Locating-dominating codes in paths

Geoffrey Exoo
Department of Mathematics and Computer Science
Indiana State University
Terre Haute, IN 47809, USA
gexoo@indstate.edu
Ville Junnila*
Turku Centre for Computer Science TUCS and
Department of Mathematics
University of Turku, FI-20014 Turku, Finland
viljun@utu.fi
Tero Laihonen
Department of Mathematics
University of Turku, FI-20014 Turku, Finland
terolai@utu.fi

Corresponding author:

Ville Junnila
Department of Mathematics
University of Turku, FI-20014 Turku, Finland
E-mail: viljun@utu.fi
Telephone: +358 23336675
Fax: +358 23336595

[^0]
Abstract

Bertrand, Charon, Hudry and Lobstein studied, in their paper in 2004, r-locating-dominating codes in paths \mathcal{P}_{n}. They conjectured that if $r \geq 2$ is a fixed integer, then the smallest cardinality of an r-locating-dominating code in \mathcal{P}_{n}, denoted by $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$, satisfies $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=\lceil(n+1) / 3\rceil$ for infinitely many values of n. We prove that this conjecture holds. In fact, we show a stronger result saying that for any $r \geq 3$ we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=\lceil(n+1) / 3\rceil$ for all $n \geq n_{r}$ when n_{r} is large enough. In addition, we solve a conjecture on location-domination with segments of even length in the infinite path.

Keywords: Locating-dominating code; optimal code; domination; graph; path Running head: Location-domination in paths

1 Introduction

Let $G=(V, E)$ be a simple connected and undirected graph with V as the set of vertices and E as the set of edges. Let u and v be vertices in V. If u and v are adjacent to each other, then the edge between u and v is denoted by $u v$. The distance $d(u, v)$ is the number of edges in any shortest path between u and v. Let r be a positive integer. We say that $u r$-covers v if the distance $d(u, v)$ is at most r. The ball of radius r centered at u is defined as

$$
B_{r}(u)=\{x \in V \mid d(u, x) \leq r\}
$$

A nonempty subset of V is called a code, and its elements are called codewords. Let $C \subseteq V$ be a code and u be a vertex in V. An I-set (or an identifying set) of the vertex u with respect to the code C is defined as

$$
I_{r}(C ; u)=I_{r}(u)=B_{r}(u) \cap C
$$

Definition 1.1. Let r be a positive integer. A code $C \subseteq V$ is said to be r -locating-dominating in G if for all $u, v \in V \backslash C$ the set $I_{r}(C ; u)$ is nonempty and

$$
I_{r}(C ; u) \neq I_{r}(C ; v)
$$

Let X and Y be subsets of V. The symmetric difference of X and Y is defined as $X \triangle Y=(X \backslash Y) \cup(Y \backslash X)$. We say that the vertices u and v are r-separated by a code $C \subseteq V$ (or by a codeword of C) if the symmetric difference $I_{r}(C ; u) \triangle I_{r}(C ; v)$ is nonempty. The definition of r-locating dominating codes can now be reformulated as follows: $C \subseteq V$ is an r-locating-dominating code in G if and only if for all $u, v \in V \backslash C$ the vertex u is r-covered by a codeword of C and

$$
I_{r}(C ; u) \triangle I_{r}(C ; v) \neq \emptyset
$$

The smallest cardinality of an r-locating-dominating code in a finite graph G is denoted by $M_{r}^{L D}(G)$. Notice that there always exists an r-locating-dominating code in G. An r-locating-dominating code attaining the smallest cardinality is called optimal. In [4], it is shown that the problem of determining $M_{r}^{L D}(G)$ is NP-hard.

Locating-dominating codes are also known as locating-dominating sets in the literature. The concept of locating-dominating codes was first introduced by

Slater in $[12,14,15]$ and later generalized by Carson in [3]. Locating-dominating codes have been since studied in various papers such as [2], [5], [6], [8], [9], [13], [16], [17] and [18]. For other papers on the subject, we refer to the Web site [11]. Moreover, location-domination in paths has been examined in [1] and [7] (for cycles see [?]).

Let n be a positive integer. A path $\mathcal{P}_{n}=\left(V_{n}, E_{n}\right)$ is a graph such that the set of vertices is defined as $V_{n}=\left\{v_{i} \mid i=0,1, \ldots, n-1\right\}$ and the set of edges is defined as

$$
E_{n}=\left\{v_{i} v_{i+1} \mid i=0,1, \ldots, n-2\right\} .
$$

In [14], Slater showed that $M_{1}^{L D}\left(\mathcal{P}_{n}\right)=\lceil 2 n / 5\rceil$. Bertrand et al. [1] provide the following lower bound for $r \geq 2$.

Theorem 1.2. Let n and r be integers such that $n \geq 1$ and $r \geq 2$. Then we have

$$
\begin{equation*}
M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq\left\lceil\frac{n+1}{3}\right\rceil \tag{1}
\end{equation*}
$$

Moreover, in [1], it is conjectured that for any fixed $r \geq 2$, there exist infinitely many values of n such that $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$ attains the previous lower bound. In [7], it is shown that $M_{2}^{L D}\left(\mathcal{P}_{n}\right)=\lceil(n+1) / 3\rceil$ for any n. Hence, the conjecture holds when $r=2$. In Section 4 and Section 5, we prove that the conjecture also holds when $r \geq 3$. Moreover, we show that for any $r \geq 3$ we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=$ $\lceil(n+1) / 3\rceil$ for all $n \geq n_{r}$ when n_{r} is large enough $\left(n_{r}=\mathcal{O}\left(r^{3}\right)\right)$.

In Section 2, we begin by introducing some basic results concerning r -locating-dominating codes in paths. In Section 3, we continue by considering r-locating-dominating codes in paths \mathcal{P}_{n} with small n (compared to r). Then, in Section 5, we present optimal 3- and 4-locating-dominating codes in \mathcal{P}_{n} for all n. Finally, in Section 6, we solve the conjecture stated in [1, Conjecture 2], which considers location-domination with segments of even lengths in the infinite path.

2 Basics

Let C be a nonempty subset of V_{n}. We first present a useful characterization of r-locating-dominating codes in paths. For this, we need the concept of C consecutive vertices introduced in [1]. Let i and j be positive integers such that $0 \leq i<j \leq n-1$. We say that $\left(v_{i}, v_{j}\right)$ is a pair of C-consecutive vertices in \mathcal{P}_{n} if $v_{i}, v_{j} \in V_{n} \backslash C$ and $v_{k} \in C$ for $0 \leq i<k<j \leq n-1$. Now we are ready to present the following characterization, which is introduced in [1, Remark 3].

Lemma 2.1 ([1]). Let r be a positive integer. A code $C \subseteq V_{n}$ is r-locatingdominating in \mathcal{P}_{n} if and only if each vertex $u \in V_{n} \backslash C$ is r-covered by a codeword of C and for each pair (u, v) of C-consecutive vertices in \mathcal{P}_{n} the vertices u and v are r-separated by a codeword of C.

The following theorem provides a handy property on the size of the optimal r-locating-dominating codes in \mathcal{P}_{n}.

Theorem 2.2. Let n and r be positive integers. Then we have

$$
M_{r}^{L D}\left(\mathcal{P}_{n}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{n+1}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{n}\right)+1
$$

Proof. Consider first the inequality $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{n+1}\right)$. Let $C \subseteq V_{n+1}=$ $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ be an r-locating-dominating code in \mathcal{P}_{n+1}. Assume first that the vertex $v_{n} \notin C$. Now it is obvious that C is also an r-locating-dominating code in \mathcal{P}_{n}.

