# Locating-dominating codes in paths

### Geoffrey Exoo

Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, USA gexoo@indstate.edu

#### Ville Junnila\*

Turku Centre for Computer Science TUCS and Department of Mathematics University of Turku, FI-20014 Turku, Finland viljun@utu.fi

#### Tero Laihonen

Department of Mathematics University of Turku, FI-20014 Turku, Finland terolai@utu.fi

### Corresponding author:

Ville Junnila Department of Mathematics University of Turku, FI-20014 Turku, Finland E-mail: viljun@utu.fi

Telephone: +358 2 333 6675

Fax: +358 2 333 6595

<sup>\*</sup>Research supported by the Academy of Finland under grant 210280.

#### Abstract

Bertrand, Charon, Hudry and Lobstein studied, in their paper in 2004, r-locating-dominating codes in paths  $\mathcal{P}_n$ . They conjectured that if  $r \geq 2$  is a fixed integer, then the smallest cardinality of an r-locating-dominating code in  $\mathcal{P}_n$ , denoted by  $M_r^{LD}(\mathcal{P}_n)$ , satisfies  $M_r^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  for infinitely many values of n. We prove that this conjecture holds. In fact, we show a stronger result saying that for any  $r \geq 3$  we have  $M_r^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  for all  $n \geq n_r$  when  $n_r$  is large enough. In addition, we solve a conjecture on location-domination with segments of even length in the infinite path.

Keywords: Locating-dominating code; optimal code; domination; graph; path Running head: Location-domination in paths

#### 1 Introduction

Let G = (V, E) be a simple connected and undirected graph with V as the set of vertices and E as the set of edges. Let u and v be vertices in V. If u and v are adjacent to each other, then the edge between u and v is denoted by uv. The distance d(u, v) is the number of edges in any shortest path between u and v. Let v be a positive integer. We say that v r-covers v if the distance v is at most v. The ball of radius v centered at v is defined as

$$B_r(u) = \{ x \in V \mid d(u, x) \le r \}.$$

A nonempty subset of V is called a code, and its elements are called code-words. Let  $C \subseteq V$  be a code and u be a vertex in V. An I-set (or an identifying set) of the vertex u with respect to the code C is defined as

$$I_r(C; u) = I_r(u) = B_r(u) \cap C.$$

**Definition 1.1.** Let r be a positive integer. A code  $C \subseteq V$  is said to be r-locating-dominating in G if for all  $u, v \in V \setminus C$  the set  $I_r(C; u)$  is nonempty and

$$I_r(C; u) \neq I_r(C; v).$$

Let X and Y be subsets of V. The symmetric difference of X and Y is defined as  $X \triangle Y = (X \setminus Y) \cup (Y \setminus X)$ . We say that the vertices u and v are r-separated by a code  $C \subseteq V$  (or by a codeword of C) if the symmetric difference  $I_r(C;u) \triangle I_r(C;v)$  is nonempty. The definition of r-locating dominating codes can now be reformulated as follows:  $C \subseteq V$  is an r-locating-dominating code in G if and only if for all  $u, v \in V \setminus C$  the vertex u is r-covered by a codeword of C and

$$I_r(C; u) \triangle I_r(C; v) \neq \emptyset.$$

The smallest cardinality of an r-locating-dominating code in a finite graph G is denoted by  $M_r^{LD}(G)$ . Notice that there always exists an r-locating-dominating code in G. An r-locating-dominating code attaining the smallest cardinality is called optimal. In [4], it is shown that the problem of determining  $M_r^{LD}(G)$  is NP-hard.

Locating-dominating codes are also known as locating-dominating sets in the literature. The concept of locating-dominating codes was first introduced by

Slater in [12, 14, 15] and later generalized by Carson in [3]. Locating-dominating codes have been since studied in various papers such as [2], [5], [6], [8], [9], [13], [16], [17] and [18]. For other papers on the subject, we refer to the Web site [11]. Moreover, location-domination in paths has been examined in [1] and [7] (for cycles see [?]).

Let n be a positive integer. A path  $\mathcal{P}_n = (V_n, E_n)$  is a graph such that the set of vertices is defined as  $V_n = \{v_i \mid i = 0, 1, \dots, n-1\}$  and the set of edges is defined as

$$E_n = \{v_i v_{i+1} \mid i = 0, 1, \dots, n-2\}.$$

In [14], Slater showed that  $M_1^{LD}(\mathcal{P}_n) = \lceil 2n/5 \rceil$ . Bertrand *et al.* [1] provide the following lower bound for  $r \geq 2$ .

**Theorem 1.2.** Let n and r be integers such that  $n \ge 1$  and  $r \ge 2$ . Then we have

$$M_r^{LD}(\mathcal{P}_n) \ge \left\lceil \frac{n+1}{3} \right\rceil.$$
 (1)

Moreover, in [1], it is conjectured that for any fixed  $r \geq 2$ , there exist infinitely many values of n such that  $M_r^{LD}(\mathcal{P}_n)$  attains the previous lower bound. In [7], it is shown that  $M_2^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  for any n. Hence, the conjecture holds when r=2. In Section 4 and Section 5, we prove that the conjecture also holds when  $r \geq 3$ . Moreover, we show that for any  $r \geq 3$  we have  $M_r^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  for all  $n \geq n_r$  when  $n_r$  is large enough  $(n_r = \mathcal{O}(r^3))$ .

In Section 2, we begin by introducing some basic results concerning r-locating-dominating codes in paths. In Section 3, we continue by considering r-locating-dominating codes in paths  $\mathcal{P}_n$  with small n (compared to r). Then, in Section 5, we present optimal 3- and 4-locating-dominating codes in  $\mathcal{P}_n$  for all n. Finally, in Section 6, we solve the conjecture stated in [1, Conjecture 2], which considers location-domination with segments of even lengths in the infinite path.

#### 2 Basics

Let C be a nonempty subset of  $V_n$ . We first present a useful characterization of r-locating-dominating codes in paths. For this, we need the concept of C-consecutive vertices introduced in [1]. Let i and j be positive integers such that  $0 \le i < j \le n-1$ . We say that  $(v_i, v_j)$  is a pair of C-consecutive vertices in  $\mathcal{P}_n$  if  $v_i, v_j \in V_n \setminus C$  and  $v_k \in C$  for  $0 \le i < k < j \le n-1$ . Now we are ready to present the following characterization, which is introduced in [1, Remark 3].

**Lemma 2.1** ([1]). Let r be a positive integer. A code  $C \subseteq V_n$  is r-locating-dominating in  $\mathcal{P}_n$  if and only if each vertex  $u \in V_n \setminus C$  is r-covered by a codeword of C and for each pair (u, v) of C-consecutive vertices in  $\mathcal{P}_n$  the vertices u and v are r-separated by a codeword of C.

The following theorem provides a handy property on the size of the optimal r-locating-dominating codes in  $\mathcal{P}_n$ .

**Theorem 2.2.** Let n and r be positive integers. Then we have

$$M_r^{LD}(\mathcal{P}_n) \leq M_r^{LD}(\mathcal{P}_{n+1}) \leq M_r^{LD}(\mathcal{P}_n) + 1.$$

*Proof.* Consider first the inequality  $M_r^{LD}(\mathcal{P}_n) \leq M_r^{LD}(\mathcal{P}_{n+1})$ . Let  $C \subseteq V_{n+1} = \{v_0, v_1, \ldots, v_n\}$  be an r-locating-dominating code in  $\mathcal{P}_{n+1}$ . Assume first that the vertex  $v_n \notin C$ . Now it is obvious that C is also an r-locating-dominating code in  $\mathcal{P}_n$ .

