribution of
√
ngnγ , we note that

m̃n2(u) = mn2(u)− 2sn1(u)m1(u)− s2(u)mn0(u) + op(1/
√
n),

and

s̃n3(u) = sn3(u)− 3s2(u)sn1(u) + op(1/
√
n).

With these, we expand
√
ngnγ(u0) to be,

√
ngnγ =

√
n(sn2 − s2)m2 + s2

√
n(mn2 −m2)−

√
n(sn3 − s3)m1

− s3
√
n(mn1 −m1) + s2m1

√
nsn1 − s22

√
nmn0. (B.14)

Hence, by CLT,
√
ngnγ has a limiting normal distribution with the covariance

matrix,

Π = Cov{(u′
0x)

2m2 + s2(u
′
0x)

2x− (u′
0x)

3m1 − s3(u
′
0x)x+ s2m1(u

′
0x)− s22x}.

The covariance matrix has the following 36 terms.

(1, 1): (s4 − s22)m2m
′
2 = ψ2s23(s4 − s22)hh

′.
(1, 2): s2(m2m

′
4 − s2m2m

′
2) = ψ2s2s3(s5 − s2s3)hh

′.
(1, 3): −(s5 − s2s3)m2m

′
1 = −ψ2s2s3(s5 − s2s3)hh

′.
(1, 4): −s3(m2m

′
3 − s2m2m

′
1) = −ψ2s23(s4 − s22)hh

′.
(1, 5): s2s3m2m

′
1 = ψ2s22s

2
3hh

′.
(1, 6): −s22m2m

′
2 = −ψ2s22s

2
3hh

′.
(2, 1): ψ2s2s3(s5 − s2s3)hh

′.
(2, 2): s22(G4 −m2m

′
2) = s22s4(Σ− τ−1hh′) + ψ2s22(s6 − s23)hh

′.
(2, 3): −s2(m5m

′
1 − s3m2m

′
1) = −ψ2s22(s6 − s23)hh

′.
(2, 4): −s2s3(G3 −m2m

′
1) = −s2s

2
3(Σ− τ−1hh′)− ψ2s2s3(s5 − s2s3)hh

′.
(2, 5): s22m3m

′
1 = ψ2s32s4hh

′.
(2, 6): −s32G2 = −s42(Σ− τ−1hh′)− ψ2s32s4hh

′.
(3, 1): −ψ2s2s3(s5 − s2s3)hh

′.
(3, 2): −ψ2s22(s6 − s23)hh

′.
(3, 3): (s6 − s23)m1m

′
1 = ψ2s22(s6 − s23)hh

′.
(3, 4): s3(m1m

′
4 − s3m1m

′
1) = ψ2s2s3(s5 − s2s3)hh

′.
(3, 5): −s2s4m1m

′
1 = −ψ2s32s4hh

′.
(3, 6): s22m1m

′
3 = ψ2s32s4hh

′.
(4, 1): −ψ2s23(s4 − s22)hh

′.
(4, 2): −s2s

2
3(Σ− τ−1hh′)− ψ2s2s3(s5 − s2s3)hh

′.
(4, 3): ψ2s2s3(s5 − s2s3)hh

′.
(4, 4): s23(G2 −m1m

′
1) = s2s

2
3(Σ− τ−1hh′) + ψ2s23(s4 − s22)hh

′.
(4, 5): −s2s3m2m

′
1 = −ψ2s22s

2
3hh

′.
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(4, 6): s22s3G1 = ψ2s22s
2
3hh

′.
(5, 1): ψ2s22s

2
3hh

′.
(5, 2): ψ2s32s4hh

′.
(5, 3): −ψ2s32s4hh

′.
(5, 4): −ψ2s22s

2
3hh

′.
(5, 5): s32m1m

′
1 = ψ2s52hh

′.
(5, 6): −s32m1m

′
1 = −ψ2s52hh

′.
(6, 1): −ψ2s22s

2
3hh

′.
(6, 2): −s42(Σ− τ−1hh′)− ψ2s32s4hh

′.
(6, 3): ψ2s32s4hh

′.
(6, 4): ψ2s22s

2
3hh

′.
(6, 5): −ψ2s52hh

′.
(6, 6): s42G0 = s42(Σ− τ−1hh′) + ψ2s52hh

′.

Summing the terms gives Π = s2(s2s4 − s32 − s23)(Σ− τ−1hh′). This yields the
limiting covariance,

Ψκ = G−1Π(G−1)′ =
s2(s2s4 − s32 − s23)

s23

(
Ip −

θθ′

‖θ‖2
)
Σ−1

(
Ip −

θθ′

‖θ‖2
)
.

(B.15)

Finally, simplifying the constant in front shows that it equals

(1 + βτ)(2 + 6βτ + βτ2)

τ2β2(1− 4β)‖θ‖2 .

Proof of Theorem 4. Again, the strong consistency follows as in Theorem 2 and
we omit its proof. For the limiting distribution, we give in the following the key
steps of the proof (and use the same notation as in the proofs of Theorems 2
and 3).

The gradient of ηn is

∇ηn(u) =
1

s̃3n2
[6w1γn(u)s̃

1/2
n2 (u)gnγ(u) + 8w2{κn(u)− 3}gnκ(u)],

where gnγ(u) = s̃n2(u)m̃n2(u) − s̃n3(u)m̃n1(u) and gnκ(u) = s̃n2(u)m̃n3(u) −
s̃n4(u)m̃n1(u) were used in the proofs of Theorems 3 and 2, respectively. Thus,
un solves the estimating equation gnη(un) = 0, where

gnη(u) := 3w1γn(u)s̃
1/2
n2 (u)gnγ(u) + 4w2{κn(u)− 3}gnκ(u).

The Jacobian of gnη at u0 satisfies

∇gnη(u0) =3w1[∇{γn(u0)s̃
1/2
n2 (u0)}gnγ(u0)

′ + γn(u0)s̃
1/2
n2 (u0)∇gnγ(u0)]

+ 4w2[∇{κn(u0)− 3}gnκ(u0)
′ + {κn(u0)− 3}∇gnκ(u0)].
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Recalling that mk(u0) = ψsk+1h and Gk(u0) = sk(Σ− τ−1hh′) + ψ2sk+2hh
′,

where ψ = ‖θ‖τ−1, LLN now gives that gnγ(u0) →p 0 and gnκ(u0) →p 0,
implying that

∇gnη(u0) →p −s−2
2 {3w1s2s

2
3 + 4w2(s4 − 3s22)

2}Σ1/2(Ip −ww′)Σ1/2.