Assume then that $v_{n} \in C$. Denote by X the set of pairs of C-consecutive vertices in \mathcal{P}_{n}. There exists at most one pair $(u, v) \in X$ such that the codeword v_{n} belongs to the symmetric difference of $I_{r}(u)$ and $I_{r}(v)$. If there is no such pair of C-consecutive vertices, then it is clear that $\left(C \backslash\left\{v_{n}\right\}\right) \cup\left\{v_{n-1}\right\}$ is an r-locating-dominating code in \mathcal{P}_{n}. Assume then that $\left(v_{i}, v_{j}\right)$ with $i<j$ is the unique pair of C-consecutive vertices such that $v_{n} \in I_{r}\left(v_{i}\right) \triangle I_{r}\left(v_{j}\right)$. Now define $C^{\prime}=\left(C \backslash\left\{v_{n}\right\}\right) \cup\left\{v_{j}\right\}$. Since all the pairs of C-consecutive vertices belonging to $X \backslash\left\{\left(v_{i}, v_{j}\right)\right\}$ are r-separated by a codeword of C^{\prime}, then it is easy to conclude that all the pairs of C^{\prime}-consecutive vertices are r-separated by a codeword of C^{\prime} in \mathcal{P}_{n}. Notice that if a vertex is r-covered by v_{n}, then it is also r-covered by v_{j}. Therefore, each vertex in V_{n} is r-covered by a codeword of C^{\prime}. Thus, by Lemma 2.1, C^{\prime} is an r-locating-dominating code in \mathcal{P}_{n}. In conclusion, we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{n+1}\right)$.

Let then $C \subseteq V_{n}$ be an r-locating-dominating code in \mathcal{P}_{n}. Since $C \cup\left\{v_{n}\right\}$ is an r-locating-dominating code in \mathcal{P}_{n+1}, we immediately have $M_{r}^{L D}\left(\mathcal{P}_{n+1}\right) \leq$ $M_{r}^{L D}\left(\mathcal{P}_{n}\right)+1$.

In what follows, we present a couple of lemmas that are useful in determining the smallest cardinalities of r-locating-dominating codes in paths with a small number of vertices in Section 3. The first lemma says that an r-locatingdominating code in \mathcal{P}_{n} is such that at least r of both the first and the last $2 r+1$ vertices of the path are codewords.

Lemma 2.3. Let C be an r-locating-dominating code in \mathcal{P}_{n} and n be an integer such that $n \geq 2 r+1$.
(i) The intersection $C \cap\left\{v_{0}, v_{1}, \ldots, v_{2 r}\right\}$ contains at least r vertices.
(ii) The intersection $C \cap\left\{v_{n-2 r-1}, v_{n-2 r}, \ldots, v_{n-1}\right\}$ contains at least r vertices.

Proof. Let C be an r-locating-dominating code in \mathcal{P}_{n}. Denote $\left\{v_{0}, v_{1}, \ldots, v_{r}\right\}$ by Q_{r}. Assume that there are k codewords in $C \cap Q_{r}$ with $0 \leq k \leq r-1$. (Notice that if $k \geq r$, then the case (i) immediately follows.) Now there are $r-k$ pairs (u, v) of C-consecutive vertices such that $u \in Q_{r}$ and $v \in$ Q_{r}. Notice that if (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are such pairs of C-consecutive vertices, then the symmetric differences $I_{r}(u) \triangle I_{r}(v)$ and $I_{r}\left(u^{\prime}\right) \triangle I_{r}\left(v^{\prime}\right)$ are subsets of $\left\{v_{r+1}, v_{r+2}, \ldots, v_{2 r}\right\}$ and the intersection of the symmetric differences $I_{r}(u) \triangle I_{r}(v)$ and $I_{r}\left(u^{\prime}\right) \triangle I_{r}\left(v^{\prime}\right)$ is empty. Hence, there are at least $r-k$ codewords in $\left\{v_{r+1}, v_{r+2}, \ldots, v_{2 r}\right\}$. Thus, the claim (i) follows.

The case (ii) follows by symmetry.
The second lemma says that an r-locating-dominating code in \mathcal{P}_{n} is such that any set of $3 r+1$ consecutive vertices in the path contains at least r codewords.

Lemma 2.4. Let C be an r-locating-dominating code in \mathcal{P}_{n} and n be an integer such that $n \geq 3 r+1$. For $i=0,1, \ldots, n-3 r-1$, the set

$$
\left\{v_{i}, v_{i+1}, \ldots, v_{i+3 r}\right\} \subseteq V_{n}
$$

contains at least r codewords of C.
Proof. Let C be an r-locating-dominating code in \mathcal{P}_{n} and i be an integer such that $0 \leq i \leq n-3 r-1$. Denote $\left\{v_{i+r}, v_{i+r+1}, \ldots, v_{i+2 r}\right\}$ by Q_{r}. Assume that there are k codewords in $C \cap Q_{r}$ with $0 \leq k \leq r-1$. Now there are $r-k$ pairs (u, v) of C-consecutive vertices such that $u \in Q_{r}$ and $v \in Q_{r}$. Notice that if (u, v) and (u^{\prime}, v^{\prime}) are such pairs of C-consecutive vertices, then it is easy to see that the symmetric differences $I_{r}(u) \triangle I_{r}(v)$ and $I_{r}\left(u^{\prime}\right) \triangle I_{r}\left(v^{\prime}\right)$ are subsets of $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\} \cup\left\{v_{i+2 r+1}, v_{i+2 r+2}, \ldots, v_{i+3 r}\right\}$ and the intersection of the symmetric differences $I_{r}(u) \triangle I_{r}(v)$ and $I_{r}\left(u^{\prime}\right) \triangle I_{r}\left(v^{\prime}\right)$ is empty. Hence, there are at least $r-k$ codewords in $\left\{v_{i}, v_{i+1}, \ldots, v_{i+r-1}\right\} \cup\left\{v_{i+2 r+1}, v_{i+2 r+2}, \ldots, v_{i+3 r}\right\}$. Thus, the claim follows.

3 Paths with a small number of vertices

Let r be a positive integer. In this section, we determine the exact values of $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$ when $1 \leq n \leq 7 r+3$. We also present a new lower bound on $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$ (improving the previous lower bound of Theorem 1.2) for some specific lengths n of the paths.

Consider then the exact values of $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$ when $1 \leq n \leq 7 r+3$. Clearly, we have $M_{r}^{L D}\left(\mathcal{P}_{1}\right)=1$. The exact values of $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$, when $2 \leq n \leq 7 r+3$, are given in the following theorem. Previously, in [1], it has been shown that $M_{r}^{L D}\left(\mathcal{P}_{3 r+1}\right)=M_{r}^{L D}\left(\mathcal{P}_{3 r+2}\right)=r+1$ and $M_{r}^{L D}\left(\mathcal{P}_{3 r+3}\right)=r+2$.

Theorem 3.1. Let r be an integer such that $r \geq 2$. Then we have the following results for $2 \leq n \leq 7 r+3$:

1) If $2 \leq n \leq r+1$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=n-1$.
2) If $r+2 \leq n \leq 2 r+1$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=r$.
3) If $2 r+2 \leq n \leq 3 r+2$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=r+1$.
4) If $n=3 r+3$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=r+2$.
5) If $3 r+4 \leq n \leq 4 r+2$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=n-2(r+1)$.
6) If $4 r+3 \leq n \leq 5 r+2$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=2 r$.
7) If $5 r+3 \leq n \leq 6 r+2$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=2 r+1$.
8) If $6 r+3 \leq n \leq 6 r+5$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=2 r+2$.
9) If $6 r+6 \leq n \leq 7 r+3$, then $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=n-4 r-3$.

Proof. Let C be an r-locating-dominating code in \mathcal{P}_{n}.