Assume then that  $v_n \in C$ . Denote by X the set of pairs of C-consecutive vertices in  $\mathcal{P}_n$ . There exists at most one pair  $(u,v) \in X$  such that the codeword  $v_n$  belongs to the symmetric difference of  $I_r(u)$  and  $I_r(v)$ . If there is no such pair of C-consecutive vertices, then it is clear that  $(C \setminus \{v_n\}) \cup \{v_{n-1}\}$  is an r-locating-dominating code in  $\mathcal{P}_n$ . Assume then that  $(v_i, v_j)$  with i < j is the unique pair of C-consecutive vertices such that  $v_n \in I_r(v_i) \triangle I_r(v_j)$ . Now define  $C' = (C \setminus \{v_n\}) \cup \{v_j\}$ . Since all the pairs of C-consecutive vertices belonging to  $X \setminus \{(v_i, v_j)\}$  are r-separated by a codeword of C', then it is easy to conclude that all the pairs of C'-consecutive vertices are r-separated by a codeword of C' in  $\mathcal{P}_n$ . Notice that if a vertex is r-covered by  $v_n$ , then it is also r-covered by  $v_j$ . Therefore, each vertex in  $V_n$  is r-covered by a codeword of C'. Thus, by Lemma 2.1, C' is an r-locating-dominating code in  $\mathcal{P}_n$ . In conclusion, we have  $M_r^{LD}(\mathcal{P}_n) \leq M_r^{LD}(\mathcal{P}_{n+1})$ .

Let then  $C \subseteq V_n$  be an r-locating-dominating code in  $\mathcal{P}_n$ . Since  $C \cup \{v_n\}$ 

Let then  $C \subseteq V_n$  be an r-locating-dominating code in  $\mathcal{P}_n$ . Since  $C \cup \{v_n\}$  is an r-locating-dominating code in  $\mathcal{P}_{n+1}$ , we immediately have  $M_r^{LD}(\mathcal{P}_{n+1}) \leq M_r^{LD}(\mathcal{P}_n) + 1$ .

In what follows, we present a couple of lemmas that are useful in determining the smallest cardinalities of r-locating-dominating codes in paths with a small number of vertices in Section 3. The first lemma says that an r-locating-dominating code in  $\mathcal{P}_n$  is such that at least r of both the first and the last 2r+1 vertices of the path are codewords.

**Lemma 2.3.** Let C be an r-locating-dominating code in  $\mathcal{P}_n$  and n be an integer such that  $n \geq 2r + 1$ .

- (i) The intersection  $C \cap \{v_0, v_1, \dots, v_{2r}\}$  contains at least r vertices.
- (ii) The intersection  $C \cap \{v_{n-2r-1}, v_{n-2r}, \dots, v_{n-1}\}$  contains at least r vertices

Proof. Let C be an r-locating-dominating code in  $\mathcal{P}_n$ . Denote  $\{v_0, v_1, \ldots, v_r\}$  by  $Q_r$ . Assume that there are k codewords in  $C \cap Q_r$  with  $0 \le k \le r-1$ . (Notice that if  $k \ge r$ , then the case (i) immediately follows.) Now there are r-k pairs (u,v) of C-consecutive vertices such that  $u \in Q_r$  and  $v \in Q_r$ . Notice that if (u,v) and (u',v') are such pairs of C-consecutive vertices, then the symmetric differences  $I_r(u) \triangle I_r(v)$  and  $I_r(u') \triangle I_r(v')$  are subsets of  $\{v_{r+1}, v_{r+2}, \ldots, v_{2r}\}$  and the intersection of the symmetric differences  $I_r(u) \triangle I_r(v)$  and  $I_r(u') \triangle I_r(v')$  is empty. Hence, there are at least r-k codewords in  $\{v_{r+1}, v_{r+2}, \ldots, v_{2r}\}$ . Thus, the claim (i) follows.

The case (ii) follows by symmetry. 
$$\Box$$

The second lemma says that an r-locating-dominating code in  $\mathcal{P}_n$  is such that any set of 3r+1 consecutive vertices in the path contains at least r codewords.

**Lemma 2.4.** Let C be an r-locating-dominating code in  $\mathcal{P}_n$  and n be an integer such that  $n \geq 3r + 1$ . For  $i = 0, 1, \ldots, n - 3r - 1$ , the set

$$\{v_i, v_{i+1}, \dots, v_{i+3r}\} \subseteq V_n$$

contains at least r codewords of C.

Proof. Let C be an r-locating-dominating code in  $\mathcal{P}_n$  and i be an integer such that  $0 \leq i \leq n-3r-1$ . Denote  $\{v_{i+r}, v_{i+r+1}, \ldots, v_{i+2r}\}$  by  $Q_r$ . Assume that there are k codewords in  $C \cap Q_r$  with  $0 \leq k \leq r-1$ . Now there are r-k pairs (u,v) of C-consecutive vertices such that  $u \in Q_r$  and  $v \in Q_r$ . Notice that if (u,v) and (u',v') are such pairs of C-consecutive vertices, then it is easy to see that the symmetric differences  $I_r(u) \triangle I_r(v)$  and  $I_r(u') \triangle I_r(v')$  are subsets of  $\{v_i,v_{i+1},\ldots,v_{i+r-1}\} \cup \{v_{i+2r+1},v_{i+2r+2},\ldots,v_{i+3r}\}$  and the intersection of the symmetric differences  $I_r(u) \triangle I_r(v)$  and  $I_r(u') \triangle I_r(v')$  is empty. Hence, there are at least r-k codewords in  $\{v_i,v_{i+1},\ldots,v_{i+r-1}\} \cup \{v_{i+2r+1},v_{i+2r+2},\ldots,v_{i+3r}\}$ . Thus, the claim follows.

#### 3 Paths with a small number of vertices

Let r be a positive integer. In this section, we determine the exact values of  $M_r^{LD}(\mathcal{P}_n)$  when  $1 \leq n \leq 7r+3$ . We also present a new lower bound on  $M_r^{LD}(\mathcal{P}_n)$  (improving the previous lower bound of Theorem 1.2) for some specific lengths n of the paths.

Consider then the exact values of  $M_r^{LD}(\mathcal{P}_n)$  when  $1 \leq n \leq 7r+3$ . Clearly, we have  $M_r^{LD}(\mathcal{P}_1)=1$ . The exact values of  $M_r^{LD}(\mathcal{P}_n)$ , when  $2 \leq n \leq 7r+3$ , are given in the following theorem. Previously, in [1], it has been shown that  $M_r^{LD}(\mathcal{P}_{3r+1})=M_r^{LD}(\mathcal{P}_{3r+2})=r+1$  and  $M_r^{LD}(\mathcal{P}_{3r+3})=r+2$ .

**Theorem 3.1.** Let r be an integer such that  $r \geq 2$ . Then we have the following results for  $2 \leq n \leq 7r + 3$ :

- 1) If  $2 \le n \le r+1$ , then  $M_r^{LD}(\mathcal{P}_n) = n-1$ .
- 2) If  $r + 2 \le n \le 2r + 1$ , then  $M_r^{LD}(\mathcal{P}_n) = r$ .
- 3) If  $2r + 2 \le n \le 3r + 2$ , then  $M_r^{LD}(\mathcal{P}_n) = r + 1$ .
- 4) If n = 3r + 3, then  $M_r^{LD}(\mathcal{P}_n) = r + 2$ .
- 5) If  $3r + 4 \le n \le 4r + 2$ , then  $M_r^{LD}(\mathcal{P}_n) = n 2(r+1)$ .
- 6) If 4r + 3 < n < 5r + 2, then  $M_r^{LD}(\mathcal{P}_n) = 2r$ .
- 7) If  $5r + 3 \le n \le 6r + 2$ , then  $M_r^{LD}(\mathcal{P}_n) = 2r + 1$ .
- 8) If  $6r + 3 \le n \le 6r + 5$ , then  $M_r^{LD}(\mathcal{P}_n) = 2r + 2$ .
- 9) If  $6r + 6 \le n \le 7r + 3$ , then  $M_{\pi}^{LD}(\mathcal{P}_n) = n 4r 3$ .