Completing now this matrix to full rank through the unit length constraint on
un (as in the proofs of Theorems 3 and 2), we now obtain that,

G−1 =
−s22

3w1s2s23 + 4w2(s4 − 3s22)
2

{
Σ−1 +

1

‖θ‖2 θθ
′(Ip −Σ−1)

}
.

We then derive the limiting distribution of

√
ngnη(u0) = 3w1

√
ns̃

1/2
n2 (u0)gnγ(u0) + 4w2

√
ngnκ(u0).

Recalling that the population version satisfies

3w1γ(u0)s
1/2
2 (u0)gγ(u0) + 4w2{κ(u0)− 3}gκ(u0) = 0,

we get the expansion,

√
ngnη =3w1{

√
n(γns̃

1/2
n2 − γs

1/2
2 )(s2m2 − s3m1) + s−1

2 s3
√
ngnγ}

+ 4w2{
√
n(κn − κ)(s2m3 − s4m1) + s−2

2 (s4 − 3s22)
√
ngnκ}+ op(1),

where
√
ngnκ has the expansion given in (B.11). Now, s2m2 − s3m1 = 0 and

s2m3 − s4m1 = 0, implying that

√
ngnη = 3w1s

−1
2 s3

√
ngnγ + 4w2s

−2
2 (s4 − 3s22)

√
ngnκ + op(1),

where
√
ngnγ has the expansion given in (B.14). Consequently, by CLT,

√
ngnη

has a limiting normal distribution. By the proof of Theorem 2, the limiting co-
variance matrix of 4w2s

−2
2 (s4 − 3s22)

√
ngnκ is 16w2

2s
−3
2 (s4 − 3s22)

2(s2s6 − s2s
2
3 −

s24)(Σ−τ−1hh′) and, by the proof of Theorem 3, the limiting covariance matrix
of 3w1s

−1
2 s3

√
ngnγ is 9w2

1s
−1
2 s23(s2s4 − s32 − s23)(Σ − τ−1hh′). Thus, the limit-

ing covariance matrix of
√
ngnη is {9w2

1s
−1
2 s23(s2s4 − s32 − s23) + 16w2

2s
−3
2 (s4 −

3s22)
2(s2s6−s2s

2
3−s24)}(Σ−τ−1hh′)+24w1w2s

−3
2 s3(s4−3s22)Cov(y1,y2), where

y1 := (u′
0x)

2m2 + s2(u
′
0x)

2x− (u′
0x)

3m1 − s3(u
′
0x)x+ s2(u

′
0x)m1 − s22x,

y2 := (u′
0x)

2m3 + s2(u
′
0x)

3x− (u′
0x)

4m1 − s4(u
′
0x)x+ s3(u

′
0x)m1 − s2s3x.

The matrix Cov(y1,y2) consists of the following 36 terms:

(1, 1): ψ2s3s4(s4 − s22)hh
′.

(1, 2): ψ2s2s3(s6 − s2s4)hh
′.

(1, 3): −ψ2s2s3(s6 − s2s4)hh
′.

(1, 4): −ψ2s3s4(s4 − s22)hh
′.

(1, 5): ψ2s2s
3
3hh

′.
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(1, 6): −ψ2s2s
3
3hh

′.
(2, 1): ψ2s2s4(s5 − s2s3)hh

′.
(2, 2): s22s5(Σ− τ−1hh′) + ψ2s22(s7 − s3s4)hh

′.
(2, 3): −ψ2s22(s7 − s3s4)hh

′.
(2, 4): −s2s3s4(Σ− τ−1hh′)− ψ2s2s4(s5 − s2s3)hh

′.
(2, 5): ψ2s22s3s4hh

′.
(2, 6): −s32s3(Σ− τ−1hh′)− ψ2s22s3s4hh

′.
(3, 1): −ψ2s2s4(s5 − s2s3)hh

′.
(3, 2): −ψ2s22(s7 − s3s4)hh

′.
(3, 3): ψ2s22(s7 − s3s4)hh

′.
(3, 4): ψ2s2s4(s5 − s2s3)hh

′.
(3, 5): −ψ2s22s3s4hh

′.
(3, 6): ψ2s22s3s4hh

′.
(4, 1): −ψ2s3s4(s4 − s22)hh

′.
(4, 2): −s2s3s4(Σ− τ−1hh′)− ψ2s2s3(s6 − s2s4)hh

′.
(4, 3): ψ2s2s3(s6 − s2s4)hh

′.
(4, 4): s2s3s4(Σ− τ−1hh′) + ψ2s3s4(s4 − s22)hh

′.
(4, 5): −ψ2s2s

3
3hh

′.
(4, 6): ψ2s2s

3
3hh

′.
(5, 1): ψ2s22s3s4hh

′.
(5, 2): ψ2s32s5hh

′.
(5, 3): −ψ2s32s5hh

′.
(5, 4): −ψ2s22s3s4hh

′.
(5, 5): ψ2s42s3hh

′.
(5, 6): −ψ2s42s3hh

′.
(6, 1): −ψ2s22s3s4hh

′.
(6, 2): −s32s3(Σ− τ−1hh′)− ψ2s32s5hh

′.
(6, 3): ψ2s32s5hh

′.
(6, 4): ψ2s22s3s4hh

′.
(6, 5): −ψ2s42s3hh

′.
(6, 6): s32s3(Σ− τ−1hh′) + ψ2s42s3hh

′.

The sum of the 36 terms is s2(s2s5−s22s3−s3s4)(Σ−τ−1hh′). Hence, the limiting
covariance matrix of

√
ngnη is {9w2

1s
−1
2 s23(s2s4 − s32 − s23) + 24w1w2s

−2
2 s3(s4 −

3s22)(s2s5 − s22s3 − s3s4) + 16w2
2s

−3
2 (s4 − 3s22)

2(s2s6 − s2s
2
3 − s24)}(Σ− τ−1hh′).

Consequently, the limiting covariance of
√
n(un − u0) is

Ψη =

{
9w2

1s
3
2s

2
3(s2s4 − s32 − s23) + 24w1w2s

2
2s3(s4 − 3s22)(s2s5 − s22s3 − s3s4)

{3w1s2s23 + 4w2(s4 − 3s22)
2}2

+
16w2

2s2(s4 − 3s22)
2(s2s6 − s2s

2
3 − s24)

{3w1s2s23 + 4w2(s4 − 3s22)
2}2

}(
Ip −

θθ′

‖θ‖2
)
Σ−1

(
Ip −

θθ′

‖θ‖2
)
.