1) Assume that $2 \leq n \leq r+1$. Now it is obvious that $B_{r}(u)=V_{n}$ for all $u \in V_{n}$. Hence, it is immediate that $M_{r}\left(\mathcal{P}_{n}\right)=n-1$.
2) Assume that $r+2 \leq n \leq 2 r+1$. Now, by Theorem 2.2 , we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq M_{r}^{L D}\left(\mathcal{P}_{r+1}\right)=r$. On the other hand, using Lemma 2.1, it is easy to verify that $D_{2}=\left\{v_{0}, v_{1}, \ldots, v_{r-2}\right\} \cup\left\{v_{2 r}\right\}$ is an r-locating-dominating code in $\mathcal{P}_{2 r+1}$ with r codewords. Therefore, by Theorem 2.2, $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=r$ when $r+2 \leq n \leq 2 r+1$.
3) Assume that $2 r+2 \leq n \leq 3 r+2$. Consider first the path $\mathcal{P}_{2 r+2}$. It is easy to conclude that each codeword can r-separate at most one pair of C consecutive vertices in $\mathcal{P}_{2 r+2}$. The number of pairs of C-consecutive vertices in $\mathcal{P}_{2 r+2}$ is equal to $2 r+2-|C|-1$. Therefore, we have the following inequality:

$$
|C| \geq 2 r+1-|C| \Longleftrightarrow|C| \geq \frac{2 r+1}{2}
$$

Thus, by the previous inequality and Theorem 2.2, $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq M_{r}^{L D}\left(\mathcal{P}_{2 r+2}\right) \geq$ $r+1$. The code $D_{3}=\left\{v_{r}, v_{r+1}, \ldots, v_{2 r-1}\right\} \cup\left\{v_{3 r}\right\}$ introduced in [1] is r-locatingdominating in $\mathcal{P}_{3 r+2}$. Therefore, $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=r+1$ when $2 r+2 \leq n \leq 3 r+2$.
4) In [1], it is shown that $D_{4}=\left\{v_{0}\right\} \cup\left\{v_{r+1}, v_{r+2}, \ldots, v_{2 r}\right\} \cup\left\{v_{3 r+2}\right\}$ is an r-locating-dominating code in $\mathcal{P}_{3 r+3}$. Hence, by Theorem 1.2, we have $M_{r}^{L D}\left(\mathcal{P}_{3 r+3}\right)=r+2$.
5) Assume that $3 r+4 \leq n \leq 4 r+2$. Now we can denote $n=3 r+$ $3+p$, where $1 \leq p \leq r-1$. By Lemma 2.3, subsets $\left\{v_{0}, v_{1}, \ldots, v_{2 r}\right\}$ and $\left\{v_{r+p+2}, v_{r+p+3}, \ldots, v_{3 r+p+2}\right\}$ both contain at least r codewords of C. The number of vertices in the intersection of these subsets is equal to $r-p-1$. Therefore, we have

$$
|C| \geq r-p-1+2(r-(r-p-1))=r+p+1
$$

On the other hand, using Lemma 2.1, it is straightforward to verify that $D_{5}=$ $\left\{v_{1}\right\} \cup\left\{v_{r+2}, v_{r+3}, \ldots, v_{2 r+p}\right\} \cup\left\{v_{3 r+p+1}\right\}$ is an r-locating-dominating code in \mathcal{P}_{n}. Thus, $M_{r}^{L D}\left(\mathcal{P}_{3 r+3+p}\right)=r+p+1=n-2(r+1)$ when $3 r+4 \leq n \leq 4 r+2$.
6) Assume that $4 r+3 \leq n \leq 5 r+2$. By Theorem 2.2, we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq$ $M_{r}^{L D}\left(\mathcal{P}_{4 r+2}\right)=2 r$. Then define

$$
D_{6}=\left\{v_{0}\right\} \cup\left\{v_{r+2}, v_{r+3}, \ldots, v_{2 r}\right\} \cup\left\{v_{3 r+1}, v_{3 r+2}, \ldots, v_{4 r-1}\right\} \cup\left\{v_{5 r+1}\right\} .
$$

The number of vertices in D_{6} is equal to $2 r$ and, by Lemma 2.1, it can be easily verified that D_{6} is an r-locating-dominating code in $\mathcal{P}_{5 r+2}$. Therefore, by Theorem 2.2, $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=2 r$ when $4 r+3 \leq n \leq 5 r+2$.
7) Assume that $5 r+3 \leq n \leq 6 r+2$. Let us first show that $M_{r}^{L D}\left(\mathcal{P}_{5 r+3}\right) \geq$ $2 r+1$. Assume to the contrary that C is an r-locating-dominating code in $\mathcal{P}_{5 r+3}$ with at most $2 r$ codewords. By Lemma 2.3, we know that both $\left\{v_{0}, v_{1}, \ldots, v_{2 r}\right\}$ and $\left\{v_{3 r+2}, v_{3 r+3}, \ldots, v_{5 r+2}\right\}$ contain at least r codewords of C. Hence, there are no codewords of C in $\left\{v_{2 r+1}, v_{2 r+2}, \ldots, v_{3 r+1}\right\}$. Therefore, since all the pairs (u, v) of C-consecutive vertices in $\mathcal{P}_{5 r+3}$ such that $u, v \in\left\{v_{0}, v_{1}, \ldots, v_{2 r+1}\right\}$ are r-separated by a codeword of C, then the codewords of C belonging to $\left\{v_{0}, v_{1}, \ldots, v_{2 r+1}\right\}$ form an r-locating-dominating code in $\mathcal{P}_{2 r+2}$ with r codewords. This is a contradiction with the case 3). Thus, by Theorem 2.2, $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq M_{r}^{L D}\left(\mathcal{P}_{5 r+3}\right) \geq 2 r+1$. Define then

$$
D_{7}=\left\{v_{r}, v_{r+1}, \ldots, v_{2 r-1}\right\} \cup\left\{v_{3 r}\right\} \cup\left\{v_{4 r+2}, v_{4 r+3}, \ldots, v_{5 r}\right\} \cup\left\{v_{5 r+2}\right\} .
$$

Using Lemma 2.1, it is straightforward to verify that D_{7} is an r-locatingdominating code in $\mathcal{P}_{6 r+2}$ with $2 r+1$ codewords. Thus, $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=2 r+1$ when $5 r+3 \leq n \leq 6 r+2$.
8) Assume that $6 r+3 \leq n \leq 6 r+5$. By Theorem 1.2, we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq$ $2 r+2$. Define then

$$
\begin{aligned}
D_{8}=\left\{v_{1}, v_{r+1}\right\} & \cup\left\{v_{r+3}, v_{r+4}, \ldots, v_{2 r}\right\} \cup\left\{v_{3 r+1}, v_{3 r+3}\right\} \\
& \cup\left\{v_{4 r+4}, v_{4 r+5}, \ldots, v_{5 r+1}\right\} \cup\left\{v_{5 r+3}, v_{6 r+3}\right\} .
\end{aligned}
$$

By Lemma 2.1, D_{8} is an r-locating-dominating code in $\mathcal{P}_{6 r+5}$ with $2 r+2$ vertices. Thus, $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=2 r+2$ when $6 r+3 \leq n \leq 6 r+5$.
9) Assume that $6 r+6 \leq n \leq 7 r+3$. Now we can denote $n=6 r+5+p$, where $1 \leq p \leq r-2$. Consider first the path $\mathcal{P}_{7 r+3}$. By Lemma 2.3, the subsets $\left\{v_{0}, v_{1}, \ldots, v_{2 r}\right\}$ and $\left\{v_{5 r+2}, v_{5 r+3}, \ldots, v_{7 r+2}\right\}$ of $V_{7 r+3}$ both contain at least r codewords of C. By Lemma 2.4, the same also holds for the subset $\left\{v_{2 r+1}, v_{2 r+2}, \ldots, v_{5 r+1}\right\}$. Therefore, $M_{r}^{L D}\left(\mathcal{P}_{7 r+3}\right) \geq 3 r$. Thus, by Theorem 2.2 and the fact that $M_{r}^{L D}\left(\mathcal{P}_{6 r+5}\right)=2 r+2$, we have $M_{r}^{L D}\left(\mathcal{P}_{6 r+5+p}\right)=2 r+2+p$ when $1 \leq p \leq r-2$. In other words, $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=n-4 r-3$ when $6 r+6 \leq n \leq$ $7 r+3$.

By generalizing the lower bound in the case 9) of the previous proof, the following theorem is immediately obtained.

Theorem 3.2. Let r be a positive integer and $n=2(2 r+1)+p(3 r+1)$ where $p \geq 0$ is an integer. Then we have

$$
M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq(p+2) r
$$

Using the notations of the previous theorem, the lower bound of Theorem 1.2 implies that

$$
M_{r}^{L D}\left(\mathcal{P}_{n}\right) \geq\left\lceil\frac{n+1}{3}\right\rceil=(p+1) r+1+\left\lceil\frac{r+p}{3}\right\rceil .
$$

By straightforward calculations, it can be shown that $(p+2) r>(p+1) r+1+$ $\lceil(r+p) / 3\rceil$ if and only if $0 \leq p \leq 2 r-6$. Thus, the previous theorem gives improvements on the previously known lower bound when $n=2(2 r+1)+p(3 r+1)$ and $0 \leq p \leq 2 r-6$.

