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Time-invariant entanglement and sudden death of nonlocality
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We investigate both theoretically and experimentally the dynamics of entanglement and nonlocality for two
qubits immersed in a global pure dephasing environment. We demonstrate the existence of a class of states for
which entanglement is forever frozen during the dynamics, even if the state of the system does evolve. At the same
time nonlocal correlations, quantified by the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality,
either undergo sudden death or are trapped during the dynamics.
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Understanding correlations of quantum nature is essential
both for fundamentals of quantum theory and for applications
of quantum information science. Recent studies have revealed
that there exist different types of nonclassical correlations
in quantum systems, and they all prove to be relevant in
the implementation of various tasks [1,2]. Among them,
entanglement can be argued to be the most fundamental,
which is the resource of quantum computation and quantum
information [1]. Realistic quantum systems are, however,
sensitive to their surroundings [3] and, as a consequence, their
characteristic traits tend to rapidly disappear.

Given that a quantum computer has to be resilient against
the destructive effects of the environment, strategies aimed
at preserving entanglement as long as possible are of great
practical importance. Motivated by this challenge, several
methods have been proposed to protect the correlations in
the system from the noise. Examples are memory effects
stemming from non-Markovian environments [4], dynamical
decoupling techniques [5], and the quantum Zeno effect [6]. In
addition, it has been shown that certain quantum correlations,
e.g., quantum discord, might forever freeze throughout the
dynamics under a suitable noise setting, becoming time
invariant [7]. On the other hand, even though the phenomenon
of time-invariant entanglement has been first noticed for a
qubit-qutrit system for global dephasing noise [8], a more
complete characterization has been obtained recently under a
general global dephasing scenario [9].

Another manifestation of nonclassical correlations is re-
lated to the quantum nonlocality, stating that the predictions of
quantum theory cannot be simulated by a local hidden variable
model. For bipartite systems, nonlocal correlations can be
identified through the violation of Bell inequalities [10]. All
pure entangled states of two qubits violate a Bell inequality
[11] but this no longer holds for mixed states [12]. In particular,
although entanglement is necessary for the existence of
nonlocal correlations, there are entangled mixed bipartite
states that do not violate Bell inequalities. To investigate
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whether quantum correlations quantified by entanglement are
nonlocal or not, one can use a simple version of the Bell
inequalities in the form of a Clauser-Horne-Shimony-Holt
(CHSH) inequality [13]. The dynamics of CHSH violation
in relation with entanglement under decoherence has been
studied theoretically [14–18] and experimentally [19]. How-
ever, despite the studies in the literature on the relation of
entanglement and nonlocality, our results are distinct in the
sense that they shed light on a fundamental difference of
these two precious resources in a dynamical context. Also,
if one considers quantum nonlocality as the source of secure
communication [20], our findings may stimulate new research
on how to preserve nonlocal correlations in open systems.

Here we first theoretically study the dynamics of entangle-
ment and quantum nonlocality, as quantified by concurrence
and CHSH inequality violation, respectively, for Bell-diagonal
states under global dephasing. We demonstrate that, while
entanglement remains time invariant for a particular class
of Bell-diagonal states, the degree of violation of quantum
nonlocality can suffer sudden death and disappear in a finite
time. Then, we report on an experiment with photonic qubits
demonstrating our theoretical results.

We consider two qubits globally interacting with stochastic
dephasing noise along the z direction, with the Hamiltonian
H (t) = − 1

2n(t)(σA
z ⊗ IB + IA ⊗ σB

z ), where σz is the Pauli
operator, I is the identity operator, n(t) is a stochastic field
satisfying 〈n(t)〉 = 0 and 〈n(t)n(t ′)〉 = �δ(t − t ′), and � is
the damping rate associated with the field n(t). The resulting
dynamics of the system reads [21]

ρ(t) =

⎛
⎜⎝

ρ11 ρ12γ ρ13γ ρ14γ
4

ρ21γ ρ22 ρ23 ρ24γ

ρ31γ ρ32 ρ33 ρ34γ

ρ41γ
4 ρ42γ ρ43γ ρ44

⎞
⎟⎠, (1)

where ρij denotes elements of the initial density matrix and
the decoherence factor is γ (t) = e−t�/2.

