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Abstract

Bertrand, Charon, Hudry and Lobstein studied, in their paper in 2004,
r-locating-dominating codes in paths Pn. They conjectured that if r ≥ 2 is
a fixed integer, then the smallest cardinality of an r-locating-dominating
code in Pn, denoted by MLD

r (Pn), satisfies MLD
r (Pn) = d(n + 1)/3e

for infinitely many values of n. We prove that this conjecture holds.
In fact, we show a stronger result saying that for any r ≥ 3 we have
MLD

r (Pn) = d(n + 1)/3e for all n ≥ nr when nr is large enough. In
addition, we solve a conjecture on location-domination with segments of
even length in the infinite path.

Keywords: Locating-dominating code; optimal code; domination; graph; path
Running head: Location-domination in paths

1 Introduction

Let G = (V,E) be a simple connected and undirected graph with V as the set
of vertices and E as the set of edges. Let u and v be vertices in V . If u and
v are adjacent to each other, then the edge between u and v is denoted by uv.
The distance d(u, v) is the number of edges in any shortest path between u and
v. Let r be a positive integer. We say that u r-covers v if the distance d(u, v)
is at most r. The ball of radius r centered at u is defined as

Br(u) = {x ∈ V | d(u, x) ≤ r}.

A nonempty subset of V is called a code, and its elements are called code-
words. Let C ⊆ V be a code and u be a vertex in V . An I-set (or an identifying
set) of the vertex u with respect to the code C is defined as

Ir(C; u) = Ir(u) = Br(u) ∩ C.

Definition 1.1. Let r be a positive integer. A code C ⊆ V is said to be r-
locating-dominating in G if for all u, v ∈ V \ C the set Ir(C; u) is nonempty
and

Ir(C; u) 6= Ir(C; v).

Let X and Y be subsets of V . The symmetric difference of X and Y is
defined as X4Y = (X \ Y ) ∪ (Y \ X). We say that the vertices u and v are
r-separated by a code C ⊆ V (or by a codeword of C) if the symmetric difference
Ir(C; u)4 Ir(C; v) is nonempty. The definition of r-locating dominating codes
can now be reformulated as follows: C ⊆ V is an r-locating-dominating code in
G if and only if for all u, v ∈ V \ C the vertex u is r-covered by a codeword of
C and

Ir(C; u)4 Ir(C; v) 6= ∅.
The smallest cardinality of an r-locating-dominating code in a finite graph G

is denoted by MLD
r (G). Notice that there always exists an r-locating-dominating

code in G. An r-locating-dominating code attaining the smallest cardinality is
called optimal. In [4], it is shown that the problem of determining MLD

r (G) is
NP-hard.

Locating-dominating codes are also known as locating-dominating sets in
the literature. The concept of locating-dominating codes was first introduced by
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Slater in [12, 14, 15] and later generalized by Carson in [3]. Locating-dominating
codes have been since studied in various papers such as [2], [5], [6], [8], [9], [13],
[16], [17] and [18]. For other papers on the subject, we refer to the Web site
[11]. Moreover, location-domination in paths has been examined in [1] and [7]
(for cycles see [?]).

Let n be a positive integer. A path Pn = (Vn, En) is a graph such that the
set of vertices is defined as Vn = {vi | i = 0, 1, . . . , n − 1} and the set of edges
is defined as

En = {vivi+1 | i = 0, 1, . . . , n− 2}.
In [14], Slater showed that MLD

1 (Pn) = d2n/5e. Bertrand et al. [1] provide the
following lower bound for r ≥ 2.

Theorem 1.2. Let n and r be integers such that n ≥ 1 and r ≥ 2. Then we
have

MLD
r (Pn) ≥

⌈
n + 1

3

⌉
. (1)

Moreover, in [1], it is conjectured that for any fixed r ≥ 2, there exist
infinitely many values of n such that MLD

r (Pn) attains the previous lower bound.
In [7], it is shown that MLD

2 (Pn) = d(n+1)/3e for any n. Hence, the conjecture
holds when r = 2. In Section 4 and Section 5, we prove that the conjecture also
holds when r ≥ 3. Moreover, we show that for any r ≥ 3 we have MLD

r (Pn) =
d(n + 1)/3e for all n ≥ nr when nr is large enough (nr = O(r3)).

In Section 2, we begin by introducing some basic results concerning r-
locating-dominating codes in paths. In Section 3, we continue by considering
r-locating-dominating codes in paths Pn with small n (compared to r). Then, in
Section 5, we present optimal 3- and 4-locating-dominating codes in Pn for all n.
Finally, in Section 6, we solve the conjecture stated in [1, Conjecture 2], which
considers location-domination with segments of even lengths in the infinite path.

2 Basics

Let C be a nonempty subset of Vn. We first present a useful characterization
of r-locating-dominating codes in paths. For this, we need the concept of C-
consecutive vertices introduced in [1]. Let i and j be positive integers such that
0 ≤ i < j ≤ n− 1. We say that (vi, vj) is a pair of C-consecutive vertices in Pn

if vi, vj ∈ Vn \ C and vk ∈ C for 0 ≤ i < k < j ≤ n − 1. Now we are ready to
present the following characterization, which is introduced in [1, Remark 3].