Using now the expressions for s2, s3, s4, s6 in the proof of Theorem 2 and the
analogously obtainable formula s5 = ‖θ‖−5(α1 − α2)βτ

4{(1 − 2β)τ + 10}, the
factor in front of the covariance matrix simplifies to Cη(1+βτ)/(‖θ‖2β), where

Cη =
9w2

1(1 + βτ)2(1− 4β)(2 + 6βτ + βτ2)

βτ2{3w1(1 + βτ)(1− 4β) + 4w2τ(1− 6β)2}2
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+
24w1w2τ

2(1 + βτ)(1− 4β)β(1− 6β)(6 + τ) + 16w2
2τ(1− 6β)2Δ

βτ2{3w1(1 + βτ)(1− 4β) + 4w2τ(1− 6β)2}2 .

and Δ := 6 + 24βτ + 9β(1− 2β)τ2 + β(1− 3β)τ3.

Proof of Lemma 4. The limiting distribution of {√n(snun−θ/‖θ‖)}′{√n(snun

−θ/‖θ‖)} is the same as that of z′Ψz. The first claim now follows by observing
that,

{
√
n(snun − θ/‖θ‖)}′{

√
n(snun − θ/‖θ‖)} = 2n(1− snu

′
nθ/‖θ‖).

Finally, E(z′Ψz) = tr{ΨE(zz′)} = tr(Ψ).

Proof of Lemma A.1. We first show that i) implies ii). The positive-definiteness
of Σ in conjunction with the relation Σh = φh gives that Σ−1h = φ−1h.
Consequently,

Cov(x)
θ

‖θ‖ = (Σ+ βhh′)
Σ−1h

‖Σ−1h‖
=

φ

‖h‖ (1 + βτ)h = φ(1 + βτ)
θ

‖θ‖ .

Hence, ±θ/‖θ‖ are the unique leading unit-length eigenvectors of Cov(x) if the
second-to-largest eigenvalue of Cov(x) is smaller than φ(1+βτ), the eigenvalue
corresponding to ±θ/‖θ‖.

To see that ii) implies i), denote the eigenvalue of Cov(x) corresponding to
±θ/‖θ‖ by ρ. Then, (Σ+ βhh′)θ = ρθ or, equivalently,

Σh =
ρ

1 + βτ
h,

showing that h is indeed an eigenvector of Σ corresponding to the eigenvalue
φ := ρ/(1 + βτ). Finally, since ±θ/‖θ‖ are the unique leading unit length
eigenvectors of Cov(x), we have φ2{Cov(x)} < ρ = φ(1 + βτ), concluding the
proof.

Proof of Theorem A.1. The proof of the strong consistency is done similarly as
in Theorem 2 and we omit it. For the limiting normality we again, without loss
of generality, assume that x has zero mean, implying that x ∼ α1Np(−α2h,Σ)+
α2Np(α1h,Σ), where h = μ2 − μ1.

Let u1 := θ/‖θ‖, where θ = Σ−1h, and recall that it is a leading eigenvector
of Cov(x) = Σ + βhh′. Denote any set of the remaining p − 1 eigenvectors by
u2, . . . ,up and the corresponding eigenvalues by φ =: φ1 > φ2 ≥ · · · ≥ φp > 0.

The gradient of the Lagrangian corresponding to the extraction of the leading
unit length eigenvector of Cn is

2Cnu− 2λnu,

where λn is the Lagrangian multiplier. The gradient vanishes at snun, allowing
us to solve the value of λn = u′

nCnun by multiplying the gradient equation
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from left with un. Plugging the multiplier back in gives (Ip −Pn)Cnsnun = 0,
where Pn := unu

′
n. This equation is equivalent to the following equality,

An

√
n(snun − u1) = −(Ip −Pn)

√
n{Cn − Cov(x)}u1, (B.16)

where

An := (Ip −Pn)Cn − snφ1(u
′
nu1)Ip + φ1snu1u

′
n,

φ1 = u′
1Cov(x)u1 = ‖θ‖−2τ(1 + βτ) and τ = h′Σ−1h. Now, by the strong

consistency snun → u1, we have Pn →p u1u
′
1 =: P. Consequently,

An →p (Ip −P)Cov(x)− φ1Ip + φ1u1u
′
1 = Cov(x)− φ1Ip.

Observe then that we have the identity Bn
√
n(snun − u1) = 0 where Bn :=

u1u
′
1+snu1u

′
n →p 2u1u

′
1. As

√
n{Cn−Cov(x)} = Op(1), summing the previous

equation and (B.16), yields,

(An +Bn)
√
n(snun − u1) = −(Ip −P)

√
n{Cn − Cov(x)}u1 + op(1),

where An + Bn →p 2u1u
′
1 +

∑p
j=2(φj − φ1)uju

′
j and φj − φ1 < 0 for all j =

2, . . . , p. Hence, by Slutsky’s theorem, the limiting distribution of
√
n(snun−u1)

is that of

−

⎛
⎝1

2
u1u

′
1 +

p∑
j=2

1

φj − φ1
uju

′
j

⎞
⎠ (Ip −P)

√
n{Cn − Cov(x)}u1

=−

⎛
⎝ p∑

j=2

1

φj − φ1
uju

′
j

⎞
⎠√

n{Cn − Cov(x)}u1.

Observing that (1/n)
∑

i(xi − x̄)(xi − x̄)′ = (1/n)
∑

i xix
′
i + op(1/

√
n), the

limiting covariance matrix of
√
n(snun − u1) is hence

ΨPCA =

⎛
⎝ p∑

j=2

1

φj − φ1
uju

′
j

⎞
⎠Cov{(u′

1x)x}

⎛
⎝ p∑

j=2

1

φj − φ1
uju

′
j

⎞
⎠ .

In the notation of Theorem 2, we have Cov{(u′
1x)x} = G2 −m1m

′
1 = s2(Σ −

τ−1hh′)+ψ2(s4−s22)hh
′, where s2 = ‖θ‖−2τ(1+βτ) and s4/s

2
2 = κ(u1) = κ(θ),

yielding the result.