*Proof.* Let C be an r-locating-dominating code in  $\mathcal{P}_n$ .

- 1) Assume that  $2 \le n \le r+1$ . Now it is obvious that  $B_r(u) = V_n$  for all  $u \in V_n$ . Hence, it is immediate that  $M_r(\mathcal{P}_n) = n-1$ .
- 2) Assume that  $r+2 \leq n \leq 2r+1$ . Now, by Theorem 2.2, we have  $M_r^{LD}(\mathcal{P}_n) \geq M_r^{LD}(\mathcal{P}_{r+1}) = r$ . On the other hand, using Lemma 2.1, it is easy to verify that  $D_2 = \{v_0, v_1, \dots, v_{r-2}\} \cup \{v_{2r}\}$  is an r-locating-dominating code in  $\mathcal{P}_{2r+1}$  with r codewords. Therefore, by Theorem 2.2,  $M_r^{LD}(\mathcal{P}_n) = r$  when  $r+2 \leq n \leq 2r+1$ .

3) Assume that  $2r + 2 \le n \le 3r + 2$ . Consider first the path  $\mathcal{P}_{2r+2}$ . It is easy to conclude that each codeword can r-separate at most one pair of C-consecutive vertices in  $\mathcal{P}_{2r+2}$ . The number of pairs of C-consecutive vertices in  $\mathcal{P}_{2r+2}$  is equal to 2r + 2 - |C| - 1. Therefore, we have the following inequality:

$$|C| \ge 2r + 1 - |C| \iff |C| \ge \frac{2r + 1}{2}.$$

Thus, by the previous inequality and Theorem 2.2,  $M_r^{LD}(\mathcal{P}_n) \geq M_r^{LD}(\mathcal{P}_{2r+2}) \geq r+1$ . The code  $D_3 = \{v_r, v_{r+1}, \dots, v_{2r-1}\} \cup \{v_{3r}\}$  introduced in [1] is r-locating-dominating in  $\mathcal{P}_{3r+2}$ . Therefore,  $M_r^{LD}(\mathcal{P}_n) = r+1$  when  $2r+2 \leq n \leq 3r+2$ .

- 4) In [1], it is shown that  $D_4 = \{v_0\} \cup \{v_{r+1}, v_{r+2}, \dots, v_{2r}\} \cup \{v_{3r+2}\}$  is an r-locating-dominating code in  $\mathcal{P}_{3r+3}$ . Hence, by Theorem 1.2, we have  $M_r^{LD}(\mathcal{P}_{3r+3}) = r+2$ .
- 5) Assume that  $3r+4 \le n \le 4r+2$ . Now we can denote n=3r+3+p, where  $1 \le p \le r-1$ . By Lemma 2.3, subsets  $\{v_0,v_1,\ldots,v_{2r}\}$  and  $\{v_{r+p+2},v_{r+p+3},\ldots,v_{3r+p+2}\}$  both contain at least r codewords of C. The number of vertices in the intersection of these subsets is equal to r-p-1. Therefore, we have

$$|C| \ge r - p - 1 + 2(r - (r - p - 1)) = r + p + 1.$$

On the other hand, using Lemma 2.1, it is straightforward to verify that  $D_5 = \{v_1\} \cup \{v_{r+2}, v_{r+3}, \dots, v_{2r+p}\} \cup \{v_{3r+p+1}\}$  is an r-locating-dominating code in  $\mathcal{P}_n$ . Thus,  $M_r^{LD}(\mathcal{P}_{3r+3+p}) = r+p+1 = n-2(r+1)$  when  $3r+4 \leq n \leq 4r+2$ .

6) Assume that  $4r+3 \le n \le 5r+2$ . By Theorem 2.2, we have  $M_r^{LD}(\mathcal{P}_n) \ge M_r^{LD}(\mathcal{P}_{4r+2}) = 2r$ . Then define

$$D_6 = \{v_0\} \cup \{v_{r+2}, v_{r+3}, \dots, v_{2r}\} \cup \{v_{3r+1}, v_{3r+2}, \dots, v_{4r-1}\} \cup \{v_{5r+1}\}.$$

The number of vertices in  $D_6$  is equal to 2r and, by Lemma 2.1, it can be easily verified that  $D_6$  is an r-locating-dominating code in  $\mathcal{P}_{5r+2}$ . Therefore, by Theorem 2.2,  $M_r^{LD}(\mathcal{P}_n) = 2r$  when  $4r + 3 \le n \le 5r + 2$ .

7) Assume that  $5r + 3 \le n \le 6r + 2$ . Let us first show that  $M_r^{LD}(\mathcal{P}_{5r+3}) \ge 2r+1$ . Assume to the contrary that C is an r-locating-dominating code in  $\mathcal{P}_{5r+3}$  with at most 2r codewords. By Lemma 2.3, we know that both  $\{v_0, v_1, \ldots, v_{2r}\}$  and  $\{v_{3r+2}, v_{3r+3}, \ldots, v_{5r+2}\}$  contain at least r codewords of C. Hence, there are no codewords of C in  $\{v_{2r+1}, v_{2r+2}, \ldots, v_{3r+1}\}$ . Therefore, since all the pairs (u, v) of C-consecutive vertices in  $\mathcal{P}_{5r+3}$  such that  $u, v \in \{v_0, v_1, \ldots, v_{2r+1}\}$  are r-separated by a codeword of C, then the codewords of C belonging to  $\{v_0, v_1, \ldots, v_{2r+1}\}$  form an r-locating-dominating code in  $\mathcal{P}_{2r+2}$  with r codewords. This is a contradiction with the case 3). Thus, by Theorem 2.2,  $M_r^{LD}(\mathcal{P}_n) \ge M_r^{LD}(\mathcal{P}_{5r+3}) \ge 2r+1$ . Define then

$$D_7 = \{v_r, v_{r+1}, \dots, v_{2r-1}\} \cup \{v_{3r}\} \cup \{v_{4r+2}, v_{4r+3}, \dots, v_{5r}\} \cup \{v_{5r+2}\}.$$

Using Lemma 2.1, it is straightforward to verify that  $D_7$  is an r-locating-dominating code in  $\mathcal{P}_{6r+2}$  with 2r+1 codewords. Thus,  $M_r^{LD}(\mathcal{P}_n)=2r+1$  when  $5r+3\leq n\leq 6r+2$ .

8) Assume that  $6r+3 \le n \le 6r+5$ . By Theorem 1.2, we have  $M_r^{LD}(\mathcal{P}_n) \ge 2r+2$ . Define then

$$D_8 = \{v_1, v_{r+1}\} \cup \{v_{r+3}, v_{r+4}, \dots, v_{2r}\} \cup \{v_{3r+1}, v_{3r+3}\}$$
$$\cup \{v_{4r+4}, v_{4r+5}, \dots, v_{5r+1}\} \cup \{v_{5r+3}, v_{6r+3}\}.$$

By Lemma 2.1,  $D_8$  is an r-locating-dominating code in  $\mathcal{P}_{6r+5}$  with 2r+2 vertices. Thus,  $M_r^{LD}(\mathcal{P}_n) = 2r+2$  when  $6r+3 \le n \le 6r+5$ .

9) Assume that  $6r+6 \le n \le 7r+3$ . Now we can denote n=6r+5+p, where  $1 \le p \le r-2$ . Consider first the path  $\mathcal{P}_{7r+3}$ . By Lemma 2.3, the subsets  $\{v_0, v_1, \ldots, v_{2r}\}$  and  $\{v_{5r+2}, v_{5r+3}, \ldots, v_{7r+2}\}$  of  $V_{7r+3}$  both contain at least r codewords of C. By Lemma 2.4, the same also holds for the subset  $\{v_{2r+1}, v_{2r+2}, \ldots, v_{5r+1}\}$ . Therefore,  $M_r^{LD}(\mathcal{P}_{7r+3}) \ge 3r$ . Thus, by Theorem 2.2 and the fact that  $M_r^{LD}(\mathcal{P}_{6r+5}) = 2r+2$ , we have  $M_r^{LD}(\mathcal{P}_{6r+5+p}) = 2r+2+p$  when  $1 \le p \le r-2$ . In other words,  $M_r^{LD}(\mathcal{P}_n) = n-4r-3$  when  $6r+6 \le n \le 7r+3$ .