Lemma 2.1 ([1]). Let r be a positive integer. A code C ⊆ Vn is r-locating-
dominating in Pn if and only if each vertex u ∈ Vn\C is r-covered by a codeword
of C and for each pair (u, v) of C-consecutive vertices in Pn the vertices u and
v are r-separated by a codeword of C.

The following theorem provides a handy property on the size of the optimal
r-locating-dominating codes in Pn.

Theorem 2.2. Let n and r be positive integers. Then we have

MLD
r (Pn) ≤ MLD

r (Pn+1) ≤ MLD
r (Pn) + 1.

3



Proof. Consider first the inequality MLD
r (Pn) ≤ MLD

r (Pn+1). Let C ⊆ Vn+1 =
{v0, v1, . . . , vn} be an r-locating-dominating code in Pn+1. Assume first that
the vertex vn /∈ C. Now it is obvious that C is also an r-locating-dominating
code in Pn.

Assume then that vn ∈ C. Denote by X the set of pairs of C-consecutive
vertices in Pn. There exists at most one pair (u, v) ∈ X such that the codeword
vn belongs to the symmetric difference of Ir(u) and Ir(v). If there is no such
pair of C-consecutive vertices, then it is clear that (C \ {vn}) ∪ {vn−1} is an
r-locating-dominating code in Pn. Assume then that (vi, vj) with i < j is the
unique pair of C-consecutive vertices such that vn ∈ Ir(vi)4 Ir(vj). Now define
C ′ = (C \ {vn}) ∪ {vj}. Since all the pairs of C-consecutive vertices belonging
to X \{(vi, vj)} are r-separated by a codeword of C ′, then it is easy to conclude
that all the pairs of C ′-consecutive vertices are r-separated by a codeword of
C ′ in Pn. Notice that if a vertex is r-covered by vn, then it is also r-covered
by vj . Therefore, each vertex in Vn is r-covered by a codeword of C ′. Thus, by
Lemma 2.1, C ′ is an r-locating-dominating code in Pn. In conclusion, we have
MLD

r (Pn) ≤ MLD
r (Pn+1).

Let then C ⊆ Vn be an r-locating-dominating code in Pn. Since C ∪ {vn}
is an r-locating-dominating code in Pn+1, we immediately have MLD

r (Pn+1) ≤
MLD

r (Pn) + 1.

In what follows, we present a couple of lemmas that are useful in deter-
mining the smallest cardinalities of r-locating-dominating codes in paths with a
small number of vertices in Section 3. The first lemma says that an r-locating-
dominating code in Pn is such that at least r of both the first and the last 2r+1
vertices of the path are codewords.

Lemma 2.3. Let C be an r-locating-dominating code in Pn and n be an integer
such that n ≥ 2r + 1.

(i) The intersection C ∩ {v0, v1, . . . , v2r} contains at least r vertices.

(ii) The intersection C ∩ {vn−2r−1, vn−2r, . . . , vn−1} contains at least r ver-
tices.

Proof. Let C be an r-locating-dominating code in Pn. Denote {v0, v1, . . . , vr}
by Qr. Assume that there are k codewords in C ∩ Qr with 0 ≤ k ≤ r − 1.
(Notice that if k ≥ r, then the case (i) immediately follows.) Now there
are r − k pairs (u, v) of C-consecutive vertices such that u ∈ Qr and v ∈
Qr. Notice that if (u, v) and (u′, v′) are such pairs of C-consecutive ver-
tices, then the symmetric differences Ir(u)4 Ir(v) and Ir(u′)4 Ir(v′) are sub-
sets of {vr+1, vr+2, . . . , v2r} and the intersection of the symmetric differences
Ir(u)4 Ir(v) and Ir(u′)4 Ir(v′) is empty. Hence, there are at least r− k code-
words in {vr+1, vr+2, . . . , v2r}. Thus, the claim (i) follows.

The case (ii) follows by symmetry.

The second lemma says that an r-locating-dominating code in Pn is such that
any set of 3r + 1 consecutive vertices in the path contains at least r codewords.

Lemma 2.4. Let C be an r-locating-dominating code in Pn and n be an integer
such that n ≥ 3r + 1. For i = 0, 1, . . . , n− 3r − 1, the set

{vi, vi+1, . . . , vi+3r} ⊆ Vn
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contains at least r codewords of C.

Proof. Let C be an r-locating-dominating code in Pn and i be an integer such
that 0 ≤ i ≤ n − 3r − 1. Denote {vi+r, vi+r+1, . . . , vi+2r} by Qr. Assume that
there are k codewords in C ∩Qr with 0 ≤ k ≤ r− 1. Now there are r− k pairs
(u, v) of C-consecutive vertices such that u ∈ Qr and v ∈ Qr. Notice that if
(u, v) and (u′, v′) are such pairs of C-consecutive vertices, then it is easy to see
that the symmetric differences Ir(u)4 Ir(v) and Ir(u′)4 Ir(v′) are subsets of
{vi, vi+1, . . . , vi+r−1} ∪ {vi+2r+1, vi+2r+2, . . . , vi+3r} and the intersection of the
symmetric differences Ir(u)4 Ir(v) and Ir(u′)4 Ir(v′) is empty. Hence, there
are at least r−k codewords in {vi, vi+1, . . . , vi+r−1}∪{vi+2r+1, vi+2r+2, . . . , vi+3r}.
Thus, the claim follows.