By applying Theorem 2.2 to the previous lower bound, we also obtain new lower bounds for some other values of n. For example, by Theorem 1.2, we have $M_{5}^{L D}\left(\mathcal{P}_{56}\right) \geq 19$. However, by Theorem 3.2, we have $M_{5}^{L D}\left(\mathcal{P}_{54}\right) \geq 20$ and, therefore, $M_{5}^{L D}\left(\mathcal{P}_{56}\right) \geq M_{5}^{L D}\left(\mathcal{P}_{54}\right) \geq 20$.

The values given by the lower bound of Theorem 3.2 are sometimes optimal. For example, when $r=5$ and $p=4$, we have $M_{5}^{L D}\left(\mathcal{P}_{86}\right) \geq 30$. On the other hand,

$$
\begin{aligned}
D_{86}=\{ & v_{2}, v_{6}, v_{8}, v_{9}, v_{10}, v_{12}, v_{17}, v_{21}, v_{24}, v_{25}, v_{27}, v_{29}, v_{33}, v_{37}, v_{41}, v_{43}, v_{45}, v_{46} \\
& \left.v_{53}, v_{55}, v_{59}, v_{61}, v_{62}, v_{63}, v_{71}, v_{75}, v_{76}, v_{78}, v_{79}, v_{83}\right\}
\end{aligned}
$$

is a 5-locating-dominating code in \mathcal{P}_{86}. Therefore, $M_{5}^{L D}\left(\mathcal{P}_{86}\right)=30$.

4 Paths with a large number of vertices

Let n be a positive integer and r be an integer such that $r \geq 5$. In this section, we show that the size of an optimal r-locating-dominating code in \mathcal{P}_{n} is equal to $\lceil(n+1) / 3\rceil$ for all $n \geq n_{r}$ when n_{r} is large enough. The proof of this is based on the result of Theorem 4.3 saying that if $n=3 r+2+p((r-3)(6 r+$ $3)+3 r+3)+q(6 r+3)$, where p and q are non-negative integers, then we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \leq\lceil(n+1) / 3\rceil$. The proof of Theorem 4.3 is illustrated in the following example when $r=5$.

Figure 1: The r-locating-dominating code C_{1} illustrated when $r=5$.

Example 4.1. Assume that $r=5$. Let p and q be non-negative integers. In what follows, we show that if $n=3 r+2+p((r-3)(6 r+3)+3 r+3)+q(6 r+$ $3)=17+84 p+33 q$, then $M_{5}^{L D}\left(\mathcal{P}_{n}\right) \leq\lceil(n+1) / 3\rceil$. In Figures 1 and 2, first consider the pattern D (the upper dashed box in the figures), which is formed by concatenating the patterns K_{1}, K_{2} and K_{3}, which are of lengths $6 r+3,6 r+3$ and $3 r+3$, respectively. The pattern D is of length $(r-3)(6 r+3)+3 r+3=84$ and contains $((r-3)(6 r+3)+3 r+3) / 3=28$ codewords, i.e. $1 / 3$ of the vertices of D are codewords. Moreover, it is easy to verify that D is a 5 -locating-dominating code in a cycle of length 84 (compare this with Lemma 4.2). Similarly, the pattern (the lower dashed box in the figures) formed by K_{1} and L_{2}, which is of length $2(6 r+3)=66$ and contains $(2(6 r+3)) / 3=22$ codewords, is a 5 -locating-dominating code in a cycle of length 66 .

The actual 5 -locating-dominating code in \mathcal{P}_{n} depends on the parity of q. Assume first that q is even, i.e. $q=2 q^{\prime}$ for some integer q^{\prime}. The code C_{1} is now defined as in Figure 1, where the pattern D is repeated p times and the pattern formed by K_{1} and L_{2} is repeated q^{\prime} times. Since the patterns D and the one formed by K_{1} and L_{2} are 5-locating-dominating codes, respectively, in cycles of lengths 84 and 66 , it is straightforward to verify that C_{1} is a 5 -locatingdominating code in \mathcal{P}_{n} (by Lemma 2.1). Similarly, it can be shown that the code C_{2} defined in Figure 2 is 5-locating-dominating in \mathcal{P}_{n} when q is odd, i.e. $q=2 q^{\prime}+1$ for some integer q^{\prime}. Therefore, if $n=17+84 p+33 q$, we have $M_{r}^{L D}\left(\mathcal{P}_{n}\right) \leq 6+28 p+11 q=\lceil(n+1) / 3\rceil$.

For the formal proof of Theorem 4.3, we first need to introduce some preliminary definitions and results. Let i and s be non-negative integers. First, for $1 \leq i \leq r-2$, define

$$
M_{i}(s)=\left(\bigcup_{\substack{j=0 \\ j \neq r-i-1}}^{r-1}\left\{v_{s+j}\right\}\right) \cup\left\{v_{s+2 r-i}\right\}
$$

and $M_{i}^{\prime}(s)=M_{i}(s) \backslash\left\{v_{s+2 r-i}\right\}$. Notice that $\left|M_{i}(s)\right|=r$. Furthermore, for

Figure 2: The r-locating-dominating code C_{2} illustrated when $r=5$.
$1 \leq i \leq r-3$, define

$$
K_{i}(s)=M_{i}^{\prime}(s) \cup\left\{v_{s+2 r}, v_{s+3 r-i}\right\} \cup\left(\bigcup_{\substack{j=3 r+2 \\ j \neq 4 r-i}}^{4 r}\left\{v_{s+j}\right\}\right) \cup\left\{v_{s+5 r-i}, v_{s+5 r+2}\right\}
$$

and $K_{r-2}(s)=M_{r-2}^{\prime}(s) \cup\left\{v_{s+2 r}, v_{s+2 r+2}\right\}$. Notice that for $i=1,2, \ldots, r-3$, we have $\left|K_{i}(s)\right|=2 r+1$ and $\left|K_{r-2}(s)\right|=r+1$. Finally, define

$$
\begin{aligned}
L_{1}(s)=M_{1}(s) & \cup\left(\bigcup_{j=3 r+1}^{4 r-1}\left\{v_{s+j}\right\}\right) \cup\left\{v_{s+4 r+1}, v_{s+6 r+1}\right\} \\
& \cup\left(\bigcup_{j=6 r+3}^{7 r+1}\left\{v_{s+j}\right\}\right) \cup\left\{v_{s+8 r+3}\right\}
\end{aligned}
$$

and, for $2 \leq i \leq r-2$, define

$$
L_{i}(s)=M_{i}(s) \cup\left(\bigcup_{\substack{j=3 r+1 \\ j \neq 4 r-i+1}}^{4 r+1}\left\{v_{s+j}\right\}\right) \cup\left\{v_{s+6 r-i+2}\right\} .
$$