By generalizing the lower bound in the case 9) of the previous proof, the following theorem is immediately obtained.

**Theorem 3.2.** Let r be a positive integer and n = 2(2r+1) + p(3r+1) where  $p \ge 0$  is an integer. Then we have

$$M_r^{LD}(\mathcal{P}_n) \ge (p+2)r$$
.

Using the notations of the previous theorem, the lower bound of Theorem 1.2 implies that

$$M_r^{LD}(\mathcal{P}_n) \ge \left\lceil \frac{n+1}{3} \right\rceil = (p+1)r + 1 + \left\lceil \frac{r+p}{3} \right\rceil.$$

By straightforward calculations, it can be shown that  $(p+2)r > (p+1)r + 1 + \lceil (r+p)/3 \rceil$  if and only if  $0 \le p \le 2r - 6$ . Thus, the previous theorem gives improvements on the previously known lower bound when n = 2(2r+1) + p(3r+1) and  $0 \le p \le 2r - 6$ .

By applying Theorem 2.2 to the previous lower bound, we also obtain new lower bounds for some other values of n. For example, by Theorem 1.2, we have  $M_5^{LD}(\mathcal{P}_{56}) \geq 19$ . However, by Theorem 3.2, we have  $M_5^{LD}(\mathcal{P}_{54}) \geq 20$  and, therefore,  $M_5^{LD}(\mathcal{P}_{56}) \geq M_5^{LD}(\mathcal{P}_{54}) \geq 20$ .

The values given by the lower bound of Theorem 3.2 are sometimes optimal. For example, when r=5 and p=4, we have  $M_5^{LD}(\mathcal{P}_{86}) \geq 30$ . On the other hand,

$$D_{86} = \{v_2, v_6, v_8, v_9, v_{10}, v_{12}, v_{17}, v_{21}, v_{24}, v_{25}, v_{27}, v_{29}, v_{33}, v_{37}, v_{41}, v_{43}, v_{45}, v_{46}, v_{53}, v_{55}, v_{59}, v_{61}, v_{62}, v_{63}, v_{71}, v_{75}, v_{76}, v_{78}, v_{79}, v_{83}\}$$

is a 5-locating-dominating code in  $\mathcal{P}_{86}$ . Therefore,  $M_5^{LD}(\mathcal{P}_{86})=30$ .

## 4 Paths with a large number of vertices

Let n be a positive integer and r be an integer such that  $r \geq 5$ . In this section, we show that the size of an optimal r-locating-dominating code in  $\mathcal{P}_n$  is equal to  $\lceil (n+1)/3 \rceil$  for all  $n \geq n_r$  when  $n_r$  is large enough. The proof of this is based on the result of Theorem 4.3 saying that if n = 3r + 2 + p((r-3)(6r+3)+3r+3)+q(6r+3), where p and q are non-negative integers, then we have  $M_r^{LD}(\mathcal{P}_n) \leq \lceil (n+1)/3 \rceil$ . The proof of Theorem 4.3 is illustrated in the following example when r = 5.



Figure 1: The r-locating-dominating code  $C_1$  illustrated when r=5.

**Example 4.1.** Assume that r = 5. Let p and q be non-negative integers. In what follows, we show that if n = 3r + 2 + p((r-3)(6r+3) + 3r+3) + q(6r+3) = 17 + 84p + 33q, then  $M_5^{LD}(\mathcal{P}_n) \leq \lceil (n+1)/3 \rceil$ . In Figures 1 and 2, first consider the pattern D (the upper dashed box in the figures), which is formed by concatenating the patterns  $K_1$ ,  $K_2$  and  $K_3$ , which are of lengths 6r+3, 6r+3 and 3r+3, respectively. The pattern D is of length (r-3)(6r+3)+3r+3=84 and contains ((r-3)(6r+3)+3r+3)/3=28 codewords, i.e. 1/3 of the vertices of D are codewords. Moreover, it is easy to verify that D is a 5-locating-dominating code in a cycle of length 84 (compare this with Lemma 4.2). Similarly, the pattern (the lower dashed box in the figures) formed by  $K_1$  and  $L_2$ , which is of length 2(6r+3)=66 and contains (2(6r+3))/3=22 codewords, is a 5-locating-dominating code in a cycle of length 66.

The actual 5-locating-dominating code in  $\mathcal{P}_n$  depends on the parity of q. Assume first that q is even, i.e. q=2q' for some integer q'. The code  $C_1$  is now defined as in Figure 1, where the pattern D is repeated p times and the pattern formed by  $K_1$  and  $L_2$  is repeated q' times. Since the patterns D and the one formed by  $K_1$  and  $L_2$  are 5-locating-dominating codes, respectively, in cycles of lengths 84 and 66, it is straightforward to verify that  $C_1$  is a 5-locating-dominating code in  $\mathcal{P}_n$  (by Lemma 2.1). Similarly, it can be shown that the code  $C_2$  defined in Figure 2 is 5-locating-dominating in  $\mathcal{P}_n$  when q is odd, i.e. q=2q'+1 for some integer q'. Therefore, if n=17+84p+33q, we have  $M_r^{LD}(\mathcal{P}_n) \leq 6+28p+11q=\lceil (n+1)/3 \rceil$ .

For the formal proof of Theorem 4.3, we first need to introduce some preliminary definitions and results. Let i and s be non-negative integers. First, for  $1 \le i \le r-2$ , define

$$M_{i}(s) = \left(\bigcup_{\substack{j=0\\j \neq r-i-1}}^{r-1} \{v_{s+j}\}\right) \cup \{v_{s+2r-i}\}$$

and  $M_i'(s) = M_i(s) \setminus \{v_{s+2r-i}\}$ . Notice that  $|M_i(s)| = r$ . Furthermore, for



Figure 2: The r-locating-dominating code  $C_2$  illustrated when r = 5.

 $1 \le i \le r - 3$ , define

$$K_i(s) = M_i'(s) \cup \{v_{s+2r}, v_{s+3r-i}\} \cup \left(\bigcup_{\substack{j=3r+2\\j\neq 4r-i}}^{4r} \{v_{s+j}\}\right) \cup \{v_{s+5r-i}, v_{s+5r+2}\},$$

and  $K_{r-2}(s) = M'_{r-2}(s) \cup \{v_{s+2r}, v_{s+2r+2}\}$ . Notice that for i = 1, 2, ..., r-3, we have  $|K_i(s)| = 2r + 1$  and  $|K_{r-2}(s)| = r + 1$ . Finally, define

$$L_1(s) = M_1(s) \cup \left(\bigcup_{j=3r+1}^{4r-1} \{v_{s+j}\}\right) \cup \{v_{s+4r+1}, v_{s+6r+1}\}$$
$$\cup \left(\bigcup_{j=6r+3}^{7r+1} \{v_{s+j}\}\right) \cup \{v_{s+8r+3}\}$$

and, for  $2 \le i \le r - 2$ , define

$$L_i(s) = M_i(s) \cup \left(\bigcup_{\substack{j=3r+1\\j\neq 4r-i+1}}^{4r+1} \{v_{s+j}\}\right) \cup \{v_{s+6r-i+2}\}.$$

Notice that  $|L_1(s)| = 3r + 1$  and  $|L_i(s)| = 2r + 1$  when  $2 \le i \le r - 2$ .