We now introduce the family of two-qubit states that have
maximally mixed reduced density matrices. Such states are
known as Bell-diagonal states and given as ρ = (1/4)(I ⊗ I +∑3

j=1 cjσj ⊗ σj ), where σj are the Pauli operators, cj are real
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FIG. 1. The blue octahedron in the middle, marked with dashed
lines, represents separable Bell-diagonal states. The states filling the
red and orange regions, connected to the Bell states |ψ+〉 and |ψ−〉,
respectively, give rise to time-invariant entanglement.

numbers such that 0 � |cj | � 1, and the eigenvalues (λk � 0)
of ρ are given by λ1,2 = 1

4 (1 ∓ c1 ∓ c2 − c3) and λ3,4 =
1
4 (1 ± c1 ∓ c2 + c3). Bell-diagonal states can be visualized
as forming a tetrahedron with the four Bell states |φ±〉 =
(|HH 〉 ± |V V 〉)/√2 and |ψ±〉 = (|HV 〉 ± |V H 〉)/√2 sitting
in the extreme points, as depicted in Fig. 1. We observe that our
global dephasing map preserves the form of the initial states
and transforms their coefficients as follows:

c1(t) = 1
2 {c1[1 + γ 4(t)] + c2[1 − γ 4(t)]},

c2(t) = 1
2 {c[1 − γ 4(t)] + c2[1 + γ 4(t)]}, (2)

c3(t) = c3.

Consequently, c3(t) and [c1(t) + c2(t)] remain invariant
throughout the dynamics, while both c1(t) and c2(t) asymptot-
ically evolve to the same value, that is, (c1 + c2)/2.

Concurrence of the Bell-diagonal states are given as [22]

E(ρ) = 1/2 max{0,|c1| + |c2| + |c3| − 1}, (3)

which implies that inside the tetrahedron in Fig. 1 there exists
an octahedron representing the region of separable states
defined by |c1| + |c2| + |c3| � 1. Therefore, the entangled
Bell-diagonal states reside in the four regions connected to
each of the Bell states at the edges. Note that the surfaces
of constant entanglement are given by the planes that are
parallel to the faces of the octahedron. The four regions of
entanglement can be distinguished based on the sign of the
three real coefficients. Looking at Fig. 1, it is not difficult
to see that in the red and orange entangled regions (which are
connected to the Bell states |ψ+〉 and |ψ−〉, respectively, at the
extreme points), the coefficients c1 and c2 have the same sign.
On the other hand, in the remaining two entangled regions, they
have the opposite sign. Recalling that our global dephasing
map leaves c3(t) and [c1(t) + c2(t)] unchanged, and taking
into account Eq. (3), we conclude that entanglement remains
forever frozen throughout the dynamics for the initial states
residing in the red and orange regions. To put it differently,

whereas an initial state will have its c3 constant, it will evolve
towards the c1 = c2 plane as t → ∞. Thus, the initial states
from the red and orange regions follow a path towards the
c1 = c2 plane on which entanglement is constant. Besides,
the states from the other two regions cross into the separable
octahedron in finite time suffering sudden death, except for the
case c3 = 1, where entanglement decays asymptotically, since
these states reach the c1 = c2 plane and the separable region
simultaneously.

Motivated by the peculiar phenomenon of time-invariant
entanglement, we investigate the violation of the CHSH
inequality. After all, just as the presence of entanglement,
the violation of the CHSH inequality is also a manifesta-
tion of nonclassicality. To study the nonlocal correlations,
we introduce the matrix T = Tij = Tr[ρ(σi ⊗ σj )] and the
CHSH operator BCHSH = 
a · 
σ ⊗ (
b + 
b′) · 
σ + 
a′ · 
σ ⊗ (
b −

b′) · 
σ , where 
a, 
a′ and 
b, 
b′ denote the unit vectors indicating
the measurements on the first and the second qubits, respec-
tively. The CHSH inequality is then given by |Tr(ρBCHSH)| �
2. Optimizing over all measurements, the maximum mean
value of the CHSH operator reads max |Tr(ρBCHSH)| =
2
√