Notice that $\left|L_{1}(s)\right|=3 r+1$ and $\left|L_{i}(s)\right|=2 r+1$ when $2 \leq i \leq r-2$.
As in Example 4.1, denote by K_{i}, L_{i} and M_{i} the patterns $\left\{v_{s}, v_{s+1}, \ldots, v_{s+\ell-1}\right\}$ where the codewords are determined by $K_{i}(s), L_{i}(s)$ and $M_{i}(s)$, respectively. The length ℓ of each pattern K_{i} and L_{i} is equal to three times the number of codewords in the pattern. For example, the length of the pattern L_{1} is equal to $9 r+3$ (see the case (iv) below). The length of the pattern M_{i} is equal to $2 r+1$. The following lemma says for general $r \geq 5$ that the patterns K_{i}, L_{i} and M_{i} can be concatenated to form r-locating dominating codes as in Example 4.1 (because the beginning of each of them contains $M_{i}^{\prime}(s)$).
Lemma 4.2. Let n and s be positive integers, and let r be an integer such that $r \geq 5$. Let C be a code in \mathcal{P}_{n}.
(i) Let i be an integer such that $1 \leq i \leq r-3$. If $K_{i}(s) \cup M_{i+1}^{\prime}(s+6 r+3) \subseteq C$, then each pair $\left(v_{j_{1}}, v_{j_{2}}\right)$ of C-consecutive vertices in \mathcal{P}_{n} such that $s \leq j_{1} \leq$ $s+7 r+2$ and $s \leq j_{2} \leq s+7 r+2$ is r-separated by a codeword of C.
(ii) If $K_{r-2}(s) \cup M_{1}^{\prime}(s+3 r+3) \subseteq C$, then each pair $\left(v_{j_{1}}, v_{j_{2}}\right)$ of C-consecutive vertices in \mathcal{P}_{n} such that $s \leq j_{1} \leq s+4 r+2$ and $s \leq j_{2} \leq s+4 r+2$ is r-separated by a codeword of C.
(iii) Let i be an integer such that $2 \leq i \leq r-2$. If $L_{i}(s) \cup M_{i-1}^{\prime}(s+6 r+3) \subseteq C$, then each pair $\left(v_{j_{1}}, v_{j_{2}}\right)$ of C-consecutive vertices in \mathcal{P}_{n} such that $s \leq j_{1} \leq$ $s+7 r+2$ and $s \leq j_{2} \leq s+7 r+2$ is r-separated by a codeword of C.
(iv) If $L_{1}(s) \cup M_{r-2}^{\prime}(s+9 r+3) \subseteq C$, then each pair $\left(v_{j_{1}}, v_{j_{2}}\right)$ of C-consecutive vertices in \mathcal{P}_{n} such that $s \leq j_{1} \leq s+10 r+2$ and $s \leq j_{2} \leq s+10 r+2$ is r-separated by a codeword of C.
Proof. (i) Let i be an integer with $1 \leq i \leq r-3$ and $C \subseteq V_{n}$ a code such that $K_{i}(s) \cup M_{i+1}^{\prime}(s+6 r+3) \subseteq C$. Consider then the symmetric differences $B_{r}\left(v_{j_{1}}\right) \triangle B_{r}\left(v_{j_{2}}\right)$, where $\left(v_{j_{1}}, v_{j_{2}}\right)$ are pairs of C-consecutive vertices such that $s \leq j_{1} \leq s+7 r+2$ and $s \leq j_{2} \leq s+7 r+2$. For the following considerations, notice that

$$
M_{i+1}^{\prime}(s+6 r+3)=\bigcup_{\substack{j=6 r+3 \\ j \neq 7 r-i+1}}^{7 r+2}\left\{v_{s+j}\right\}
$$

Let k be a positive integer. If $s+r \leq k \leq s+2 r-i-2, s+2 r-i \leq k \leq$ $s+2 r-2, s+4 r+2 \leq k \leq s+5 r-i-2$ or $s+5 r-i+1 \leq k \leq s+5 r$, then it is straightforward to verify that the vertex v_{k-r} belongs to the symmetric difference $I_{r}\left(v_{k}\right) \triangle I_{r}\left(v_{k+1}\right)$. If $s+2 r+1 \leq k \leq s+3 r-i-2, s+3 r-i+1 \leq$ $k \leq s+3 r-1, s+5 r+3 \leq k \leq s+6 r-i-1$ or $s+6 r-i+1 \leq k \leq s+6 r+1$, then it can be seen that the vertex v_{k+r+1} belongs to the symmetric difference $I_{r}\left(v_{k}\right) \triangle I_{r}\left(v_{k+1}\right)$. Moreover, we have that

$$
\begin{aligned}
v_{s+2 r} & \in I_{r}\left(v_{s+r-i-1}\right) \triangle I_{r}\left(v_{s+r}\right), \\
v_{s+3 r-i} & \in I_{r}\left(v_{s+2 r-i-1}\right) \triangle I_{r}\left(v_{s+2 r-i}\right), \\
v_{s+r-1} & \in I_{r}\left(v_{s+2 r-1}\right) \triangle I_{r}\left(v_{s+2 r+1}\right), \\
v_{s+4 r-i+1} & \in I_{r}\left(v_{s+3 r-i-1}\right) \triangle I_{r}\left(v_{s+3 r-i+1}\right), \\
v_{s+2 r} & \in I_{r}\left(v_{s+3 r}\right) \triangle I_{r}\left(v_{s+3 r+1}\right), \\
v_{s+5 r-i} & \in I_{r}\left(v_{s+3 r+1}\right) \triangle I_{r}\left(v_{s+4 r-i}\right), \\
v_{s+3 r-i} & \in I_{r}\left(v_{s+4 r-i}\right) \triangle I_{r}\left(v_{s+4 r+1}\right), \\
v_{s+5 r+2} & \in I_{r}\left(v_{s+4 r+1}\right) \triangle I_{r}\left(v_{s+4 r+2}\right), \\
v_{s+4 r-i-1} & \in I_{r}\left(v_{s+5 r-i-1}\right) \triangle I_{r}\left(v_{s+5 r-i+1}\right), \\
v_{s+6 r+3} & \in I_{r}\left(v_{s+5 r+1}\right) \triangle I_{r}\left(v_{s+5 r+3}\right), \\
v_{s+5 r-i} & \in I_{r}\left(v_{s+6 r-i}\right) \triangle I_{r}\left(v_{s+6 r-i+1}\right) \text { and } \\
v_{s+5 r+2} & \in I_{r}\left(v_{s+6 r+2}\right) \triangle I_{r}\left(v_{s+7 r-i+1}\right),
\end{aligned}
$$

In conclusion, all the pairs $\left(v_{j_{1}}, v_{j_{2}}\right)$ of C-consecutive vertices in \mathcal{P}_{n} such that $s \leq j_{1} \leq s+7 r+2$ and $s \leq j_{2} \leq s+7 r+2$ are r-separated by a codeword of C.

The proofs of the cases (ii), (iii) and (iv) are analogous to the first one.

The following theorem now proves the conjecture stated in [1, Conjecture 1] when $r \geq 5$.

Theorem 4.3. Let $r \geq 5$ be an integer and $n=3 r+2+p((r-3)(6 r+3)+$ $3 r+3)+q(6 r+3)$, where p and q are non-negative integers. Then we have

$$
M_{r}^{L D}\left(\mathcal{P}_{n}\right) \leq\left\lceil\frac{n+1}{3}\right\rceil .
$$

Proof. Let $r \geq 5$ be an integer and $n=3 r+2+p((r-3)(6 r+3)+3 r+3)+q(6 r+3)$, where p and q are non-negative integers. Let s be a non-negative integer and define

$$
D(s)=\bigcup_{i=0}^{r-3} K_{i+1}(s+i(6 r+3))
$$

Assume that q is even, i.e. $q=2 q^{\prime}$ for some integer q^{\prime}. Define then

$$
\begin{aligned}
C_{1}=\left\{v_{r-2}\right\} & \cup \bigcup_{j=0}^{p-1} D(r+1+j((r-3)(6 r+3)+3 r+3)) \\
& \cup \bigcup_{j=0}^{q^{\prime}-1} K_{1}(r+1+p((r-3)(6 r+3)+3 r+3)+2 j(6 r+3)) \\
& \cup \bigcup_{j=0}^{q^{\prime}-1} L_{2}(r+1+p((r-3)(6 r+3)+3 r+3)+(2 j+1)(6 r+3)) \\
& \cup M_{1}(r+1+p((r-3)(6 r+3)+3 r+3)+q(6 r+3))
\end{aligned}
$$

Notice that if $r=5$, this definition of C_{1} coincides with the one of Example 4.1. (Recall also the length of the patterns K_{i}, L_{i} and M_{i} as described earlier.) As in the previous example, C_{1} is formed by concatenating the patterns K_{i}, L_{i} and M_{i}. Since $M_{i}^{\prime}(s) \subseteq K_{i}(s)$ and $M_{i}^{\prime}(s) \subseteq L_{i}(s)$, Lemma 4.2 applies to each occurrence of $K_{i}(s)$ and $L_{i}(s)$ in C_{1}. Therefore, each pair $\left(v_{j}, v_{k}\right)$ of C_{1-} consecutive vertices in \mathcal{P}_{n} such that $r+1 \leq j \leq n-r-2$ and $r+1 \leq k \leq n-r-2$ is r-separated by a codeword of C_{1}. Hence, it is easy to see that each pair of C_{1}-consecutive vertices in \mathcal{P}_{n} is r-separated by C_{1}. Since there are no $2 r+1$ consecutive vertices belonging to $V_{n} \backslash C_{1}$ in \mathcal{P}_{n}, all the vertices in \mathcal{P}_{n} are r covered by a codeword of C_{1}. Thus, by Lemma 2.1, it is easy to conclude that C_{1} is an r-locating-dominating code in \mathcal{P}_{n} with $\lceil(n+1) / 3\rceil$ vertices.