3 Paths with a small number of vertices

Let r be a positive integer. In this section, we determine the exact values of
MLD

r (Pn) when 1 ≤ n ≤ 7r+3. We also present a new lower bound on MLD
r (Pn)

(improving the previous lower bound of Theorem 1.2) for some specific lengths
n of the paths.

Consider then the exact values of MLD
r (Pn) when 1 ≤ n ≤ 7r + 3. Clearly,

we have MLD
r (P1) = 1. The exact values of MLD

r (Pn), when 2 ≤ n ≤ 7r + 3,
are given in the following theorem. Previously, in [1], it has been shown that
MLD

r (P3r+1) = MLD
r (P3r+2) = r + 1 and MLD

r (P3r+3) = r + 2.

Theorem 3.1. Let r be an integer such that r ≥ 2. Then we have the following
results for 2 ≤ n ≤ 7r + 3:

1) If 2 ≤ n ≤ r + 1, then MLD
r (Pn) = n− 1.

2) If r + 2 ≤ n ≤ 2r + 1, then MLD
r (Pn) = r.

3) If 2r + 2 ≤ n ≤ 3r + 2, then MLD
r (Pn) = r + 1.

4) If n = 3r + 3, then MLD
r (Pn) = r + 2.

5) If 3r + 4 ≤ n ≤ 4r + 2, then MLD
r (Pn) = n− 2(r + 1).

6) If 4r + 3 ≤ n ≤ 5r + 2, then MLD
r (Pn) = 2r.

7) If 5r + 3 ≤ n ≤ 6r + 2, then MLD
r (Pn) = 2r + 1.

8) If 6r + 3 ≤ n ≤ 6r + 5, then MLD
r (Pn) = 2r + 2.

9) If 6r + 6 ≤ n ≤ 7r + 3, then MLD
r (Pn) = n− 4r − 3.

Proof. Let C be an r-locating-dominating code in Pn.
1) Assume that 2 ≤ n ≤ r + 1. Now it is obvious that Br(u) = Vn for all

u ∈ Vn. Hence, it is immediate that Mr(Pn) = n− 1.
2) Assume that r + 2 ≤ n ≤ 2r + 1. Now, by Theorem 2.2, we have

MLD
r (Pn) ≥ MLD

r (Pr+1) = r. On the other hand, using Lemma 2.1, it is
easy to verify that D2 = {v0, v1, . . . , vr−2} ∪ {v2r} is an r-locating-dominating
code in P2r+1 with r codewords. Therefore, by Theorem 2.2, MLD

r (Pn) = r
when r + 2 ≤ n ≤ 2r + 1.
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3) Assume that 2r + 2 ≤ n ≤ 3r + 2. Consider first the path P2r+2. It
is easy to conclude that each codeword can r-separate at most one pair of C-
consecutive vertices in P2r+2. The number of pairs of C-consecutive vertices in
P2r+2 is equal to 2r + 2− |C| − 1. Therefore, we have the following inequality:

|C| ≥ 2r + 1− |C| ⇐⇒ |C| ≥ 2r + 1
2

.

Thus, by the previous inequality and Theorem 2.2, MLD
r (Pn) ≥ MLD

r (P2r+2) ≥
r+1. The code D3 = {vr, vr+1, . . . , v2r−1}∪{v3r} introduced in [1] is r-locating-
dominating in P3r+2. Therefore, MLD

r (Pn) = r + 1 when 2r + 2 ≤ n ≤ 3r + 2.
4) In [1], it is shown that D4 = {v0} ∪ {vr+1, vr+2, . . . , v2r} ∪ {v3r+2} is

an r-locating-dominating code in P3r+3. Hence, by Theorem 1.2, we have
MLD

r (P3r+3) = r + 2.
5) Assume that 3r + 4 ≤ n ≤ 4r + 2. Now we can denote n = 3r +

3 + p, where 1 ≤ p ≤ r − 1. By Lemma 2.3, subsets {v0, v1, . . . , v2r} and
{vr+p+2, vr+p+3, . . . , v3r+p+2} both contain at least r codewords of C. The
number of vertices in the intersection of these subsets is equal to r − p − 1.
Therefore, we have

|C| ≥ r − p− 1 + 2(r − (r − p− 1)) = r + p + 1.

On the other hand, using Lemma 2.1, it is straightforward to verify that D5 =
{v1} ∪ {vr+2, vr+3, . . . , v2r+p} ∪ {v3r+p+1} is an r-locating-dominating code in
Pn. Thus, MLD

r (P3r+3+p) = r + p +1 = n− 2(r +1) when 3r +4 ≤ n ≤ 4r +2.
6) Assume that 4r + 3 ≤ n ≤ 5r + 2. By Theorem 2.2, we have MLD

r (Pn) ≥
MLD

r (P4r+2) = 2r. Then define

D6 = {v0} ∪ {vr+2, vr+3, . . . , v2r} ∪ {v3r+1, v3r+2, . . . , v4r−1} ∪ {v5r+1}.
The number of vertices in D6 is equal to 2r and, by Lemma 2.1, it can be
easily verified that D6 is an r-locating-dominating code in P5r+2. Therefore, by
Theorem 2.2, MLD