M(ρ) [23]. Here, M(ρ) = maxi<j {ui + uj } � 2, with uj

being the three eigenvalues of the matrix U = T T T . There
exists a choice of measurement setting violating the CHSH
inequality if and only if M(ρ) > 1. For the Bell-diagonal
states, we have

B(ρ) = 2
√

max
{
c2

1 + c2
2,c

2
2 + c2

3,c
2
1 + c2

3

}
. (4)

In Fig. 2, we display the outcomes of our analysis for
entanglement and nonlocal correlations with the help of
the CHSH inequality considering two different initial Bell-
diagonal states under global dephasing noise. Whereas the red
solid line corresponds to the initial states c1 = 1, c2 = 0.4, and
c3 = −0.4, belonging to the red entangled region connected
to the Bell state |ψ+〉 as shown in Fig. 1, the orange dashed
line stands for the initial states c1 = c3 = −0.5 and c2 = −1,
which resides inside the orange entangled region connected
to the Bell state |ψ−〉. We see that entanglement remains time
invariant for both initial states. However, nonlocal correlations
turn out to be susceptible to the effects of the dephasing noise,
unlike entanglement. In particular, for the former initial state,
nonlocal correlations vanish in finite time suffering sudden
death. Hence, despite the invariance of entanglement, the
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FIG. 2. Dynamics of (a) entanglement E(ρ) and (b) CHSH
violation B(ρ) as a function of the dimensionless time t�. The initial
Bell-diagonal states are chosen as c1 = 1, c2 = 0.4, and c3 = −0.4
(red solid line) and c1 = c3 = −0.5 and c2 = −1 (orange dashed
line). The black dotted line shows the nonlocality threshold.
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system might completely lose its nonclassicality in terms of
violation of the CHSH inequality.

In our experiment, the principal system is represented
by a pair of photons, generated via spontaneous parametric
downconversion, that are entangled in their polarization
degrees of freedom. After a state preparation procedure, the
photons are set to move along different arms and pass through
quartz plates of adjustable thickness. As each of the photons
passes through the quartz plates, its polarization locally
couples to its frequency, which acts as the local environment.
Such an interaction induces a local unitary transformation,
Ui(ti)|λ〉 ⊗ |ωi〉 = einλωi ti |λ〉 ⊗ |ωi〉, where |λ〉 ⊗ |ωi〉 is the
state of the photon in arm i (i = 1,2) with polarization λ = H

or V (horizontal or vertical) and frequency ωi . Here, ti is the
time of interaction and nλ is the refraction index of photons
having polarization λ.

We suppose that the total state of the system and
environment can be initially written as a product state,
|�(0)〉 = ρ(0) ⊗ ∫

dω1dω2g(ω1,ω2)|ω1,ω2〉, where g(ω1,ω2)
is the probability amplitude for the photon traveling along
arm 1(2) to have frequency ω1(2). The corresponding joint
probability distribution reads P (ω1,ω2) = |g(ω1,ω2)|2. Then,
the dynamics of the polarization state of the photons is given
by [24,25]

ρ(t) =

⎛
⎜⎝

ρ11 ρ12κ2 ρ13κ1 ρ14κ12

ρ21κ
∗
2 ρ22 ρ2312 ρ24κ1

ρ31κ
∗
1 ρ32

∗
12 ρ33 ρ34κ2

ρ41κ
∗
12 ρ42κ

∗
1 ρ43κ

∗
2 ρ44

⎞
⎟⎠, (5)

where κ1(t) = G(t1,0), κ2(t) = G(0,t2), κ12(t) =
G(t1,t2), and 12(t) = G(t1, − t2), with G(t1,t2) =∫

dω1ω2P (ω1,ω2)e−i�n(ω1t1+ω2t2) being the Fourier transform
of the joint probability distribution and �n = nV − nH