As in Example 4.1, denote by  $K_i$ ,  $L_i$  and  $M_i$  the patterns  $\{v_s, v_{s+1}, \ldots, v_{s+\ell-1}\}$  where the codewords are determined by  $K_i(s)$ ,  $L_i(s)$  and  $M_i(s)$ , respectively. The length  $\ell$  of each pattern  $K_i$  and  $L_i$  is equal to three times the number of codewords in the pattern. For example, the length of the pattern  $L_1$  is equal to 9r+3 (see the case (iv) below). The length of the pattern  $M_i$  is equal to 2r+1. The following lemma says for general  $r \geq 5$  that the patterns  $K_i$ ,  $L_i$  and  $M_i$  can be concatenated to form r-locating dominating codes as in Example 4.1 (because the beginning of each of them contains  $M_i'(s)$ ).

**Lemma 4.2.** Let n and s be positive integers, and let r be an integer such that  $r \geq 5$ . Let C be a code in  $\mathcal{P}_n$ .

- (i) Let i be an integer such that  $1 \le i \le r-3$ . If  $K_i(s) \cup M'_{i+1}(s+6r+3) \subseteq C$ , then each pair  $(v_{j_1}, v_{j_2})$  of C-consecutive vertices in  $\mathcal{P}_n$  such that  $s \le j_1 \le s+7r+2$  and  $s \le j_2 \le s+7r+2$  is r-separated by a codeword of C.
- (ii) If  $K_{r-2}(s) \cup M'_1(s+3r+3) \subseteq C$ , then each pair  $(v_{j_1}, v_{j_2})$  of C-consecutive vertices in  $\mathcal{P}_n$  such that  $s \leq j_1 \leq s+4r+2$  and  $s \leq j_2 \leq s+4r+2$  is r-separated by a codeword of C.
- (iii) Let i be an integer such that  $2 \le i \le r-2$ . If  $L_i(s) \cup M'_{i-1}(s+6r+3) \subseteq C$ , then each pair  $(v_{j_1}, v_{j_2})$  of C-consecutive vertices in  $\mathcal{P}_n$  such that  $s \le j_1 \le s+7r+2$  and  $s \le j_2 \le s+7r+2$  is r-separated by a codeword of C.
- (iv) If  $L_1(s) \cup M'_{r-2}(s+9r+3) \subseteq C$ , then each pair  $(v_{j_1}, v_{j_2})$  of C-consecutive vertices in  $\mathcal{P}_n$  such that  $s \leq j_1 \leq s+10r+2$  and  $s \leq j_2 \leq s+10r+2$  is r-separated by a codeword of C.

*Proof.* (i) Let i be an integer with  $1 \le i \le r-3$  and  $C \subseteq V_n$  a code such that  $K_i(s) \cup M'_{i+1}(s+6r+3) \subseteq C$ . Consider then the symmetric differences  $B_r(v_{j_1}) \triangle B_r(v_{j_2})$ , where  $(v_{j_1}, v_{j_2})$  are pairs of C-consecutive vertices such that  $s \le j_1 \le s+7r+2$  and  $s \le j_2 \le s+7r+2$ . For the following considerations, notice that

$$M'_{i+1}(s+6r+3) = \bigcup_{\substack{j=6r+3\\j\neq 7r-i+1}}^{7r+2} \{v_{s+j}\}.$$

Let k be a positive integer. If  $s+r \leq k \leq s+2r-i-2$ ,  $s+2r-i \leq k \leq s+2r-2$ ,  $s+4r+2 \leq k \leq s+5r-i-2$  or  $s+5r-i+1 \leq k \leq s+5r$ , then it is straightforward to verify that the vertex  $v_{k-r}$  belongs to the symmetric difference  $I_r(v_k) \triangle I_r(v_{k+1})$ . If  $s+2r+1 \leq k \leq s+3r-i-2$ ,  $s+3r-i+1 \leq k \leq s+3r-1$ ,  $s+5r+3 \leq k \leq s+6r-i-1$  or  $s+6r-i+1 \leq k \leq s+6r+1$ , then it can be seen that the vertex  $v_{k+r+1}$  belongs to the symmetric difference  $I_r(v_k) \triangle I_r(v_{k+1})$ . Moreover, we have that

$$\begin{split} v_{s+2r} &\in I_r(v_{s+r-i-1}) \bigtriangleup I_r(v_{s+r}), \\ v_{s+3r-i} &\in I_r(v_{s+2r-i-1}) \bigtriangleup I_r(v_{s+2r-i}), \\ v_{s+r-1} &\in I_r(v_{s+2r-1}) \bigtriangleup I_r(v_{s+2r+1}), \\ v_{s+4r-i+1} &\in I_r(v_{s+3r-i-1}) \bigtriangleup I_r(v_{s+3r-i+1}), \\ v_{s+2r} &\in I_r(v_{s+3r}) \bigtriangleup I_r(v_{s+3r+1}), \\ v_{s+5r-i} &\in I_r(v_{s+3r+1}) \bigtriangleup I_r(v_{s+4r-i}), \\ v_{s+3r-i} &\in I_r(v_{s+4r-i}) \bigtriangleup I_r(v_{s+4r+1}), \\ v_{s+5r+2} &\in I_r(v_{s+4r+1}) \bigtriangleup I_r(v_{s+4r+2}), \\ v_{s+4r-i-1} &\in I_r(v_{s+5r-i-1}) \bigtriangleup I_r(v_{s+5r-i+1}), \\ v_{s+6r+3} &\in I_r(v_{s+5r+1}) \bigtriangleup I_r(v_{s+5r+3}), \\ v_{s+5r-i} &\in I_r(v_{s+6r-i}) \bigtriangleup I_r(v_{s+6r-i+1}) \text{ and } \\ v_{s+5r+2} &\in I_r(v_{s+6r+2}) \bigtriangleup I_r(v_{s+7r-i+1}). \end{split}$$

In conclusion, all the pairs  $(v_{j_1}, v_{j_2})$  of C-consecutive vertices in  $\mathcal{P}_n$  such that  $s \leq j_1 \leq s + 7r + 2$  and  $s \leq j_2 \leq s + 7r + 2$  are r-separated by a codeword of C. The proofs of the cases (ii), (iii) and (iv) are analogous to the first one.  $\square$ 

The following theorem now proves the conjecture stated in [1, Conjecture 1] when  $r \geq 5$ .

**Theorem 4.3.** Let  $r \ge 5$  be an integer and n = 3r + 2 + p((r-3)(6r+3) + 3r+3) + q(6r+3), where p and q are non-negative integers. Then we have

$$M_r^{LD}(\mathcal{P}_n) \le \left\lceil \frac{n+1}{3} \right\rceil.$$

*Proof.* Let  $r \ge 5$  be an integer and n = 3r + 2 + p((r-3)(6r+3) + 3r + 3) + q(6r+3), where p and q are non-negative integers. Let s be a non-negative integer and define

$$D(s) = \bigcup_{i=0}^{r-3} K_{i+1}(s + i(6r+3)).$$

Assume that q is even, i.e. q = 2q' for some integer q'. Define then

$$C_{1} = \{v_{r-2}\} \cup \bigcup_{j=0}^{p-1} D(r+1+j((r-3)(6r+3)+3r+3))$$

$$\cup \bigcup_{j=0}^{q'-1} K_{1}(r+1+p((r-3)(6r+3)+3r+3)+2j(6r+3))$$

$$\cup \bigcup_{j=0}^{q'-1} L_{2}(r+1+p((r-3)(6r+3)+3r+3)+(2j+1)(6r+3))$$

$$\cup M_{1}(r+1+p((r-3)(6r+3)+3r+3)+q(6r+3)).$$

Notice that if r=5, this definition of  $C_1$  coincides with the one of Example 4.1. (Recall also the length of the patterns  $K_i$ ,  $L_i$  and  $M_i$  as described earlier.) As in the previous example,  $C_1$  is formed by concatenating the patterns  $K_i$ ,  $L_i$  and  $M_i$ . Since  $M_i'(s) \subseteq K_i(s)$  and  $M_i'(s) \subseteq L_i(s)$ , Lemma 4.2 applies to each occurrence of  $K_i(s)$  and  $L_i(s)$  in  $C_1$ . Therefore, each pair  $(v_j, v_k)$  of  $C_1$ -consecutive vertices in  $\mathcal{P}_n$  such that  $r+1 \leq j \leq n-r-2$  and  $r+1 \leq k \leq n-r-2$  is r-separated by a codeword of  $C_1$ . Hence, it is easy to see that each pair of  $C_1$ -consecutive vertices in  $\mathcal{P}_n$  is r-separated by  $C_1$ . Since there are no 2r+1 consecutive vertices belonging to  $V_n \setminus C_1$  in  $\mathcal{P}_n$ , all the vertices in  $\mathcal{P}_n$  are r-covered by a codeword of  $C_1$ . Thus, by Lemma 2.1, it is easy to conclude that  $C_1$  is an r-locating-dominating code in  $\mathcal{P}_n$  with  $\lceil (n+1)/3 \rceil$  vertices.