Assume then that q is odd, i.e. $q=2 q^{\prime}+1$ for some integer q^{\prime}. Define then

$$
\begin{aligned}
C_{2}=\left\{v_{r-2}\right\} & \cup \bigcup_{j=0}^{p-1} D(r+1+j((r-3)(6 r+3)+3 r+3)) \\
& \cup \bigcup_{j=0}^{q^{\prime}} K_{1}(r+1+p((r-3)(6 r+3)+3 r+3)+2 j(6 r+3)) \\
& \cup \bigcup_{j=0}^{q^{\prime}-1} L_{2}(r+1+p((r-3)(6 r+3)+3 r+3)+(2 j+1)(6 r+3)) \\
& \cup M_{2}(r+1+p((r-3)(6 r+3)+3 r+3)+q(6 r+3))
\end{aligned}
$$

Similarly, as in the previous case, it can be shown that C_{2} is an r-locatingdominating code in \mathcal{P}_{n} with $\lceil(n+1) / 3\rceil$ vertices.

In [10, Theorem 8.3], the following theorem is presented. This theorem turns out useful in future considerations.

Theorem 4.4 ([10]). Let a and b be positive integers such that the greatest common divisor of a and b is equal to 1 . Then, for any integer $n>a b-a-b$, there exist such non-negative integers p and q that $n=p a+q b$.

The length of the path in Theorem 4.3 can be written as follows:

$$
\begin{aligned}
n & =3 r+2+p((r-3)(6 r+3)+3 r+3)+q(6 r+3) \\
& =3 r+2+3(p((r-3)(2 r+1)+r+1)+q(2 r+1)) .
\end{aligned}
$$

The greatest common divisor of $(r-3)(2 r+1)+r+1$ and $2 r+1$ is equal to 1 . Thus, by Theorem 4.4, if n^{\prime} is an integer such that $n^{\prime} \geq 2 r((r-3)(2 r+1)+r)$, then there exist non-negative integers p and q such that $n^{\prime}=p((r-3)(2 r+1)+$ $r+1)+q(2 r+1)$. Therefore, if n is an integer such that $n \geq 3 r+2+3 \cdot 2 r((r-$ $3)(2 r+1)+r)$ and $n \equiv 2(\bmod 3)$, then there exist integers $p \geq 0$ and $q \geq 0$ such that $n=3 r+2+p((r-3)(6 r+3)+3 r+3)+q(6 r+3)$.

Assume that $n \geq 3 r+2+6 r((r-3)(2 r+1)+r)$ and $n=3 k+2$, where k is an integer. Combining the lower bound of Theorem 1.2, Theorem 2.2 and Theorem 4.3, we obtain

$$
k+1 \leq M_{r}^{L D}\left(\mathcal{P}_{3 k}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{3 k+1}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{3 k+2}\right) \leq k+1
$$

Therefore, $M_{r}^{L D}\left(\mathcal{P}_{3 k}\right)=M_{r}^{L D}\left(\mathcal{P}_{3 k+1}\right)=M_{r}^{L D}\left(\mathcal{P}_{3 k+2}\right)=k+1$. Thus, the following theorem immediately follows.

Theorem 4.5. Let r be a positive integer such that $r \geq 5$. If $n \geq 3 r+2+$ $6 r((r-3)(2 r+1)+r)$, then

$$
M_{r}^{L D}\left(\mathcal{P}_{n}\right)=\left\lceil\frac{n+1}{3}\right\rceil .
$$

Theorem 4.3 provides one approach to form r-locating-dominating codes in paths using Lemma 4.2. However, this lemma can also be applied in other ways. For example, when k is an integer such that $0 \leq k \leq r-3$,

$$
\begin{gathered}
C(k)=\left\{v_{r-2}\right\} \cup L_{1}(r+1) \cup\left(\bigcup_{j=0}^{k-1} L_{r-2-j}(10 r+4+j(6 r+3))\right) \\
\cup M_{r-2-k}(10 r+4+k(6 r+3))
\end{gathered}
$$

is an optimal r-locating-dominating code in \mathcal{P}_{n} with $n=12 r+5+k(6 r+3)$. Notice that the optimal r-locating-dominating codes in paths of these lengths cannot be obtained using Theorem 4.3.

5 The exact values of $M_{3}^{L D}\left(\mathcal{P}_{n}\right)$ and $M_{4}^{L D}\left(\mathcal{P}_{n}\right)$

Let n be a positive integer. In this section, we solve the exact values of $M_{3}^{L D}\left(\mathcal{P}_{n}\right)$ and $M_{4}^{L D}\left(\mathcal{P}_{n}\right)$ for all n. In order to do this, we first need to present some preliminary definitions and results.

Define an infinite path $\mathcal{P}_{\infty}=\left(V_{\infty}, E_{\infty}\right)$, where $V_{\infty}=\left\{v_{i} \mid i \in \mathbb{Z}\right\}$ and $E_{\infty}=\left\{v_{i} v_{i+1} \mid i \in \mathbb{Z}\right\}$. Define then

$$
C=\left\{v_{i} \in V_{\infty} \mid i \equiv 0,2 \bmod 6\right\}
$$

In [7], it is stated that if r is an integer such that $r \geq 2$ and $r \equiv 1,2,3$ or $4(\bmod 6)$, then C is an r-locating-dominating code in \mathcal{P}_{∞}. This result is rephrased in the following lemma when $r=3$ or $r=4$.
Lemma 5.1. Let n and k be integers such that

$$
D=\left\{v_{k}, v_{k+2}, v_{k+6}, v_{k+8}, v_{k+12}, v_{k+14}\right\} \subseteq V_{n}
$$

If a pair $\left(v_{i}, v_{j}\right)$ of D-consecutive vertices in \mathcal{P}_{n} is such that $k+5 \leq i \leq k+13$ and $k+5 \leq j \leq k+13$, then v_{i} and v_{j} are 3- and 4-separated by a codeword of D. Moreover, each vertex $v_{i} \in V_{n} \backslash D$ such that $k+6 \leq i \leq k+11$ is 3- and 4 -covered by a codeword of D.

Consider then r-locating-dominating codes in \mathcal{P}_{n} when $r=3$. By Theorem 3.1, the exact values of $M_{3}^{L D}\left(\mathcal{P}_{n}\right)$ are known when $1 \leq n \leq 24$. Let p be an integer such that $p \geq 1$. Define

$$
D_{1}(p)=\left\{v_{1}\right\} \cup\left(\bigcup_{i=0}^{p}\left\{v_{4+6 i}, v_{6+6 i}\right\}\right) \cup\left\{v_{9+6 p}, v_{14+6 p}, v_{15+6 p}, v_{17+6 p}\right\}
$$

and

$$
D_{2}(p)=\left\{v_{1}\right\} \cup\left(\bigcup_{i=0}^{p}\left\{v_{4+6 i}, v_{6+6 i}\right\}\right) \cup\left\{v_{10+6 p}, v_{12+6 p}, v_{16+6 p}, v_{18+6 p}, v_{21+6 p}\right\}
$$

It is straightforward to verify that $D_{1}(1)$ and $D_{2}(1)$ are 3-locating-dominating codes in \mathcal{P}_{26} and \mathcal{P}_{29}, respectively. Therefore, using Lemma 5.1, it is easy to conclude that $D_{1}(p)$ and $D_{2}(p)$ are 3-locating-dominating codes in $\mathcal{P}_{20+6 p}$ and $\mathcal{P}_{23+6 p}$, respectively, when $p \geq 2$. Moreover, by Theorem 1.2 and Theorem 2.2, we have

$$
\left|D_{1}(p)\right| \geq M_{3}^{L D}\left(\mathcal{P}_{20+6 p}\right) \geq M_{3}^{L D}\left(\mathcal{P}_{19+6 p}\right) \geq M_{3}^{L D}\left(\mathcal{P}_{18+6 p}\right) \geq 7+2 p
$$

and

$$
\left|D_{2}(p)\right| \geq M_{3}^{L D}\left(\mathcal{P}_{23+6 p}\right) \geq M_{3}^{L D}\left(\mathcal{P}_{22+6 p}\right) \geq M_{3}^{L D}\left(\mathcal{P}_{21+6 p}\right) \geq 8+2 p
$$

Since $\left|D_{1}(p)\right|=7+2 p$ and $\left|D_{2}(p)\right|=8+2 p$, we have that $M_{3}^{L D}\left(\mathcal{P}_{n}\right)=\lceil(n+1) / 3\rceil$ for any $n \geq 24$. In conclusion, all the values of $M_{3}^{L D}\left(\mathcal{P}_{n}\right)$ are determined.