To prove Theorem 5, we first establish two sets of auxiliary results. The
first one has to do with bounding a specific Orlicz norm of the third power
of a Gaussian mixture and the second one is devoted to the subresults that
are required in the M-estimator argument (uniform convergence of the sample
objective function and uniform identifiability of the maximizer).
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Auxiliary results for the proof of Theorem 5, part 1

Recall that the ψλ-Orlicz “norm” of a random variable X is defined as ‖X‖ψλ
:=

inf{θ > 0 | Eexp[(|X|/θ)λ] ≤ 2}. We write “norm” as ‖ · ‖ψλ
fails to satisfy the

triangle inequality for λ < 1, see, e.g., [34]. As our first task, we show that
the random variable X3 − E(X3), where X is a centered normal mixture, has
‖X3 − E(X3)‖ψ2/3

< ∞.

Lemma B.4. Let X ∼ α1N (−α2h, σ
2) + α2N (α1h, σ

2) where h ∈ R, σ2 > 0.
Then,

‖X3 − E(X3)‖ψ2/3
≤ 32(σ2 + h2)3/2.

Proof of Lemma B.4. We write X = b1X1 + (1 − b1)X2 where X1, X2, b1 are
independent and X1 ∼ N (−α2h, σ

2), X2 ∼ N (α1h, σ
2) and b1 ∼ Ber(α1).

Consequently, the moment-generating function of X has,

E exp(tX) =α1 exp(−α2ht+ σ2t2/2) + α2 exp(α1ht+ σ2t2/2)

= exp(σ2t2/2){α1 exp(−α2ht) + α2 exp(α1ht)}.
(B.17)

By the Kearns-Saul inequality [32, Lemma 1], the second multiplicand on the
right-hand side of (B.17) has the upper bound

exp{(1/4)h2t2(α1 − α2)/ log(α1/α2)},

for all h, σ2, α1, α2, where (α1 − α2)/ log(α1/α2) is interpreted as its limit 1/2
when α1 = 1/2, see [8, Theorem 2.3]. This bound can further be verified to be
(very crudely) upper bounded by exp{(1/2)h2t2}. Consequently, plugging in to
(B.17), we get

E exp(tX) ≤ exp{(σ2 + h2)t2/2}, (B.18)

for all t ∈ R. We next use this bound for the MGF to derive a tail bound for
X, using the typical approach via Markov’s inequality. That is, for each x ≥ 0,
λ > 0, we have,

P(X ≥ x) = P{exp(λX) ≥ exp(λx)}
≤ exp(−λx)E exp(λX)

≤ exp{−λx+ (σ2 + h2)λ2/2}.

Optimizing the bound over λ > 0, we find that the minimum is reached at
λ = x/(σ2 + h2), giving,

P(X ≥ x) ≤ exp(−bx2),

for all x ≥ 0, where we use the notation b = b(σ2, h2) := (σ2 + h2)−1/2.
Repeating the exercise with −X in place of X, we find that it obeys the same
tail bound, implying that

P(|X| ≥ x) ≤ 2 exp(−bx2),
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for all x ≥ 0. And, consequently, we get a sub-Weibull tail bound for X3:

P(|X3| ≥ x) ≤ 2 exp(−bx2/3), (B.19)

for all x ≥ 0.

Next, we incorporate the mean μ := E(X3) = α1α2(α1 − α2)h
3 into (B.19):

P(|X3 − μ| ≥ x) ≤ P(|X3| ≥ x− |μ|) ≤ 2 exp{−b(x− |μ|)2/3},

for all x ≥ |μ|. The inequality |r + s|2/3 ≤ |r|2/3 + |s|2/3, valid for all r, s ∈ R,
then gives, with r = |μ|, s = x− |μ|,

P(|X3 − μ| ≥ x) ≤ 2 exp{−bx2/3 + b|μ|2/3}
≤ 2 exp{−bx2/3 + bh2}
≤ 4 exp{−bx2/3},

(B.20)

for all x ≥ |μ|, where we have used |α1α2(α1 − α2)h
3| ≤ |h3|, bh2 ≤ 1/2 and

exp(1/2) ≤ 2. As b|μ|2/3 < 1/2, we have that the final upper bound in (B.20)
takes a value greater than one when x = |μ|. As probabilities are trivially
upper bounded by one and since the final upper bound in (B.20) is a decreasing
function of x, we observe that this bound actually holds for all x ≥ 0.

Denoting |Z| := |X3 − μ|, the inequality (B.20) now lets us write, for all
t ≥ 1, θ > 0,

P[exp{(|Z|/θ)2/3} ≥ t] = P[|Z| ≥ θ{log(t)}3/2] ≤ 4t−bθ2/3

.

This, in turn, finally allows us to bound the desired Orlicz norm ‖Z‖ψ2/3
as

follows: Letting θ > 0, we have,

E exp{(|Z|/θ)2/3} =

∫ ∞

0

P[exp{(|Z|/θ)2/3} ≥ t]dt

≤ 1 + 4

∫ ∞

1

t−bθ2/3

dt

= 1− 4

1− bθ2/3
,

for all θ = ab−3/2, where a > 1. Choosing now a = 53/2, makes this upper bound
equal to 2, finally giving,

‖Z‖ψ2/3
≤ 53/2b−3/2 ≤ 32(σ2 + h2)3/2.

Having established the finiteness of the norm allows us to next apply the
general tail bound for averages of centered sub-Weibull variables given in [34].
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Lemma B.5. Let X1, . . . , Xn be a random sample from the distribution of X ∼
α1N (−α2h, σ

2) + α2N (α1h, σ
2) where h ∈ R, σ2 > 0. Then,

P

{∣∣∣∣∣ 1n
n∑

i=1

X3
i − E(X3)

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

{
−
( √

nε

K{1 + (σ2 + h2)3/2}

)2/3
}
,

for all ε ≥ K{1 + (σ2 + h2)3/2}n−1/2 where K > 0 is a constant not depending
on any of the parameters.

Proof of Lemma B.5. The result is a consequence of Theorem 3.1 in [34] and
we give the details below. We first note that the result itself can be applied
as the random variables X3

i − E(X3) are i.i.d., have zero means and satisfy
‖X3

i − E(X3)‖ψ2/3
< ∞ by Lemma B.4.