Assume then that q is odd, i.e. q = 2q' + 1 for some integer q'. Define then

$$C_{2} = \{v_{r-2}\} \cup \bigcup_{j=0}^{p-1} D(r+1+j((r-3)(6r+3)+3r+3))$$

$$\cup \bigcup_{j=0}^{q'} K_{1}(r+1+p((r-3)(6r+3)+3r+3)+2j(6r+3))$$

$$\cup \bigcup_{j=0}^{q'-1} L_{2}(r+1+p((r-3)(6r+3)+3r+3)+(2j+1)(6r+3))$$

$$\cup M_{2}(r+1+p((r-3)(6r+3)+3r+3)+q(6r+3)).$$

Similarly, as in the previous case, it can be shown that  $C_2$  is an r-locating-dominating code in  $\mathcal{P}_n$  with  $\lceil (n+1)/3 \rceil$  vertices.

In [10, Theorem 8.3], the following theorem is presented. This theorem turns out useful in future considerations.

**Theorem 4.4** ([10]). Let a and b be positive integers such that the greatest common divisor of a and b is equal to 1. Then, for any integer n > ab - a - b, there exist such non-negative integers p and q that n = pa + qb.

The length of the path in Theorem 4.3 can be written as follows:

$$n = 3r + 2 + p((r-3)(6r+3) + 3r + 3) + q(6r+3)$$
  
= 3r + 2 + 3(p((r-3)(2r+1) + r + 1) + q(2r+1)).

The greatest common divisor of (r-3)(2r+1)+r+1 and 2r+1 is equal to 1. Thus, by Theorem 4.4, if n' is an integer such that  $n' \geq 2r((r-3)(2r+1)+r)$ , then there exist non-negative integers p and q such that n' = p((r-3)(2r+1)+r+1)+q(2r+1). Therefore, if n is an integer such that  $n \geq 3r+2+3\cdot 2r((r-3)(2r+1)+r)$  and  $n \equiv 2 \pmod 3$ , then there exist integers  $p \geq 0$  and  $q \geq 0$  such that n = 3r+2+p((r-3)(6r+3)+3r+3)+q(6r+3).

Assume that  $n \ge 3r + 2 + 6r((r-3)(2r+1) + r)$  and n = 3k + 2, where k is an integer. Combining the lower bound of Theorem 1.2, Theorem 2.2 and Theorem 4.3, we obtain

$$k+1 \le M_r^{LD}(\mathcal{P}_{3k}) \le M_r^{LD}(\mathcal{P}_{3k+1}) \le M_r^{LD}(\mathcal{P}_{3k+2}) \le k+1.$$

Therefore,  $M_r^{LD}(\mathcal{P}_{3k})=M_r^{LD}(\mathcal{P}_{3k+1})=M_r^{LD}(\mathcal{P}_{3k+2})=k+1$ . Thus, the following theorem immediately follows.

**Theorem 4.5.** Let r be a positive integer such that  $r \geq 5$ . If  $n \geq 3r + 2 + 6r((r-3)(2r+1)+r)$ , then

$$M_r^{LD}(\mathcal{P}_n) = \left\lceil \frac{n+1}{3} \right\rceil.$$

Theorem 4.3 provides one approach to form r-locating-dominating codes in paths using Lemma 4.2. However, this lemma can also be applied in other ways. For example, when k is an integer such that  $0 \le k \le r - 3$ ,

$$C(k) = \{v_{r-2}\} \cup L_1(r+1) \cup \left(\bigcup_{j=0}^{k-1} L_{r-2-j}(10r+4+j(6r+3))\right)$$
$$\cup M_{r-2-k}(10r+4+k(6r+3))$$

is an optimal r-locating-dominating code in  $\mathcal{P}_n$  with n = 12r + 5 + k(6r + 3). Notice that the optimal r-locating-dominating codes in paths of these lengths cannot be obtained using Theorem 4.3.

## 5 The exact values of $M_3^{LD}(\mathcal{P}_n)$ and $M_4^{LD}(\mathcal{P}_n)$

Let n be a positive integer. In this section, we solve the exact values of  $M_3^{LD}(\mathcal{P}_n)$  and  $M_4^{LD}(\mathcal{P}_n)$  for all n. In order to do this, we first need to present some preliminary definitions and results.

Define an infinite path  $\mathcal{P}_{\infty} = (V_{\infty}, E_{\infty})$ , where  $V_{\infty} = \{v_i \mid i \in \mathbb{Z}\}$  and  $E_{\infty} = \{v_i v_{i+1} \mid i \in \mathbb{Z}\}$ . Define then

$$C = \{v_i \in V_{\infty} \mid i \equiv 0, 2 \bmod 6\}.$$

In [7], it is stated that if r is an integer such that  $r \geq 2$  and  $r \equiv 1, 2, 3$  or 4 (mod 6), then C is an r-locating-dominating code in  $\mathcal{P}_{\infty}$ . This result is rephrased in the following lemma when r = 3 or r = 4.

**Lemma 5.1.** Let n and k be integers such that

$$D = \{v_k, v_{k+2}, v_{k+6}, v_{k+8}, v_{k+12}, v_{k+14}\} \subseteq V_n.$$

If a pair  $(v_i, v_j)$  of D-consecutive vertices in  $\mathcal{P}_n$  is such that  $k+5 \leq i \leq k+13$  and  $k+5 \leq j \leq k+13$ , then  $v_i$  and  $v_j$  are 3- and 4-separated by a codeword of D. Moreover, each vertex  $v_i \in V_n \setminus D$  such that  $k+6 \leq i \leq k+11$  is 3- and 4-covered by a codeword of D.

Consider then r-locating-dominating codes in  $\mathcal{P}_n$  when r=3. By Theorem 3.1, the exact values of  $M_3^{LD}(\mathcal{P}_n)$  are known when  $1 \leq n \leq 24$ . Let p be an integer such that  $p \geq 1$ . Define

$$D_1(p) = \{v_1\} \cup \left(\bigcup_{i=0}^p \{v_{4+6i}, v_{6+6i}\}\right) \cup \{v_{9+6p}, v_{14+6p}, v_{15+6p}, v_{17+6p}\}$$

and

$$D_2(p) = \{v_1\} \cup \left(\bigcup_{i=0}^p \{v_{4+6i}, v_{6+6i}\}\right) \cup \{v_{10+6p}, v_{12+6p}, v_{16+6p}, v_{18+6p}, v_{21+6p}\}.$$

It is straightforward to verify that  $D_1(1)$  and  $D_2(1)$  are 3-locating-dominating codes in  $\mathcal{P}_{26}$  and  $\mathcal{P}_{29}$ , respectively. Therefore, using Lemma 5.1, it is easy to conclude that  $D_1(p)$  and  $D_2(p)$  are 3-locating-dominating codes in  $\mathcal{P}_{20+6p}$  and  $\mathcal{P}_{23+6p}$ , respectively, when  $p \geq 2$ . Moreover, by Theorem 1.2 and Theorem 2.2, we have

$$|D_1(p)| \ge M_3^{LD}(\mathcal{P}_{20+6p}) \ge M_3^{LD}(\mathcal{P}_{19+6p}) \ge M_3^{LD}(\mathcal{P}_{18+6p}) \ge 7 + 2p$$

and

$$|D_2(p)| \ge M_3^{LD}(\mathcal{P}_{23+6p}) \ge M_3^{LD}(\mathcal{P}_{22+6p}) \ge M_3^{LD}(\mathcal{P}_{21+6p}) \ge 8 + 2p.$$

Since  $|D_1(p)| = 7 + 2p$  and  $|D_2(p)| = 8 + 2p$ , we have that  $M_3^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  for any  $n \geq 24$ . In conclusion, all the values of  $M_3^{LD}(\mathcal{P}_n)$  are determined.