r (Pn) = 2r when 4r + 3 ≤ n ≤ 5r + 2.
7) Assume that 5r + 3 ≤ n ≤ 6r + 2. Let us first show that MLD

r (P5r+3) ≥
2r+1. Assume to the contrary that C is an r-locating-dominating code in P5r+3

with at most 2r codewords. By Lemma 2.3, we know that both {v0, v1, . . . , v2r}
and {v3r+2, v3r+3, . . . , v5r+2} contain at least r codewords of C. Hence, there are
no codewords of C in {v2r+1, v2r+2, . . . , v3r+1}. Therefore, since all the pairs
(u, v) of C-consecutive vertices in P5r+3 such that u, v ∈ {v0, v1, . . . , v2r+1}
are r-separated by a codeword of C, then the codewords of C belonging to
{v0, v1, . . . , v2r+1} form an r-locating-dominating code in P2r+2 with r code-
words. This is a contradiction with the case 3). Thus, by Theorem 2.2,
MLD

r (Pn) ≥ MLD
r (P5r+3) ≥ 2r + 1. Define then

D7 = {vr, vr+1, . . . , v2r−1} ∪ {v3r} ∪ {v4r+2, v4r+3, . . . , v5r} ∪ {v5r+2}.
Using Lemma 2.1, it is straightforward to verify that D7 is an r-locating-
dominating code in P6r+2 with 2r + 1 codewords. Thus, MLD

r (Pn) = 2r + 1
when 5r + 3 ≤ n ≤ 6r + 2.

8) Assume that 6r + 3 ≤ n ≤ 6r + 5. By Theorem 1.2, we have MLD
r (Pn) ≥

2r + 2. Define then

D8 = {v1, vr+1} ∪ {vr+3, vr+4, . . . , v2r} ∪ {v3r+1, v3r+3}
∪ {v4r+4, v4r+5, . . . , v5r+1} ∪ {v5r+3, v6r+3}.
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By Lemma 2.1, D8 is an r-locating-dominating code in P6r+5 with 2r+2 vertices.
Thus, MLD

r (Pn) = 2r + 2 when 6r + 3 ≤ n ≤ 6r + 5.
9) Assume that 6r + 6 ≤ n ≤ 7r + 3. Now we can denote n = 6r + 5 + p,

where 1 ≤ p ≤ r − 2. Consider first the path P7r+3. By Lemma 2.3, the
subsets {v0, v1, . . . , v2r} and {v5r+2, v5r+3, . . . , v7r+2} of V7r+3 both contain at
least r codewords of C. By Lemma 2.4, the same also holds for the subset
{v2r+1, v2r+2, . . . , v5r+1}. Therefore, MLD

r (P7r+3) ≥ 3r. Thus, by Theorem 2.2
and the fact that MLD

r (P6r+5) = 2r + 2, we have MLD
r (P6r+5+p) = 2r + 2 + p

when 1 ≤ p ≤ r− 2. In other words, MLD
r (Pn) = n− 4r− 3 when 6r + 6 ≤ n ≤

7r + 3.

By generalizing the lower bound in the case 9) of the previous proof, the
following theorem is immediately obtained.

Theorem 3.2. Let r be a positive integer and n = 2(2r + 1) + p(3r + 1) where
p ≥ 0 is an integer. Then we have

MLD
r (Pn) ≥ (p + 2)r.

Using the notations of the previous theorem, the lower bound of Theorem 1.2
implies that

MLD
r (Pn) ≥

⌈
n + 1

3

⌉
= (p + 1)r + 1 +

⌈
r + p

3

⌉
.

By straightforward calculations, it can be shown that (p + 2)r > (p + 1)r + 1 +
d(r + p)/3e if and only if 0 ≤ p ≤ 2r − 6. Thus, the previous theorem gives im-
provements on the previously known lower bound when n = 2(2r+1)+p(3r+1)
and 0 ≤ p ≤ 2r − 6.

By applying Theorem 2.2 to the previous lower bound, we also obtain new
lower bounds for some other values of n. For example, by Theorem 1.2, we
have MLD

5 (P56) ≥ 19. However, by Theorem 3.2, we have MLD
5 (P54) ≥ 20 and,

therefore, MLD
5 (P56) ≥ MLD

5 (P54) ≥ 20.
The values given by the lower bound of Theorem 3.2 are sometimes optimal.

For example, when r = 5 and p = 4, we have MLD
5 (P86) ≥ 30. On the other

hand,

D86 = {v2, v6, v8, v9, v10, v12, v17, v21, v24, v25, v27, v29, v33, v37, v41, v43, v45, v46,

v53, v55, v59, v61, v62, v63, v71, v75, v76, v78, v79, v83}

is a 5-locating-dominating code in P86. Therefore, MLD
5 (P86) = 30.

4 Paths with a large number of vertices

Let n be a positive integer and r be an integer such that r ≥ 5. In this section,
we show that the size of an optimal r-locating-dominating code in Pn is equal
to d(n + 1)/3e for all n ≥ nr when nr is large enough. The proof of this is
based on the result of Theorem 4.3 saying that if n = 3r + 2 + p((r − 3)(6r +
3) + 3r + 3) + q(6r + 3), where p and q are non-negative integers, then we
have MLD

r (Pn) ≤ d(n + 1)/3e. The proof of Theorem 4.3 is illustrated in the
following example when r = 5.
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Figure 1: The r-locating-dominating code C1 illustrated when r = 5.