Now, using the notation of [34], we have ‖b‖2 ≤ 32n−1/2(σ2 + h2)3/2 (by
Lemma B.4) and ‖b‖∞/‖b‖2 = n−1/2. The quantity on the RHS inside the
probability statement in (3.1) in [34] then has the upper bound,

64eC(2/3)n−1/2(σ2 + h2)3/2
√
t+ 2eC(2/3)43/22−1/2n−1/2t3/2, (B.21)

where C(2/3) can be checked to satisfy C(2/3) < 1500 and we also have
43/22−1/2 < 6. Assuming further that t ≥ 1, we also have t1/2 ≤ t3/2, implying
that (B.21) has the upper bound,

{96000e(σ2 + h2)3/2 + 18000e}n−1/2t3/2 ≤ K{(σ2 + h2)3/2 + 1}n−1/2t3/2,

where K := 96000e. Consequently, Theorem 3.1 in [34] gives us the bound,

P

[∣∣∣∣∣ 1n
n∑

i=1

X3
i − E(X3)

∣∣∣∣∣ ≥ K{(σ2 + h2)3/2 + 1}n−1/2t3/2

]
≤ 2 exp(−t),

for all t ≥ 1. Setting now ε := K{(σ2+h2)3/2+1}n−1/2t3/2 gives the claim.

In the low-dimensional case (i.e., constant p), Lemma B.5 simply recovers the
law of large numbers for X3

i (with explicit tail bound), but unlike the standard
LLN, Lemma B.5 retains its usefulness also in the high-dimensional case. In
particular, it allows us to establish a uniform law of large numbers for the
projections of a high-dimensional Xi.

Theorem B.1. Let xn1, . . . ,xnn be a random sample from the model (2) and
assume that

pn → ∞ and pn(‖Σn‖2 + ‖hn‖2) = o(n1/3).

Assume further that for some C > 0, we have ‖Σn‖2 + ‖hn‖2 > C for all n
large enough. Then,

sup
u∈Spn−1

∣∣∣∣∣ 1n
n∑

i=1

(u′xni)
3 − E{(u′xn)

3}
∣∣∣∣∣ →p 0,

as n → ∞.
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Proof of Theorem B.1. Let

Rn := (hjk	) = (1/n)

n∑
i=1

{xnijxnikxni	 − E(xnjxnkxn	)}

be the pn×pn×pn third-order symmetric tensor containing all centered sample
third moments. Given u1,u2,u3 ∈ R

pn we denote by Rn × (u1 ⊗ u2 ⊗ u3)
the scalar

∑pn

j=1

∑pn

k=1

∑pn

	=1 u1ju2ku3	hjk	. Using this notation, our quantity of
interest is,

‖Rn‖2 := sup
u∈Spn−1

|Rn × (u⊗ u⊗ u)| ,

i.e., the spectral norm of the tensor Rn, see, e.g., [19, Lemma 1].
Fix next ε > 0 and let Nnε ⊆ S

pn−1 be an ε-net of Spn−1. That is, for each
u ∈ S

pn−1 there exists v ∈ Nnε such that ‖u − v‖ ≤ ε. From ([62], Lemma
5.2) we know that Nnε can be chosen such that its cardinality |Nnε| is at most
(1+2/ε)pn . Fix now u ∈ Spn−1 and let v ≡ vu be its ε-neighbour in Nnε. Then,
we have,

|Rn × (u⊗ u⊗ u)−Rn × (v ⊗ v ⊗ v)|
≤|Rn × (u⊗ u⊗ {u− v})|
+|Rn × (u⊗ {u− v} ⊗ v)|
+|Rn × ({u− v} ⊗ v ⊗ v)|
≤3ε‖Rn‖2,

(B.22)

where the final inequality follows as |Rn×(a1⊗a2⊗a3)| ≤ ‖Rn‖2‖a1‖‖a2‖‖a3‖
for any a1,a2,a3 ∈ R

pn , see [19]. By the reverse triangle inequality, (B.22) gives,

|Rn × (u⊗ u⊗ u)| ≤ |Rn × (v ⊗ v ⊗ v)|+ 3ε‖Rn‖2
≤ max

w∈Nnε

|Rn × (w ⊗w ⊗w)|+ 3ε‖Rn‖2.

Since the above holds for all u ∈ Spn−1, we further get,

‖Rn‖2 = sup
u∈Spn−1

|Rn × (u⊗ u⊗ u)| ≤ max
w∈Nnε

|Rn × (w ⊗w ⊗w)|+ 3ε‖Rn‖2,

that is,

‖Rn‖2 ≤ 1

1− 3ε
max
u∈Nnε

|Rn × (u⊗ u⊗ u)|,

whenever ε < 1/3. We next apply this bound with the choice ε = 2/9 to get

P(‖Rn‖2 ≥ t) ≤P( max
u∈Nn(2/9)

|Rn × (u⊗ u⊗ u)| ≥ t/3)

≤
∑

u∈Nn(2/9)

P(|Rn × (u⊗ u⊗ u)| ≥ t/3).
(B.23)
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Now, for a fixed u ∈ Nn(2/9), the quantity Rn × (u ⊗ u ⊗ u) is distributed as
1
n

∑n
i=1 X

3
i −E(X3) where X1, . . . , Xn is a random sample from the distribution

of X ∼ α1N (−α2u
′hn,u

′Σnu) + α2N (α1u
′hn,u

′Σnu). Consequently, Lemma
B.5 implies that

P(|Rn × (u⊗ u⊗ u)| ≥ t/3) ≤ 2 exp

[
−
( √

nt

3K{1 + (‖Σn‖2 + ‖hn‖2)3/2}

)2/3
]

whenever t ≥ 3K[1 + {u′Σnu+ (u′hn)
2}3/2]n−1/2. I.e., in particular when t ≥

3K{1 + (‖Σn‖2 + ‖hn‖2)3/2}n−1/2. As |Nnε| ≤ 10pn , plugging in to (B.23), we
finally get,

P(‖Rn‖2 ≥ t) ≤ 2 exp

{
−
( √

nt

3K{1 + (‖Σn‖2 + ‖hn‖2)3/2}

)2/3

+ pn log 10

}
,

for all t ≥ 3K{1+(‖Σn‖2+‖hn‖2)3/2}n−1/2, which is, for a fixed t > 0, satisfied
for all large enough n, thanks to our assumptions that pn → ∞ and pn(‖Σn‖2+
‖hn‖2) = o(n1/3). Denoting Hn := ‖Σn‖2 + ‖hn‖2, the same assumptions, in
conjunction with the requirement that Hn ≥ C for all n large enough, guarantee
that we have, for each fixed t > 0, that

−n1/3

Hn

(
t2/3

{3K}2/3{H−3/2
n + 1}2/3

+
pnHn

n1/3
log 10

)
→ −∞,

as n → ∞. Thus the claim follows.