Consider then r-locating-dominating codes in  $\mathcal{P}_n$  when r=4. By Theorem 3.1, the exact values of  $M_4^{LD}(\mathcal{P}_n)$  are known when  $1 \leq n \leq 31$ . Assume now that  $p \geq 0$ . Define

$$D_3(p) = \{v_1, v_5, v_7, v_8\} \cup \left(\bigcup_{i=0}^{p} \{v_{13+6i}, v_{15+6i}\}\right) \cup \{v_{20+6p}, v_{21+6p}, v_{23+6p}, v_{27+6p}\}$$

and

$$D_4(p) = \{v_1, v_5, v_7, v_8\} \cup \left(\bigcup_{i=0}^p \{v_{13+6i}, v_{15+6i}\}\right) \cup \{v_{20+6p}, v_{21+6p}, v_{23+6p}, v_{28+6p}\}$$
$$\cup \{v_{31+6p}, v_{34+6p}, v_{36+6p}, v_{39+6p}, v_{42+6p}, v_{47+6p}, v_{49+6p}, v_{50+6p}, v_{53+6p}\}.$$

It is straightforward to verify that  $D_3(0)$ ,  $D_3(1)$ ,  $D_4(0)$  and  $D_4(1)$  are 4-locating-dominating codes in  $\mathcal{P}_{29}$ ,  $\mathcal{P}_{35}$ ,  $\mathcal{P}_{56}$  and  $\mathcal{P}_{62}$ , respectively. Therefore, using Lemma 5.1, it is easy to conclude that  $D_1(p)$  and  $D_2(p)$  are 4-locating-dominating codes in  $\mathcal{P}_{29+6p}$  and  $\mathcal{P}_{56+6p}$ , respectively, when  $p \geq 2$ . Moreover, by Theorem 1.2 and Theorem 2.2, we have

$$|D_3(p)| \geq M_4^{LD}(\mathcal{P}_{29+6p}) \geq M_4^{LD}(\mathcal{P}_{28+6p}) \geq M_4^{LD}(\mathcal{P}_{27+6p}) \geq 10 + 2p$$

and

$$|D_4(p)| \ge M_4^{LD}(\mathcal{P}_{56+6p}) \ge M_4^{LD}(\mathcal{P}_{55+6p}) \ge M_4^{LD}(\mathcal{P}_{54+6p}) \ge 19 + 2p.$$

Since  $|D_3(p)| = 10 + 2p$  and  $|D_4(p)| = 19 + 2p$ , we have that  $M_4^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  when  $27 + 6p \le n \le 29 + 6p$  and  $54 + 6p \le n \le 56 + 6p$   $(p \ge 0)$ . In conclusion, the values of  $M_4^{LD}(\mathcal{P}_n)$  are determined except when n = 32,  $36 \le n \le 38$ ,  $42 \le n \le 44$  or  $48 \le n \le 50$ .

By Theorem 3.1, we have  $M_4^{LD}(\mathcal{P}_{31})=12$ . Therefore, by Theorem 2.2, since  $M_4^{LD}(\mathcal{P}_{35})=12$ , we also have that  $M_4^{LD}(\mathcal{P}_{32})=12$ . Define then

$$D_{37} = \{v_2, v_3, v_5, v_6, v_{13}, v_{16}, v_{17}, v_{19}, v_{23}, v_{29}, v_{30}, v_{31}, v_{33}\},\$$

$$D_{43} = \{v_2, v_3, v_5, v_8, v_{10}, v_{16}, v_{18}, v_{21}, v_{23}, v_{24}, v_{31}, v_{34}, v_{35}, v_{37}, v_{41}\}$$

and

$$D_{49} = \{v_2, v_5, v_6, v_8, v_{13}, v_{16}, v_{19}, v_{20}, v_{26}, v_{27}, v_{30}, v_{33}, v_{38}, v_{40}, v_{41}, v_{42}, v_{48}\}.$$

It is easy to verify that  $D_{37}$ ,  $D_{43}$  and  $D_{49}$  are 4-locating-dominating codes in  $\mathcal{P}_{37}$ ,  $\mathcal{P}_{43}$  and  $\mathcal{P}_{49}$  attaining the lower bound of Theorem 1.2, respectively. Therefore, by Theorem 2.2, we also have the optimal 4-locating-dominating codes for the paths  $\mathcal{P}_{36}$ ,  $\mathcal{P}_{42}$  and  $\mathcal{P}_{48}$ . By Theorem 3.2, we have  $M_4^{LD}(\mathcal{P}_{44}) \geq 16$ . On the other hand, we have  $M_r^{LD}(\mathcal{P}_{44}) \leq M_r^{LD}(\mathcal{P}_{45}) = 16$ . Hence,  $M_4^{LD}(\mathcal{P}_{44}) = 16$ .

paths  $\mathcal{P}_{36}$ ,  $\mathcal{P}_{42}$  and  $\mathcal{P}_{48}$ . By Theorem 3.2, we have  $M_4^{LD}(\mathcal{P}_{44}) \geq 16$ . On the other hand, we have  $M_r^{LD}(\mathcal{P}_{44}) \leq M_r^{LD}(\mathcal{P}_{45}) = 16$ . Hence,  $M_4^{LD}(\mathcal{P}_{44}) = 16$ . Now the only open values are  $M_4^{LD}(\mathcal{P}_{38})$  and  $M_4^{LD}(\mathcal{P}_{50})$ . By the previous constructions, we know that  $M_4^{LD}(\mathcal{P}_{38}) \leq M_4^{LD}(\mathcal{P}_{39}) = 14$  and  $M_4^{LD}(\mathcal{P}_{50}) \leq M_4^{LD}(\mathcal{P}_{51}) = 18$ . By an exhaustive computer search, we have been able to prove that there are no 4-locating-dominating codes in  $\mathcal{P}_{38}$  and  $\mathcal{P}_{50}$  with 13 and 17 codewords, respectively. Hence,  $M_4^{LD}(\mathcal{P}_{38}) = 14$  and  $M_4^{LD}(\mathcal{P}_{50}) = 18$ . In conclusion, all the values of  $M_4^{LD}(\mathcal{P}_n)$  are determined.

## 6 On the conjecture of even segment lengths

In this section, the focus is on the infinite path  $\mathcal{P}_{\infty}$ . Previously, we have considered the balls  $B_r(v_i) = \{v_j \in V_{\infty} \mid i - r \leq j \leq i + r\}, i \in \mathbb{Z}$ , of size (or length) 2r + 1, which is necessarily odd. In [1], also the case where a ball or rather a segment can have an even length is considered in  $P_{\infty}$ . Clearly, the 'center' of



Figure 3: The code C of Theorem 6.2 illustrated when k=3. The code is formed by repeating the pattern in the dashed box infinitely many times to the left and to the right.

the segment of even size is not a vertex of  $V_{\infty}$ , so we also need to choose how to associate a segment with a codeword. Notice that this prevents the usual symmetry

$$v_i \in B_r(v_i) \Leftrightarrow v_i \in B_r(v_i)$$

which we earlier often used. In what follows, we always associate a segment in the same way with every codeword.