Example 4.1. Assume that r = 5. Let p and q be non-negative integers. In
what follows, we show that if n = 3r + 2 + p((r − 3)(6r + 3) + 3r + 3) + q(6r +
3) = 17 + 84p + 33q, then MLD

5 (Pn) ≤ d(n + 1)/3e. In Figures 1 and 2, first
consider the pattern D (the upper dashed box in the figures), which is formed by
concatenating the patterns K1, K2 and K3, which are of lengths 6r+3, 6r+3 and
3r+3, respectively. The pattern D is of length (r−3)(6r+3)+3r+3 = 84 and
contains ((r−3)(6r+3)+3r+3)/3 = 28 codewords, i.e. 1/3 of the vertices of D
are codewords. Moreover, it is easy to verify that D is a 5-locating-dominating
code in a cycle of length 84 (compare this with Lemma 4.2). Similarly, the
pattern (the lower dashed box in the figures) formed by K1 and L2, which
is of length 2(6r + 3) = 66 and contains (2(6r + 3))/3 = 22 codewords, is a
5-locating-dominating code in a cycle of length 66.

The actual 5-locating-dominating code in Pn depends on the parity of q.
Assume first that q is even, i.e. q = 2q′ for some integer q′. The code C1 is
now defined as in Figure 1, where the pattern D is repeated p times and the
pattern formed by K1 and L2 is repeated q′ times. Since the patterns D and
the one formed by K1 and L2 are 5-locating-dominating codes, respectively, in
cycles of lengths 84 and 66, it is straightforward to verify that C1 is a 5-locating-
dominating code in Pn (by Lemma 2.1). Similarly, it can be shown that the
code C2 defined in Figure 2 is 5-locating-dominating in Pn when q is odd, i.e.
q = 2q′ + 1 for some integer q′. Therefore, if n = 17 + 84p + 33q, we have
MLD

r (Pn) ≤ 6 + 28p + 11q = d(n + 1)/3e.
For the formal proof of Theorem 4.3, we first need to introduce some pre-

liminary definitions and results. Let i and s be non-negative integers. First, for
1 ≤ i ≤ r − 2, define

Mi(s) =




r−1⋃

j=0
j 6=r−i−1

{vs+j}


 ∪ {vs+2r−i}

and M ′
i(s) = Mi(s) \ {vs+2r−i}. Notice that |Mi(s)| = r. Furthermore, for
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Figure 2: The r-locating-dominating code C2 illustrated when r = 5.

1 ≤ i ≤ r − 3, define

Ki(s) = M ′
i(s) ∪ {vs+2r, vs+3r−i} ∪




4r⋃

j=3r+2
j 6=4r−i

{vs+j}


 ∪ {vs+5r−i, vs+5r+2},

and Kr−2(s) = M ′
r−2(s) ∪ {vs+2r, vs+2r+2}. Notice that for i = 1, 2, . . . , r − 3,

we have |Ki(s)| = 2r + 1 and |Kr−2(s)| = r + 1. Finally, define

L1(s) = M1(s) ∪



4r−1⋃

j=3r+1

{vs+j}

 ∪ {vs+4r+1, vs+6r+1}

∪



7r+1⋃

j=6r+3

{vs+j}

 ∪ {vs+8r+3}

and, for 2 ≤ i ≤ r − 2, define

Li(s) = Mi(s) ∪




4r+1⋃

j=3r+1
j 6=4r−i+1

{vs+j}


 ∪ {vs+6r−i+2}.

Notice that |L1(s)| = 3r + 1 and |Li(s)| = 2r + 1 when 2 ≤ i ≤ r − 2.

As in Example 4.1, denote by Ki, Li and Mi the patterns {vs, vs+1, . . . , vs+`−1}
where the codewords are determined by Ki(s), Li(s) and Mi(s), respectively.
The length ` of each pattern Ki and Li is equal to three times the number of
codewords in the pattern. For example, the length of the pattern L1 is equal
to 9r + 3 (see the case (iv) below). The length of the pattern Mi is equal to
2r+1. The following lemma says for general r ≥ 5 that the patterns Ki, Li and
Mi can be concatenated to form r-locating dominating codes as in Example 4.1
(because the beginning of each of them contains M ′

i(s)).

Lemma 4.2. Let n and s be positive integers, and let r be an integer such that
r ≥ 5. Let C be a code in Pn.
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(i) Let i be an integer such that 1 ≤ i ≤ r−3. If Ki(s)∪M ′
i+1(s+6r+3) ⊆ C,

then each pair (vj1 , vj2) of C-consecutive vertices in Pn such that s ≤ j1 ≤
s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2 is r-separated by a codeword of C.

(ii) If Kr−2(s)∪M ′
1(s+3r+3) ⊆ C, then each pair (vj1 , vj2) of C-consecutive

vertices in Pn such that s ≤ j1 ≤ s + 4r + 2 and s ≤ j2 ≤ s + 4r + 2 is
r-separated by a codeword of C.