denoting the birefringence.
Assuming that the joint probability distribution of

the considered two photons is in a Gaussian form,
i.e., P (ω1,ω2) = (1/2π

√
det C)e− 1

2 ( 
ω−〈
ω〉)T C−1( 
ω−〈
ω〉), where

ω = (ω1,ω2)T , 〈 
ω〉 = (〈ω1〉,〈ω2〉)T , and C = Cij = 〈ωiωj 〉 −
〈ωi〉〈ωj 〉, with 〈ω1〉 = 〈ω2〉 = ω0/2 and C11 = C22 =
〈ω2

i 〉 − 〈ωi〉2, the decoherence function reads G(t1,t2) =
e

iω0
2 �n(t1+t2)− C11

2 �n2(t2
1 +t2

2 +2Kt1t2), with K = C12/C11 being the
correlation coefficient between the two frequencies. Note
that, even though the interactions of the photons with their
individual environments are local, the resulting dynamics
can be nonlocal due to the initial correlations between the
environments. Let us now set the interactions times to be
identical, that is, t1 = t2 = t , and consider the case of full
anticorrelations, corresponding to K = −1. We observe that
in this case 12(t) = e−2C11�n2t2

and κ12(t) = eiω0�nt , and thus
|κ12(t)| = |κ∗

12(t)| = 1 at all times, which in turn effectively
simulates a global dephasing dynamics creating a decoherence
free subspace.

In Fig. 3, we describe our experimental setup. ES is
a standard two-photon entanglement source generating the
state |φ+〉 = (|HH 〉 + |V V 〉)/√2. After the creation of the
polarization entangled photon pair, each photon is separated
by a specially designed tunable beam splitter (TBS) as
shown in the dashed inset and travels along 5 m of single
mode fiber (L) or 1 m of single mode fiber (S) and then
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FIG. 3. Our experimental setup. PBS, polarizing beam splitter;
QWP, quarter-wave plate; HWP, half-wave plate; QP, quartz plate;
TBS, tunable beam splitter; and ES, entangled photon source. The
experiment is performed in three stages that are separated in the figure
with two dotted vertical lines. The first stage is the preparation of the
Bell-diagonal states. As the second stage deals with the introduction
of the global pure dephasing dynamics, the last stage consists of the
CHSH measurements and tomography.

combines together at another beam splitter (BS). (The inset
TBS contains a polarizing beam splitter (PBS) and three
half-wave plates (HWPs). The transmission reflection ratio
is well adjusted by the two HWPs and the relative amplitude
of the L arm and the S arm are well set.) The L part of the
photon in arm 1 passes through a HWP set at 45◦ so that
the two photons can be prepared in the Bell-diagonal states
α|φ±〉〈φ±| + (1 − α)|ψ±〉〈ψ±|. Here, the phase 0 or π can be
set by tuning the quarter-wave plate in arms L and S. In the
next stage, each of the photons passes through quartz plates
in different arms, and then the photon in arm 2 is rotated by
another HWP H set at 45◦, causing the dynamics to resemble
the one described in Eq. (1), by transforming |φ±〉 and |ψ±〉
into each other. Explicitly, after relabeling the elements of the
initial state, the dynamics reads

ρ(t) =

⎛
⎜⎝

ρ11 ρ12κ
∗
2 ρ13κ1 ρ1412

ρ21κ2 ρ22 ρ23κ12 ρ24κ1

ρ31κ
∗
1 ρ32κ

∗
12 ρ33 ρ34κ

∗
2

ρ41
∗
12 ρ42κ

∗
1 ρ43κ2 ρ44

⎞
⎟⎠. (6)

Finally, the resulting two-photon state is analyzed by the
quantum state tomography or CHSH measurements.