Consider then r-locating-dominating codes in \mathcal{P}_{n} when $r=4$. By Theorem 3.1, the exact values of $M_{4}^{L D}\left(\mathcal{P}_{n}\right)$ are known when $1 \leq n \leq 31$. Assume now that $p \geq 0$. Define
$D_{3}(p)=\left\{v_{1}, v_{5}, v_{7}, v_{8}\right\} \cup\left(\bigcup_{i=0}^{p}\left\{v_{13+6 i}, v_{15+6 i}\right\}\right) \cup\left\{v_{20+6 p}, v_{21+6 p}, v_{23+6 p}, v_{27+6 p}\right\}$
and

$$
\begin{aligned}
D_{4}(p) & =\left\{v_{1}, v_{5}, v_{7}, v_{8}\right\} \cup\left(\bigcup_{i=0}^{p}\left\{v_{13+6 i}, v_{15+6 i}\right\}\right) \cup\left\{v_{20+6 p}, v_{21+6 p}, v_{23+6 p}, v_{28+6 p}\right\} \\
& \cup\left\{v_{31+6 p}, v_{34+6 p}, v_{36+6 p}, v_{39+6 p}, v_{42+6 p}, v_{47+6 p}, v_{49+6 p}, v_{50+6 p}, v_{53+6 p}\right\} .
\end{aligned}
$$

It is straightforward to verify that $D_{3}(0), D_{3}(1), D_{4}(0)$ and $D_{4}(1)$ are 4-locatingdominating codes in $\mathcal{P}_{29}, \mathcal{P}_{35}, \mathcal{P}_{56}$ and \mathcal{P}_{62}, respectively. Therefore, using Lemma 5.1, it is easy to conclude that $D_{1}(p)$ and $D_{2}(p)$ are 4-locating-dominating codes in $\mathcal{P}_{29+6 p}$ and $\mathcal{P}_{56+6 p}$, respectively, when $p \geq 2$. Moreover, by Theorem 1.2 and Theorem 2.2, we have

$$
\left|D_{3}(p)\right| \geq M_{4}^{L D}\left(\mathcal{P}_{29+6 p}\right) \geq M_{4}^{L D}\left(\mathcal{P}_{28+6 p}\right) \geq M_{4}^{L D}\left(\mathcal{P}_{27+6 p}\right) \geq 10+2 p
$$

and

$$
\left|D_{4}(p)\right| \geq M_{4}^{L D}\left(\mathcal{P}_{56+6 p}\right) \geq M_{4}^{L D}\left(\mathcal{P}_{55+6 p}\right) \geq M_{4}^{L D}\left(\mathcal{P}_{54+6 p}\right) \geq 19+2 p .
$$

Since $\left|D_{3}(p)\right|=10+2 p$ and $\left|D_{4}(p)\right|=19+2 p$, we have that $M_{4}^{L D}\left(\mathcal{P}_{n}\right)=$ $\lceil(n+1) / 3\rceil$ when $27+6 p \leq n \leq 29+6 p$ and $54+6 p \leq n \leq 56+6 p(p \geq 0)$. In conclusion, the values of $M_{4}^{L D}\left(\mathcal{P}_{n}\right)$ are determined except when $n=32$, $36 \leq n \leq 38,42 \leq n \leq 44$ or $48 \leq n \leq 50$.

By Theorem 3.1, we have $M_{4}^{L D}\left(\mathcal{P}_{31}\right)=12$. Therefore, by Theorem 2.2, since $M_{4}^{L D}\left(\mathcal{P}_{35}\right)=12$, we also have that $M_{4}^{L D}\left(\mathcal{P}_{32}\right)=12$. Define then

$$
\begin{gathered}
D_{37}=\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{13}, v_{16}, v_{17}, v_{19}, v_{23}, v_{29}, v_{30}, v_{31}, v_{33}\right\}, \\
D_{43}=\left\{v_{2}, v_{3}, v_{5}, v_{8}, v_{10}, v_{16}, v_{18}, v_{21}, v_{23}, v_{24}, v_{31}, v_{34}, v_{35}, v_{37}, v_{41}\right\}
\end{gathered}
$$

and

$$
D_{49}=\left\{v_{2}, v_{5}, v_{6}, v_{8}, v_{13}, v_{16}, v_{19}, v_{20}, v_{26}, v_{27}, v_{30}, v_{33}, v_{38}, v_{40}, v_{41}, v_{42}, v_{48}\right\}
$$

It is easy to verify that D_{37}, D_{43} and D_{49} are 4 -locating-dominating codes in \mathcal{P}_{37}, \mathcal{P}_{43} and \mathcal{P}_{49} attaining the lower bound of Theorem 1.2, respectively. Therefore, by Theorem 2.2, we also have the optimal 4-locating-dominating codes for the paths $\mathcal{P}_{36}, \mathcal{P}_{42}$ and \mathcal{P}_{48}. By Theorem 3.2, we have $M_{4}^{L D}\left(\mathcal{P}_{44}\right) \geq 16$. On the other hand, we have $M_{r}^{L D}\left(\mathcal{P}_{44}\right) \leq M_{r}^{L D}\left(\mathcal{P}_{45}\right)=16$. Hence, $M_{4}^{L D}\left(\mathcal{P}_{44}\right)=16$.

Now the only open values are $M_{4}^{L D}\left(\mathcal{P}_{38}\right)$ and $M_{4}^{L D}\left(\mathcal{P}_{50}\right)$. By the previous constructions, we know that $M_{4}^{L D}\left(\mathcal{P}_{38}\right) \leq M_{4}^{L D}\left(\mathcal{P}_{39}\right)=14$ and $M_{4}^{L D}\left(\mathcal{P}_{50}\right) \leq$ $M_{4}^{L D}\left(\mathcal{P}_{51}\right)=18$. By an exhaustive computer search, we have been able to prove that there are no 4 -locating-dominating codes in \mathcal{P}_{38} and \mathcal{P}_{50} with 13 and 17 codewords, respectively. Hence, $M_{4}^{L D}\left(\mathcal{P}_{38}\right)=14$ and $M_{4}^{L D}\left(\mathcal{P}_{50}\right)=18$. In conclusion, all the values of $M_{4}^{L D}\left(\mathcal{P}_{n}\right)$ are determined.

6 On the conjecture of even segment lengths

In this section, the focus is on the infinite path \mathcal{P}_{∞}. Previously, we have considered the balls $B_{r}\left(v_{i}\right)=\left\{v_{j} \in V_{\infty} \mid i-r \leq j \leq i+r\right\}, i \in \mathbb{Z}$, of size (or length) $2 r+1$, which is necessarily odd. In [1], also the case where a ball or rather a segment can have an even length is considered in P_{∞}. Clearly, the 'center' of

Figure 3: The code C of Theorem 6.2 illustrated when $k=3$. The code is formed by repeating the pattern in the dashed box infinitely many times to the left and to the right.
the segment of even size is not a vertex of V_{∞}, so we also need to choose how to associate a segment with a codeword. Notice that this prevents the usual symmetry

$$
v_{j} \in B_{r}\left(v_{i}\right) \Leftrightarrow v_{i} \in B_{r}\left(v_{j}\right)
$$

which we earlier often used. In what follows, we always associate a segment in the same way with every codeword.