We next show equivalent results for the second moment instead of the third,
beginning with the finiteness of the ψ1-Orlicz “norm” of X2−E(X2) for univari-
ate normal mixtures. The proof of this is exactly analogous to that of Lemma B.4
and we omit it.

Lemma B.6. Let X ∼ α1N (−α2h, σ
2) + α2N (α1h, σ

2) where h ∈ R, σ2 > 0.
Then,

‖X2 − E(X2)‖ψ1 ≤ 10(σ2 + h2).

Lemma B.6 allows us to derive a concentration bound for the sample-centered
second moment. Again, the proof exactly follows Lemma B.5, causing us to leave
it out.

Lemma B.7. Let X1, . . . , Xn be a random sample from the distribution of X ∼
α1N (−α2h, σ

2) + α2N (α1h, σ
2) where h ∈ R, σ2 > 0. Then,

P

{∣∣∣∣∣ 1n
n∑

i=1

X2
i − E(X2)

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

{
−

√
nε

K(1 + σ2 + h2)

}
,

for all ε ≥ K(1 + σ2 + h2)n−1/2 where K > 0 is a constant not depending on
any of the parameters.
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Finally, Lemmas B.6 and B.7 give us the uniform law of large numbers for
the second sample moment over all projections.

Theorem B.2. Let xn1, . . . ,xnn be a random sample from the model (2) and
assume that

pn → ∞ and pn(‖Σn‖2 + ‖hn‖2) = o(n1/2).

Assume further that for some C > 0, we have ‖Σn‖2 + ‖hn‖2 > C for all n
large enough. Then,

sup
u∈Spn−1

∣∣∣∣∣ 1n
n∑

i=1

(u′xni)
2 − E{(u′xn)

2}
∣∣∣∣∣ →p 0,

as n → ∞.

Proof of Theorem B.2. We provide only the main steps of the proof (which
is very similar to that of Theorem B.1). Letting Sn := (1/n)

∑n
i=1 xnix

′
ni −

E{xnx
′
n}, our claim is that ‖Sn‖2 →p 0.

Arguing as in Theorem B.1 we obtain,

‖Sn‖2 ≤ 1

1− 2ε
max
u∈Nnε

|u′Snu|,

whenever ε < 1/2, where Nnε is an ε-net of Spn−1. Thus,

P(‖Sn‖2 ≥ t) ≤
∑

u∈Nn(1/4)

P(|u′Snu| ≥ t/2), (B.24)

where the right-hand side probabilities each satisfy, by Lemma B.7,

P(|u′Snu| ≥ t/2) ≤ 2 exp

{
−

√
nt

2K(1 + ‖Σn‖2 + ‖hn‖2)

}
,

when t ≥ 2K(1 + ‖Σn‖2 + ‖hn‖2)n−1/2. Plugging in to (B.24), we get,

P(‖Sn‖2 ≥ t) ≤ 2 exp

{
−

√
nt

2K(1 + ‖Σn‖2 + ‖hn‖2)
+ pn log 9

}
,

for all t ≥ 2K(1+ ‖Σn‖2 + ‖hn‖2)n−1/2, a condition which is, for a fixed t > 0,
satisfied for all large enough n by our assumptions. The desired result now
follows.

Auxiliary results for the proof of Theorem 5, part 2

In this subsection, we prove the two main parts required in the M-estimator ar-
gument, i.e., uniform identifiability and uniform law of large numbers. However,
before them, we first give a lemma that quantifies the extent to which invertible
linear transformations preserve the non-parallelity of vectors.
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Lemma B.8. Assume that a, b ∈ R
p, a, b �= 0, are such that∣∣∣∣ a′b

‖a‖‖b‖

∣∣∣∣ ≤ 1− ε,

for some ε > 0. Moreover, let M ∈ R
p×p satisfy max{‖M‖2, ‖M−1‖2} ≤ C for

some C > 0. Then, ∣∣∣∣ a′M2b

‖Ma‖‖Mb‖

∣∣∣∣ ≤ 1− εC−4.

Proof of Lemma B.8. We have

a′M2b

‖Ma‖‖Mb‖ = 1− 1

2

∥∥∥∥ Ma

‖Ma‖ − Mb

‖Mb‖

∥∥∥∥
2

≤ 1− 1

2‖M−1‖22

∥∥∥∥ a

‖Ma‖ − b

‖Mb‖

∥∥∥∥
2

≤ 1− 1

2C2

{(
‖a‖

‖Ma‖ − ‖b‖
‖Mb‖

)2

+ 2ε
‖a‖‖b‖

‖Ma‖‖Mb‖

}

≤ 1− εC−4,

where the last line uses ‖Ma‖ ≤ ‖M‖2‖a‖ ≤ C‖a‖ and similarly for ‖Mb‖.
The desired bound for the other direction can be obtained by starting from the
equation,

− a′M2b

‖Ma‖‖Mb‖ = 1− 1

2

∥∥∥∥ Ma

‖Ma‖ +
Mb

‖Mb‖

∥∥∥∥
2

,

and proceeding analogously.

Lemma B.9 then next gives sufficient conditions for the model parameters un-
der which the sequence of population level maximizers is identifiable uniformly
in n.

Lemma B.9. Let xn1, . . . ,xnn be a random sample from the model (2) with
α1 �= α2 and assume that there exists C1, C2 > 0 such that, for all n,

1/C1 ≤ ‖hn‖ ≤ C1, ‖Σn‖2 ≤ C2, ‖Σ−1
n ‖2 ≤ C2.

Then, for all fixed ε ∈ (0, C2
2 ), there exists δ ≡ δ(ε, C1, C2, α1) > 0 such that (a)

below implies (b) for all n.

(a) u ∈ S
pn−1 is such that |u′θn| ≤ 1− ε.

(b) γ2
n0(θn)− γ2

n0(u) ≥ δ.