(iii) Let i be an integer such that 2 ≤ i ≤ r−2. If Li(s)∪M ′
i−1(s+6r+3) ⊆ C,

then each pair (vj1 , vj2) of C-consecutive vertices in Pn such that s ≤ j1 ≤
s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2 is r-separated by a codeword of C.

(iv) If L1(s)∪M ′
r−2(s+9r +3) ⊆ C, then each pair (vj1 , vj2) of C-consecutive

vertices in Pn such that s ≤ j1 ≤ s + 10r + 2 and s ≤ j2 ≤ s + 10r + 2 is
r-separated by a codeword of C.

Proof. (i) Let i be an integer with 1 ≤ i ≤ r − 3 and C ⊆ Vn a code such
that Ki(s) ∪ M ′

i+1(s + 6r + 3) ⊆ C. Consider then the symmetric differences
Br(vj1)4Br(vj2), where (vj1 , vj2) are pairs of C-consecutive vertices such that
s ≤ j1 ≤ s + 7r + 2 and s ≤ j2 ≤ s + 7r + 2. For the following considerations,
notice that

M ′
i+1(s + 6r + 3) =

7r+2⋃

j=6r+3
j 6=7r−i+1

{vs+j}.

Let k be a positive integer. If s + r ≤ k ≤ s + 2r − i − 2, s + 2r − i ≤ k ≤
s + 2r − 2, s + 4r + 2 ≤ k ≤ s + 5r − i− 2 or s + 5r − i + 1 ≤ k ≤ s + 5r, then
it is straightforward to verify that the vertex vk−r belongs to the symmetric
difference Ir(vk)4 Ir(vk+1). If s + 2r + 1 ≤ k ≤ s + 3r− i− 2, s + 3r− i + 1 ≤
k ≤ s + 3r− 1, s + 5r + 3 ≤ k ≤ s + 6r− i− 1 or s + 6r− i + 1 ≤ k ≤ s + 6r + 1,
then it can be seen that the vertex vk+r+1 belongs to the symmetric difference
Ir(vk)4 Ir(vk+1). Moreover, we have that

vs+2r ∈ Ir(vs+r−i−1)4 Ir(vs+r),
vs+3r−i ∈ Ir(vs+2r−i−1)4 Ir(vs+2r−i),
vs+r−1 ∈ Ir(vs+2r−1)4 Ir(vs+2r+1),

vs+4r−i+1 ∈ Ir(vs+3r−i−1)4 Ir(vs+3r−i+1),
vs+2r ∈ Ir(vs+3r)4 Ir(vs+3r+1),

vs+5r−i ∈ Ir(vs+3r+1)4 Ir(vs+4r−i),
vs+3r−i ∈ Ir(vs+4r−i)4 Ir(vs+4r+1),
vs+5r+2 ∈ Ir(vs+4r+1)4 Ir(vs+4r+2),

vs+4r−i−1 ∈ Ir(vs+5r−i−1)4 Ir(vs+5r−i+1),
vs+6r+3 ∈ Ir(vs+5r+1)4 Ir(vs+5r+3),
vs+5r−i ∈ Ir(vs+6r−i)4 Ir(vs+6r−i+1) and
vs+5r+2 ∈ Ir(vs+6r+2)4 Ir(vs+7r−i+1).

In conclusion, all the pairs (vj1 , vj2) of C-consecutive vertices in Pn such that
s ≤ j1 ≤ s+7r +2 and s ≤ j2 ≤ s+7r +2 are r-separated by a codeword of C.

The proofs of the cases (ii), (iii) and (iv) are analogous to the first one.
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The following theorem now proves the conjecture stated in [1, Conjecture 1]
when r ≥ 5.

Theorem 4.3. Let r ≥ 5 be an integer and n = 3r + 2 + p((r − 3)(6r + 3) +
3r + 3) + q(6r + 3), where p and q are non-negative integers. Then we have

MLD
r (Pn) ≤

⌈
n + 1

3

⌉
.

Proof. Let r ≥ 5 be an integer and n = 3r+2+p((r−3)(6r+3)+3r+3)+q(6r+3),
where p and q are non-negative integers. Let s be a non-negative integer and
define

D(s) =
r−3⋃

i=0

Ki+1(s + i(6r + 3)).

Assume that q is even, i.e. q = 2q′ for some integer q′. Define then

C1 = {vr−2} ∪
p−1⋃

j=0

D(r + 1 + j((r − 3)(6r + 3) + 3r + 3))

∪
q′−1⋃

j=0

K1(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q′−1⋃

j=0

L2(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪M1(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3)).

Notice that if r = 5, this definition of C1 coincides with the one of Example 4.1.
(Recall also the length of the patterns Ki, Li and Mi as described earlier.)
As in the previous example, C1 is formed by concatenating the patterns Ki,
Li and Mi. Since M ′

i(s) ⊆ Ki(s) and M ′
i(s) ⊆ Li(s), Lemma 4.2 applies to

each occurrence of Ki(s) and Li(s) in C1. Therefore, each pair (vj , vk) of C1-
consecutive vertices in Pn such that r+1 ≤ j ≤ n−r−2 and r+1 ≤ k ≤ n−r−2
is r-separated by a codeword of C1. Hence, it is easy to see that each pair of
C1-consecutive vertices in Pn is r-separated by C1. Since there are no 2r + 1
consecutive vertices belonging to Vn \ C1 in Pn, all the vertices in Pn are r-
covered by a codeword of C1. Thus, by Lemma 2.1, it is easy to conclude that
C1 is an r-locating-dominating code in Pn with d(n + 1)/3e vertices.