The problem is stated analogously after selecting the association of a segment with a codeword: how to place the codewords (segments) in P_{∞} in such a way that every vertex of V_{∞}, which is not in the code, belongs to at least one segment and no two non-codewords belong to the same set of segments. Again, we would like to have as small density of a code as possible. The density of a code C is defined as usually

$$
D(C)=\limsup _{n \rightarrow \infty} \frac{\left|Q_{n} \cap C\right|}{\left|Q_{n}\right|}
$$

where $Q_{n}=\left\{v_{i} \in V_{\infty} \mid-n \leq i \leq n\right\}$.
In [1], it is pointed out that the choice how to associate a segment with a codeword affects on the minimum density of a locating-dominating code in P_{∞}. However, it is shown in Theorem 16 of [1] that no matter how one chooses the association with a codeword, the smallest density is at least $1 / 3$.

Related to this lower bound, the following conjecture is given in [1].
Conjecture 6.1. Let s be a positive integer divisible by 6. Then we can achieve the density $1 / 3$ for a locating-dominating code using segments of length s in P_{∞}.

In the next theorem we shall confirm this conjecture.
Theorem 6.2. Let s be a positive integer divisible by 6. There exists a code $C \subseteq V_{\infty}$ and an assignment of a segment of length s with a codeword such that C is locating-dominating in P_{∞} with density $1 / 3$.

Proof. Let s be a positive integer with $s=6 k$ and $k \geq 1$. Denote $S=$ $\{0,1,2, \ldots, 3 k-2,6 k-1\}$. Take

$$
C=\left\{v_{i} \in V_{\infty} \mid i \equiv x \bmod 9 k \text { for some } x \in S\right\}
$$

In Figure 3, the code C is illustrated when $k=3$. Let us associate, for all the codewords $v_{c} \in C$, the segment as follows: $\widetilde{B}_{s}\left(v_{c}\right)=\widetilde{B}_{6 k}\left(v_{c}\right)=\left\{v_{c-3 k+1}, \ldots\right.$, $\left.v_{c}, \ldots, v_{c+3 k}\right\}$. Clearly, the density of the code is $1 / 3$. Next we show that C is locating-dominating in P_{∞} by determining any vertex $v_{i} \in V_{\infty} \backslash C$ with the aid of the segments of codewords it belongs to.

First of all, every non-codeword v_{i} belongs to some segment, namely to a segment associated with $v_{c_{1}} \in C$ for some $c_{1} \equiv 3 k-2(\bmod 9 k)$ or with $v_{c_{2}} \in C$ for some $c_{2} \equiv 6 k-1(\bmod 9 k)$.

Suppose first that there exists a codeword $v_{c} \in C$ such that $c \equiv 6 k-1$ $(\bmod 9 k)$ with $v_{i} \in \widetilde{B}_{s}\left(v_{c}\right)$. If there is no other codeword to whose segment v_{i} belongs, then $v_{i}=v_{c+1}$. Assume then that we have at least one codeword $v_{c^{\prime}}$ for which $c^{\prime}>c$ and to whose segment v_{i} belongs. Let $c_{1}=\max \{a \in \mathbb{Z} \mid$ $\left.v_{i} \in \widetilde{B}_{s}\left(v_{a}\right), v_{a} \in C\right\}$. Consequently, $v_{i}=v_{c_{1}-3 k+1}$. Suppose now that we do not have codewords with larger index c^{\prime} than c for which $v_{i} \in \widetilde{B}_{s}\left(v_{c^{\prime}}\right)$. Let $c_{2}=\min \left\{a \in \mathbb{Z} \mid v_{i} \in \widetilde{B}_{s}\left(v_{a}\right), v_{a} \in C\right\}$. Then $v_{i}=v_{c_{2}+3 k}$.

Suppose finally that none of the codewords v_{c} such that $v_{i} \in \widetilde{B}_{s}\left(v_{c}\right)$ satisfies $c \equiv 6 k-1(\bmod 9 k)$. Now $v_{i}=v_{c_{2}+3 k-1}$ where again $c_{2}=\min \left\{a \in \mathbb{Z} \mid v_{i} \in\right.$ $\left.\widetilde{B}_{s}\left(v_{a}\right), v_{a} \in C\right\}$. This completes the proof.

Locating-dominating codes achieving the density $1 / 3$ for the even segment lengths satisfying $s \not \equiv 0(\bmod 6)$, can be found in $[1]$.

7 Conclusions

Previously, the exact values of $M_{1}^{L D}\left(\mathcal{P}_{n}\right)$ and $M_{2}^{L D}\left(\mathcal{P}_{n}\right)$ are known due to [14] and [7], respectively. In Section 5 , we computed the exact values of $M_{3}^{L D}\left(\mathcal{P}_{n}\right)$ and $M_{4}^{L D}\left(\mathcal{P}_{n}\right)$. In Section 3, the exact values of $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$ have been determined when $1 \leq n \leq 7 r+3$. Furthermore, by Theorem 4.5, we have that $M_{r}^{L D}\left(\mathcal{P}_{n}\right)=$ $\lceil(n+1) / 3\rceil$ when $n \geq 3 r+2+3(2 r+1)((r-3)(2 r+1)+r)$. In conclusion, although some of the exact values of $M_{r}^{L D}\left(\mathcal{P}_{n}\right)$ are known when $7 r+3<n<$ $3 r+2+3(2 r+1)((r-3)(2 r+1)+r)$, the question remains open in general.

Acknowledgements

We would like to thank Iiro Honkala for helpful discussions. We also wish to thank anonymous referees for providing constructive comments to improve this paper.

References

[1] N. Bertrand, I. Charon, O. Hudry, and A. Lobstein. Identifying and locating-dominating codes on chains and cycles. European J. Combin., 25(7):969-987, 2004.
[2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, and A. Semri. Locatingdomination and identifying codes in trees. Australas. J. Combin., 39:219232, 2007.
[3] D. I. Carson. On generalized location-domination. In Graph theory, combinatorics, and algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., pages 161-179. Wiley, New York, 1995.
[4] I. Charon, O. Hudry, and A. Lobstein. Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theoret. Comput. Sci., 290(3):2109-2120, 2003.
[5] S. Gravier, R. Klasing, and J. Moncel. Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs. Algorithmic Oper. Res., 3(1):43-50, 2008.
[6] I. Honkala. An optimal locating-dominating set in the infinite triangular grid. Discrete Math., 306(21):2670-2681, 2006.
[7] I. Honkala. On r-locating-dominating sets in paths. European J. Combin., 30(4):1022-1025, 2009.
[8] I. Honkala and T. Laihonen. On locating-dominating sets in infinite grids. European J. Combin., 27(2):218-227, 2006.
[9] I. Honkala, T. Laihonen, and S. Ranto. On locating-dominating codes in binary Hamming spaces. Discrete Math. Theor. Comput. Sci., 6(2):265281, 2004.
[10] L. K. Hua. Introduction to number theory. Springer-Verlag, Berlin, 1982. Translated from the Chinese by Peter Shiu.
[11] A. Lobstein. Identifying and locating-dominating codes in graphs, a bibliography. Published electronically at http://perso.enst.fr/~lobstein/debutBIBidetlocdom.pdf.
[12] D. F. Rall and P. J. Slater. On location-domination numbers for certain classes of graphs. Congr. Numer., 45:97-106, 1984.
[13] P. J. Slater. Domination and location in graphs. Research report 93, National University of Singapore, 1983.
[14] P. J. Slater. Domination and location in acyclic graphs. Networks, 17(1):5564, 1987.
[15] P. J. Slater. Dominating and reference sets in a graph. J. Math. Phys. Sci., 22:445-455, 1988.
[16] P. J. Slater. Locating dominating sets and locating-dominating sets. In Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, volume 2, pages 1073-1079. Wiley, 1995.
[17] P. J. Slater. Fault-tolerant locating-dominating sets. Discrete Math., 249(1-3):179-189, 2002.
[18] J. Suomela. Approximability of identifying codes and locating-dominating codes. Inform. Process. Lett., 103(1):28-33, 2007.

[^0]: *Research supported by the Academy of Finland under grant 210280