The problem is stated analogously after selecting the association of a segment with a codeword: how to place the codewords (segments) in  $P_{\infty}$  in such a way that every vertex of  $V_{\infty}$ , which is not in the code, belongs to at least one segment and no two non-codewords belong to the same set of segments. Again, we would like to have as small density of a code as possible. The *density* of a code C is defined as usually

$$D(C) = \limsup_{n \to \infty} \frac{|Q_n \cap C|}{|Q_n|}$$

where  $Q_n = \{v_i \in V_\infty \mid -n \le i \le n\}.$ 

In [1], it is pointed out that the choice how to associate a segment with a codeword affects on the minimum density of a locating-dominating code in  $P_{\infty}$ . However, it is shown in Theorem 16 of [1] that no matter how one chooses the association with a codeword, the smallest density is at least 1/3.

Related to this lower bound, the following conjecture is given in [1].

Conjecture 6.1. Let s be a positive integer divisible by 6. Then we can achieve the density 1/3 for a locating-dominating code using segments of length s in  $P_{\infty}$ .

In the next theorem we shall confirm this conjecture.

**Theorem 6.2.** Let s be a positive integer divisible by 6. There exists a code  $C \subseteq V_{\infty}$  and an assignment of a segment of length s with a codeword such that C is locating-dominating in  $P_{\infty}$  with density 1/3.

*Proof.* Let s be a positive integer with s=6k and  $k\geq 1$ . Denote  $S=\{0,1,2,\ldots,3k-2,6k-1\}$ . Take

$$C = \{v_i \in V_{\infty} \mid i \equiv x \bmod 9k \text{ for some } x \in S\}.$$

In Figure 3, the code C is illustrated when k=3. Let us associate, for all the codewords  $v_c \in C$ , the segment as follows:  $\widetilde{B}_s(v_c) = \widetilde{B}_{6k}(v_c) = \{v_{c-3k+1}, \ldots, v_c, \ldots, v_{c+3k}\}$ . Clearly, the density of the code is 1/3. Next we show that C is locating-dominating in  $P_{\infty}$  by determining any vertex  $v_i \in V_{\infty} \setminus C$  with the aid of the segments of codewords it belongs to.

First of all, every non-codeword  $v_i$  belongs to some segment, namely to a segment associated with  $v_{c_1} \in C$  for some  $c_1 \equiv 3k-2 \pmod{9k}$  or with  $v_{c_2} \in C$  for some  $c_2 \equiv 6k-1 \pmod{9k}$ .

Suppose first that there exists a codeword  $v_c \in C$  such that  $c \equiv 6k-1 \pmod{9k}$  with  $v_i \in \widetilde{B}_s(v_c)$ . If there is no other codeword to whose segment  $v_i$  belongs, then  $v_i = v_{c+1}$ . Assume then that we have at least one codeword  $v_{c'}$  for which c' > c and to whose segment  $v_i$  belongs. Let  $c_1 = \max\{a \in \mathbb{Z} \mid v_i \in \widetilde{B}_s(v_a), v_a \in C\}$ . Consequently,  $v_i = v_{c_1-3k+1}$ . Suppose now that we do not have codewords with larger index c' than c for which  $v_i \in \widetilde{B}_s(v_{c'})$ . Let  $c_2 = \min\{a \in \mathbb{Z} \mid v_i \in \widetilde{B}_s(v_a), v_a \in C\}$ . Then  $v_i = v_{c_2+3k}$ .

Suppose finally that none of the codewords  $v_c$  such that  $v_i \in \widetilde{B}_s(v_c)$  satisfies  $c \equiv 6k-1 \pmod{9k}$ . Now  $v_i = v_{c_2+3k-1}$  where again  $c_2 = \min\{a \in \mathbb{Z} \mid v_i \in \widetilde{B}_s(v_a), v_a \in C\}$ . This completes the proof.

Locating-dominating codes achieving the density 1/3 for the even segment lengths satisfying  $s \not\equiv 0 \pmod{6}$ , can be found in [1].

#### 7 Conclusions

Previously, the exact values of  $M_1^{LD}(\mathcal{P}_n)$  and  $M_2^{LD}(\mathcal{P}_n)$  are known due to [14] and [7], respectively. In Section 5, we computed the exact values of  $M_3^{LD}(\mathcal{P}_n)$  and  $M_4^{LD}(\mathcal{P}_n)$ . In Section 3, the exact values of  $M_r^{LD}(\mathcal{P}_n)$  have been determined when  $1 \leq n \leq 7r + 3$ . Furthermore, by Theorem 4.5, we have that  $M_r^{LD}(\mathcal{P}_n) = \lceil (n+1)/3 \rceil$  when  $n \geq 3r + 2 + 3(2r+1)((r-3)(2r+1) + r)$ . In conclusion, although some of the exact values of  $M_r^{LD}(\mathcal{P}_n)$  are known when 7r + 3 < n < 3r + 2 + 3(2r+1)((r-3)(2r+1) + r), the question remains open in general.

### Acknowledgements

We would like to thank Iiro Honkala for helpful discussions. We also wish to thank anonymous referees for providing constructive comments to improve this paper.

#### References

- [1] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. Identifying and locating-dominating codes on chains and cycles. *European J. Combin.*, 25(7):969–987, 2004.
- [2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, and A. Semri. Locating-domination and identifying codes in trees. *Australas. J. Combin.*, 39:219–232, 2007.
- [3] D. I. Carson. On generalized location-domination. In *Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992)*, Wiley-Intersci. Publ., pages 161–179. Wiley, New York, 1995.
- [4] I. Charon, O. Hudry, and A. Lobstein. Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. *Theoret. Comput. Sci.*, 290(3):2109–2120, 2003.

- [5] S. Gravier, R. Klasing, and J. Moncel. Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs. *Algorithmic Oper. Res.*, 3(1):43–50, 2008.
- [6] I. Honkala. An optimal locating-dominating set in the infinite triangular grid. *Discrete Math.*, 306(21):2670–2681, 2006.
- [7] I. Honkala. On r-locating-dominating sets in paths. European J. Combin., 30(4):1022–1025, 2009.
- [8] I. Honkala and T. Laihonen. On locating-dominating sets in infinite grids. *European J. Combin.*, 27(2):218–227, 2006.
- [9] I. Honkala, T. Laihonen, and S. Ranto. On locating-dominating codes in binary Hamming spaces. *Discrete Math. Theor. Comput. Sci.*, 6(2):265–281, 2004.
- [10] L. K. Hua. Introduction to number theory. Springer-Verlag, Berlin, 1982. Translated from the Chinese by Peter Shiu.
- [11] A. Lobstein. Identifying and locating-dominating codes in graphs, a bibliography. Published electronically at http://perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf.
- [12] D. F. Rall and P. J. Slater. On location-domination numbers for certain classes of graphs. *Congr. Numer.*, 45:97–106, 1984.
- [13] P. J. Slater. Domination and location in graphs. Research report 93, National University of Singapore, 1983.
- [14] P. J. Slater. Domination and location in acyclic graphs. Networks, 17(1):55–64, 1987.
- [15] P. J. Slater. Dominating and reference sets in a graph. J. Math. Phys. Sci., 22:445–455, 1988.
- [16] P. J. Slater. Locating dominating sets and locating-dominating sets. In Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, volume 2, pages 1073–1079. Wiley, 1995.
- [17] P. J. Slater. Fault-tolerant locating-dominating sets. Discrete Math., 249(1–3):179–189, 2002.
- [18] J. Suomela. Approximability of identifying codes and locating-dominating codes. *Inform. Process. Lett.*, 103(1):28–33, 2007.