Proof of Lemma B.9. By the proof of Lemma 2,

γ2
n0(u) = (α1α2)

4(1−4α1α2)
2

(
fn(u)

1 + α1α2fn(u)

)6

=: (α1α2)
4(1−4α1α2)

2g6n(u),
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where fn(u) := (u′hn)
2/u′Σnu and the constant ι := (α1α2)

4(1 − 4α1α2)
2 is

strictly positive. Moreover, gn(θn) ≥ gn(u) ≥ 0, implying that we have

γ2
n0(θn)− γ2

n0(u) ≥ι{gn(θn)
3 − gn(u)

3}{gn(θn)
3 + gn(u)

3}
≥ι{gn(θn)− gn(u)}g5n(θn).

Now, fn(θn) = h′
nΣ

−1
n hn ≥ ‖hn‖2‖Σn‖−1

2 ≥ C−2
1 C−1

2 for all n, implying that
there exists C3 > 0 such that gn(θn) ≥ C3 for all n. Thus, the claim of the
lemma holds once we show that gn(θn) − gn(u) ≥ C4 for some C4 > 0 not
depending on n.

Now,

gn(θn)− gn(u) =
fn(θn)− fn(u)

{1 + α1α2fn(θn)}{1 + α1α2fn(u)}

≥ fn(θn)− fn(u)

{1 + α1α2fn(θn)}2

≥ fn(θn)− fn(u)

{1 + α1α2‖hn‖2‖Σ−1
n ‖2}2

≥ fn(θn)− fn(u)

{1 + α1α2C2
1C2}2

,

showing that it remains to lower bound fn(θn)−fn(u) is a manner not depend-
ing on n. Some algebra reveals that,

fn(u) =

(
u′Σnθn

‖Σ1/2
n u‖‖Σ1/2

n θn‖

)2

h′
nΣ

−1
n hn ≤ (1− εC−2

2 )2h′
nΣ

−1
n hn,

where the inequality follows from applying Lemma B.8 with a = u, b = θn and
M = Σ1/2

n . Consequently,

fn(θn)− fn(u) ≥ C−2
1 C−3

2 ε(2− εC−2
2 ) ≥ C−2

1 C−3
2 ε.

The lower bound does not depend on n, finally implying the desired claim.

Before showing the uniform law of large numbers for our objective function,
we first establish an auxiliary result on some basic properties of op(1) and Op(1)
sequences of random variables.

Lemma B.10. Assume that a sequence of random variables Yn > 0 has Yn ≥
ε + Rn for some ε > 0 and some sequence of random variables Rn = op(1).
Then,

1

Yn
≤ 1

ε
+ Tn,

for some sequence of random variables Tn = op(1).
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Proof of Lemma B.10. We first show that 1/Yn = Op(1). To see this, we write,

P(1/Yn > 2/ε) = P(Yn < ε/2) ≤ P(ε+Rn < ε/2) = P(Rn < −ε/2),

where the final probability goes to zero as n → ∞. Hence 1/Yn = Op(1), and
we can write,

1

Yn
− 1

ε
=

ε− Yn

Ynε
≤ −Rn

Ynε
= op(1)Op(1) = op(1),

concluding the proof.

Lemma B.11. Let xn1, . . . ,xnn be a random sample from the model (2) and
assume that there exists C1, C2 > 0 such that, for all n,

‖hn‖ ≤ C1, ‖Σn‖2 ≤ C2, ‖Σ−1
n ‖2 ≤ C2.

Assume further that,

pn → ∞ and pn = o(n1/3).

Then,

sup
u∈Spn−1

∣∣γ2
n(u)− γ2

n0(u)
∣∣ →p 0,

as n → ∞.

Proof of Lemma B.11. We use the notation rn0(u) := E{(u′xn)
3}, rn(u) :=

(1/n)
∑n

i=1(u
′xni)

3, sn0(u) := E{(u′xn)
2} and sn(u) := (1/n)

∑n
i=1(u

′xni)
2.

Now, rn0(u) is uniformly upper bounded in u and n, as can be seen by writing
|rn0(u)| = |α1α2(α1−α2)(u

′hn)
3| ≤ C3

1 . Similarly, we have |sn0(u)| = u′Σnu+
α1α2(u

′hn)
2 ≥ ‖Σ−1

n ‖−1
2 ≥ C−1

2 and |sn0(u)| ≤ ‖Σn‖2 + ‖hn‖2 ≤ C2 + C2
1 .

And, by writing,

|sn0(u)| ≤ |sn0(u)− sn(u)|+ |sn(u)| ≤ sup
u∈Spn−1

|sn0(u)− sn(u)|+ |sn(u)|,

Theorem B.2 further gives that |sn(u)| ≥ |sn0(u)| + qn ≥ C−1
2 + qn, where

qn = op(1). We also note that this implies that |sn(u)|3 ≥ (C−1
2 + qn)

3 =
C−3

2 + op(1), as taking the third power is an increasing mapping. This further
gives 1/|sn(u)|3 ≤ C3

2 + op(1), almost surely, by Lemma B.10, as the second
moment sn(u) is almost surely positive for all large enough n (in the sequel, we
implicitly restrict to this almost sure set).

We now write,

sup
u∈Spn−1

∣∣γ2
n(u)− γ2

n0(u)
∣∣

≤ sup
u∈Spn−1

1

s3n0(u)
|rn(u)− rn0(u)||rn(u) + rn0(u)|

+ sup
u∈Spn−1

r2n(u)

∣∣∣∣ 1

s3n(u)
− 1

s3n0(u)

∣∣∣∣ ,
(B.25)
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and treat the two supremums on the right-hand side separately. Denoting Bn :=
supu∈Spn−1 |rn(u)− rn0(u)|, the first one has the upper bound,

C3
2Bn(Bn + 2C3

1 ),

which is of the order op(1) by Theorem B.1. Whereas, the second supremum has
the upper bound,

{Bn(Bn + 2C3
1 ) + C6

1} sup
u∈Spn−1

∣∣∣∣s3n0(u)− s3n(u)

s3n(u)s
3
n0(u)

∣∣∣∣
≤{Bn(Bn + 2C3

1 ) + C6
1}C3

2 sup
u∈Spn−1

∣∣∣∣s3n0(u)− s3n(u)

s3n(u)

∣∣∣∣
≤{Bn(Bn + 2C3

1 ) + C6
1}C3

2{C3
2 + op(1)} sup

u∈Spn−1

|s3n0(u)− s3n(u)|.