In the experiment, we use a cw laser (Toptica, wavelength
is 404 nm and power is about 100 mW) to pump two type-I cut
0.3-mm-thick Beta barium borate (BBO) crystal to prepare the
maximally entangled states. The initial coincidence is about
6000/s and the final coincidence is about 350/s due to the fiber
coupling loss and the efficiency of the BS. The integration
time is 150 s and the total coincidence is about 50 000, which
gives an error (only calculating the photon number statistic
error) of about 0.006 and 0.008 for concurrence and CHSH
violation, respectively, for the Bell-diagonal state with c1 = 1,
c2 = 0.4, and c3 = −0.4. On the other hand, the integration
time is 300 s and the total coincidence is about 100 000, giving
an error of about 0.004 and 0.006 for concurrence and CHSH
inequality, respectively, for the Bell-diagonal state having c1 =
c3 = −0.5 and c2 = −1.
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FIG. 4. (a) Entanglement and (b) CHSH inequality violation
versus effective path difference. The experimentally prepared initial
Bell-diagonal states are c1 = 1, c2 = 0.4, and c3 = −0.4 (red
squares) and c1 = c3 = −0.5 and c2 = −1 (orange circles). In panel
(b), we show the violation of the CHSH inequality for many different
measurement settings. The optimal violation is given by the highest
points in the y axis for each state, which are marked with black data
points.

Figure 4 presents the results of our experimental investi-
gation. Specifically, we display entanglement in Fig. 4(a) for
states having c1 = 1, c2 = 0.4, and c3 = −0.4 (red squares)
and c1 = c3 = −0.5 and c2 = −1 (orange circles), while
Fig. 4(b) shows the degree of CHSH violation for the same pair
of states. As we show the CHSH violation for many different
measurement configurations in Fig. 4(b), the optimal violation
is given by the highest point in the y axis for each value of the
effective path difference. Looking at Figs. 2 and 4, we observe
that theoretical and experimental results are in good agreement.
The comparison between experimental data and theoretical
predictions shows a less accurate match for the Bell-inequality
violation than for the entanglement dynamics. We believe that
the reason lies in the fact that the CHSH violation with sensitive
correlation measurements is more vulnerable to experimental
inaccuracies than quantification of entanglement with state
tomography measurements. The experimental data do show,
however, conclusive evidence of the fact that, under global
dephasing noise, entanglement becomes forever frozen while
nonlocal correlations can suffer sudden death.

We lastly elaborate on how we experimentally test the
violation of the Bell inequalities. We first reconstruct the
density matrix using state tomography. Then, we numerically
maximize the degree of violation of the CHSH inequality.
Next, we fix all the wave plate angles (corresponding to differ-
ent measurement bases) at the optimal values and individually
change them to check for the maximal experimental violation
of the CHSH inequality. We repeat the same procedure for
all other states at each value of the effective path difference.
In other words, at each time point, we search, within a
certain angle interval, for the optimal experimental angles
showing maximum violation of the CHSH inequality, in
order to compensate for the uncertainties that might occur
in the tomography. As an example, we show the results of
our analysis for the Bell-diagonal state with the coefficients
c1 = 1, c2 = 0.4, and c3 = −0.4 in Fig. 5. In this case, the
optimal violation is indeed given by the angles obtained from
the numerical optimization.

In summary, we presented a detailed examination of
the dynamics of entanglement and nonlocal correlations,
quantified via concurrence and CHSH inequality violation,
respectively, under global dephasing for Bell-diagonal states.
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FIG. 5. Degree of CHSH inequality violation for different mea-
surement configurations around the numerically calculated optimal
angles for the Bell-diagonal state with c1 = 1, c2 = 0.4, and c3 =
−0.4. While H1 (H2, H3, H4) forms the half-wave plate of basis 
a
(
a′, 
b, 
b′), Q1 (Q2, Q3, Q4) forms the quarter-wave plate of basis 
a
(
a′, 
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Our results demonstrate that, remarkably, while entanglement
can become time invariant throughout the dynamics for a
certain subset of Bell diagonal states, nonlocal correlations
in these states might vanish in a finite time suffering sudden
death. Nonlocal correlations do not seem, according to our
investigation, to display a time-invariant behavior. However,
they can reach a nonzero stationary value larger than 2 which
will be maintained during the dynamics, as shown in Figs. 4(b)
and 2(b). The existence of time-invariant entanglement and
nonlocality trapping may pave the way to new strategies, based
on reservoir engineering techniques, aimed at exploiting rather
than fighting decoherence.
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