Assume then that q is odd, i.e. q = 2q′ + 1 for some integer q′. Define then

C2 = {vr−2} ∪
p−1⋃

j=0

D(r + 1 + j((r − 3)(6r + 3) + 3r + 3))

∪
q′⋃

j=0

K1(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + 2j(6r + 3))

∪
q′−1⋃

j=0

L2(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + (2j + 1)(6r + 3))

∪M2(r + 1 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3)).
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Similarly, as in the previous case, it can be shown that C2 is an r-locating-
dominating code in Pn with d(n + 1)/3e vertices.

In [10, Theorem 8.3], the following theorem is presented. This theorem turns
out useful in future considerations.

Theorem 4.4 ([10]). Let a and b be positive integers such that the greatest
common divisor of a and b is equal to 1. Then, for any integer n > ab− a− b,
there exist such non-negative integers p and q that n = pa + qb.

The length of the path in Theorem 4.3 can be written as follows:

n = 3r + 2 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3)
= 3r + 2 + 3(p((r − 3)(2r + 1) + r + 1) + q(2r + 1)).

The greatest common divisor of (r− 3)(2r + 1) + r + 1 and 2r + 1 is equal to 1.
Thus, by Theorem 4.4, if n′ is an integer such that n′ ≥ 2r((r− 3)(2r + 1) + r),
then there exist non-negative integers p and q such that n′ = p((r−3)(2r+1)+
r +1)+ q(2r +1). Therefore, if n is an integer such that n ≥ 3r +2+3 · 2r((r−
3)(2r + 1) + r) and n ≡ 2 (mod 3), then there exist integers p ≥ 0 and q ≥ 0
such that n = 3r + 2 + p((r − 3)(6r + 3) + 3r + 3) + q(6r + 3).

Assume that n ≥ 3r + 2 + 6r((r − 3)(2r + 1) + r) and n = 3k + 2, where
k is an integer. Combining the lower bound of Theorem 1.2, Theorem 2.2 and
Theorem 4.3, we obtain

k + 1 ≤ MLD
r (P3k) ≤ MLD

r (P3k+1) ≤ MLD
r (P3k+2) ≤ k + 1.

Therefore, MLD
r (P3k) = MLD

r (P3k+1) = MLD
r (P3k+2) = k + 1. Thus, the

following theorem immediately follows.

Theorem 4.5. Let r be a positive integer such that r ≥ 5. If n ≥ 3r + 2 +
6r((r − 3)(2r + 1) + r), then

MLD
r (Pn) =

⌈
n + 1

3

⌉
.

Theorem 4.3 provides one approach to form r-locating-dominating codes in
paths using Lemma 4.2. However, this lemma can also be applied in other ways.
For example, when k is an integer such that 0 ≤ k ≤ r − 3,

C(k) = {vr−2} ∪ L1(r + 1) ∪



k−1⋃

j=0

Lr−2−j(10r + 4 + j(6r + 3))




∪Mr−2−k(10r + 4 + k(6r + 3))

is an optimal r-locating-dominating code in Pn with n = 12r + 5 + k(6r + 3).
Notice that the optimal r-locating-dominating codes in paths of these lengths
cannot be obtained using Theorem 4.3.

12



5 The exact values of MLD
3 (Pn) and MLD

4 (Pn)

Let n be a positive integer. In this section, we solve the exact values of MLD
3 (Pn)

and MLD
4 (Pn) for all n. In order to do this, we first need to present some

preliminary definitions and results.
Define an infinite path P∞ = (V∞, E∞), where V∞ = {vi | i ∈ Z} and

E∞ = {vivi+1 | i ∈ Z}. Define then

C = {vi ∈ V∞ | i ≡ 0, 2 mod 6}.
In [7], it is stated that if r is an integer such that r ≥ 2 and r ≡ 1, 2, 3 or
4 (mod 6), then C is an r-locating-dominating code in P∞. This result is
rephrased in the following lemma when r = 3 or r = 4.

Lemma 5.1. Let n and k be integers such that

D = {vk, vk+2, vk+6, vk+8, vk+12, vk+14} ⊆ Vn.

If a pair (vi, vj) of D-consecutive vertices in Pn is such that k + 5 ≤ i ≤ k + 13
and k + 5 ≤ j ≤ k + 13, then vi and vj are 3- and 4-separated by a codeword of
D. Moreover, each vertex vi ∈ Vn \ D such that k + 6 ≤ i ≤ k + 11 is 3- and
4-covered by a codeword of D.

Consider then r-locating-dominating codes in Pn when r = 3. By Theo-
rem 3.1, the exact values of MLD

3 (Pn) are known when 1 ≤ n ≤ 24. Let p be
an integer such that p ≥ 1. Define

D1(p) = {v1} ∪
(

p⋃

i=0

{v4+6i, v6+6i}
)
∪ {v9+6p, v14+6p, v15+6p, v17+6p}

and

D2(p) = {v1} ∪
(

p⋃

i=0

{v4+6i, v6+6i}
)
∪ {v10+6p, v12+6p, v16+6p, v18+6p, v21+6p}.