(B.26)

Denoting,

En := sup
u∈Spn−1

|sn(u)− sn0(u)|,

the left-over supremum in the final expression of (B.26) has the upper bound,

En sup
u∈Spn−1

|s2n0(u) + sn0(u)sn(u) + s2n(u)|

≤En{3(C2 + C2
1 )

2 + 3(C2 + C2
1 )En + E2

n},
which converges in probability to zero by Theorem B.2. Hence, both terms on the
right-hand side of (B.25) are upper bounded by sequences of random variables
converging in probability to zero, and we finally obtain the desired claim.

Proof of Theorem 5

Proof of Theorem 5. We first note that a sequence of maximizers exists almost
surely for all n large enough as γ2

n is a rational function whose denominator is
a positive power of a quantity of the form u′{(1/n)

∑n
i=1 xnix

′
ni}u where the

matrix
∑n

i=1 xnix
′
ni is almost surely positive-definite when pn ≤ n (again, we

restrict implicitly to the corresponding almost sure set).
Fix now ε ∈ (0, C2

2 ). Then, by Lemma B.9, we have,

P(1− |u′
nθn| ≥ ε) ≤ P{γ2

n0(θn)− γ2
n0(un) ≥ δ},

for some δ ≡ δ(ε, C1, C2, α1) > 0. Consequently, by the triangle inequality,

P(1− |u′
nθn| ≥ ε) ≤P{|γ2

n0(θn)− γ2
n(θn)| ≥ δ/3}

+P{γ2
n(θn)− γ2

n(un) ≥ δ/3}
+P{|γ2

n(un)− γ2
n0(un)| ≥ δ/3}. (B.27)

The first and the third term on the right-hand side in (B.27) are by Lemma B.11
o(1), while the second term equals zero as un is a maximizer of u �→ γ2

n(u).
Hence, the claim follows after noting that we always have |u′

nθn| ≤ 1 due to the
unit lengths of un and θn.
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Appendix C: Additional simulation results

In this section, we give supporting plots as supplementary material to claims
made and plots presented in the article. Simulations and the corresponding plots
are done using R 3.6.1 [59] together with R packages ICtest [49], mvtnorm [22],
MASS [61], GGally [56], ggpubr [31], dplyr [67], tidyr [66] and RColorBrewer
[47].

Figures C.1 and C.2 show the standard deviation of maximal similarity in-
dex snu

′
nθ/‖θ‖ where un is one of PP estimators discussed in the article,

as a function of the Mahalanobis distance between the group means τ and
mixing proportion α1, for sample sizes n ∈ {500, 1000, 2000, 4000} and n ∈
{8000, 16000, 32000} respectively.

Fig C.1. The heatmaps show standard deviation of the MSI snu′
nθ/||θ|| as a function of

Mahalanobis distance between the group means τ and mixing proportion α1, where un is
one of estimators of θ/||θ|| obtained by maximizing (κn − 3)2, γ2

n, ηn(·; 0.8) and ηn(·;w1),
where in the latter case, w1 = w1(α1, τ) maximizes asymptotic relative efficiency of hybrid
estimator w.r.t. LDA, for sample sizes n ∈ {500, 1000, 2000, 4000}. Sign sn is chosen such
that snu′

nθ/||θ|| ≥ 0. In each setting, mean is calculated using m = 1000 replicates and the
data is randomly generated from 10-dimensional normal mixtures with covariance matrix Σ
having AR(1) structure with ρ = 0.6., while μ1 = 0 and μ2 chosen in each setting such that
μ′
2Σμ2 = τ .
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Fig C.2. The heatmaps show standard deviation of the MSI snu′
nθ/||θ|| as a function of

Mahalanobis distance between the group means τ and mixing proportion α1, where un is
one of estimators of θ/||θ|| obtained by maximizing (κn − 3)2, γ2

n, ηn(·; 0.8) and ηn(·;w1),
where in the latter case, w1 = w1(α1, τ) maximizes asymptotic relative efficiency of hybrid
estimator w.r.t. LDA, for sample sizes n ∈ {8000, 16000, 32000}. Sign sn is chosen such
that snu′

nθ/||θ|| ≥ 0. In each setting, mean is calculated using m = 1000 replicates and the
data is randomly generated from 10-dimensional normal mixtures with covariance matrix Σ
having AR(1) structure with ρ = 0.6, while μ1 = 0 and μ2 chosen in each setting such that
μ′
2Σμ2 = τ .

Figure C.3 shows mean of the maximal similarity index snu
′
nθ/‖θ‖ where un

is one of PP estimators discussed in the article, as a function of the Mahalanobis
distance between the group means τ and mixing proportion α1, for large sample
sizes, n ∈ {8000, 16000, 32000}.
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Fig C.3. The heatmaps show means of the MSI snu′
nθ/||θ|| as a function of Mahalanobis

distance between the group means τ and mixing proportion α1, where un is one of estimators
of θ/||θ|| obtained by maximizing (κn − 3)2, γ2

n, ηn(·; 0.8) and ηn(·;w1), where in the latter
case, w1 = w1(α1, τ) maximizes asymptotic relative efficiency of hybrid estimator w.r.t. LDA,
for sample sizes n ∈ {500, 1000, 2000, 4000}. Sign sn is chosen such that snu′

nθ/||θ|| ≥ 0. In
each setting, mean is calculated using m = 1000 replicates and the data is randomly generated
from 10-dimensional normal mixtures with covariance matrix Σ having AR(1) structure with
ρ = 0.6, while μ1 = 0 and μ2 chosen in each setting such that μ′

2Σμ2 = τ .

Figure C.4 shows a scatter matrix plot of the finance data set from the R-
package Rmodmix, where the point in the plot is being colored red if the company
is being bankrupt, and blue otherwise, as well as the marginal densities for both
groups which are given at the diagonal.
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Fig C.4. Scatter matrix plot of the finance data set, where the point is colored red if the
company is being bankrupt, and blue otherwise. Marginal densities for both groups are given
at the diagonal.

Figure C.5 shows boxplots of the projection scores of the finance data set from
the R-package Rmodmix along the PP directions based on mclust, PCA, LDA,
kurtosis, skewness, and hybrid estimator ηn(·, w1), for w1 = 0.1, 0.2, . . . , 0.9 for
healthy and bankrupted companies.
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Fig C.5. Plot shows boxplots of the projection scores of the finance data along the directions
based on mclust, PCA, LDA, as well as the PP directions obtained by maximizing (κn − 3)2,
γ2
n and ηn(·, w1), for w1 = 0.1, 0.2, . . . , 0.9 for healthy and bankrupted companies.
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