It is straightforward to verify that D1(1) and D2(1) are 3-locating-dominating
codes in P26 and P29, respectively. Therefore, using Lemma 5.1, it is easy to
conclude that D1(p) and D2(p) are 3-locating-dominating codes in P20+6p and
P23+6p, respectively, when p ≥ 2. Moreover, by Theorem 1.2 and Theorem 2.2,
we have

|D1(p)| ≥ MLD
3 (P20+6p) ≥ MLD

3 (P19+6p) ≥ MLD
3 (P18+6p) ≥ 7 + 2p

and

|D2(p)| ≥ MLD
3 (P23+6p) ≥ MLD

3 (P22+6p) ≥ MLD
3 (P21+6p) ≥ 8 + 2p.

Since |D1(p)| = 7+2p and |D2(p)| = 8+2p, we have that MLD
3 (Pn) = d(n+1)/3e

for any n ≥ 24. In conclusion, all the values of MLD
3 (Pn) are determined.

Consider then r-locating-dominating codes in Pn when r = 4. By Theo-
rem 3.1, the exact values of MLD

4 (Pn) are known when 1 ≤ n ≤ 31. Assume
now that p ≥ 0. Define

D3(p) = {v1, v5, v7, v8}∪
(

p⋃

i=0

{v13+6i, v15+6i}
)
∪{v20+6p, v21+6p, v23+6p, v27+6p}
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and

D4(p) = {v1, v5, v7, v8} ∪
(

p⋃

i=0

{v13+6i, v15+6i}
)
∪ {v20+6p, v21+6p, v23+6p, v28+6p}

∪ {v31+6p, v34+6p, v36+6p, v39+6p, v42+6p, v47+6p, v49+6p, v50+6p, v53+6p}.

It is straightforward to verify that D3(0), D3(1), D4(0) and D4(1) are 4-locating-
dominating codes in P29, P35, P56 and P62, respectively. Therefore, using
Lemma 5.1, it is easy to conclude that D1(p) and D2(p) are 4-locating-dominating
codes in P29+6p and P56+6p, respectively, when p ≥ 2. Moreover, by Theorem 1.2
and Theorem 2.2, we have

|D3(p)| ≥ MLD
4 (P29+6p) ≥ MLD

4 (P28+6p) ≥ MLD
4 (P27+6p) ≥ 10 + 2p

and

|D4(p)| ≥ MLD
4 (P56+6p) ≥ MLD

4 (P55+6p) ≥ MLD
4 (P54+6p) ≥ 19 + 2p.

Since |D3(p)| = 10 + 2p and |D4(p)| = 19 + 2p, we have that MLD
4 (Pn) =

d(n + 1)/3e when 27 + 6p ≤ n ≤ 29 + 6p and 54 + 6p ≤ n ≤ 56 + 6p (p ≥ 0).
In conclusion, the values of MLD

4 (Pn) are determined except when n = 32,
36 ≤ n ≤ 38, 42 ≤ n ≤ 44 or 48 ≤ n ≤ 50.

By Theorem 3.1, we have MLD
4 (P31) = 12. Therefore, by Theorem 2.2, since

MLD
4 (P35) = 12, we also have that MLD

4 (P32) = 12. Define then

D37 = {v2, v3, v5, v6, v13, v16, v17, v19, v23, v29, v30, v31, v33},

D43 = {v2, v3, v5, v8, v10, v16, v18, v21, v23, v24, v31, v34, v35, v37, v41}
and

D49 = {v2, v5, v6, v8, v13, v16, v19, v20, v26, v27, v30, v33, v38, v40, v41, v42, v48}.

It is easy to verify that D37, D43 and D49 are 4-locating-dominating codes in P37,
P43 and P49 attaining the lower bound of Theorem 1.2, respectively. Therefore,
by Theorem 2.2, we also have the optimal 4-locating-dominating codes for the
paths P36, P42 and P48. By Theorem 3.2, we have MLD

4 (P44) ≥ 16. On the
other hand, we have MLD

r (P44) ≤ MLD
r (P45) = 16. Hence, MLD

4 (P44) = 16.
Now the only open values are MLD

4 (P38) and MLD
4 (P50). By the previous

constructions, we know that MLD
4 (P38) ≤ MLD

4 (P39) = 14 and MLD
4 (P50) ≤

MLD
4 (P51) = 18. By an exhaustive computer search, we have been able to

prove that there are no 4-locating-dominating codes in P38 and P50 with 13 and
17 codewords, respectively. Hence, MLD

4 (P38) = 14 and MLD
4 (P50) = 18. In

conclusion, all the values of MLD
4 (Pn) are determined.

6 On the conjecture of even segment lengths

In this section, the focus is on the infinite path P∞. Previously, we have consid-
ered the balls Br(vi) = {vj ∈ V∞ | i− r ≤ j ≤ i + r}, i ∈ Z, of size (or length)
2r + 1, which is necessarily odd. In [1], also the case where a ball or rather a
segment can have an even length is considered in P∞. Clearly, the ‘center’ of
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Figure 3: The code C of Theorem 6.2 illustrated when k = 3. The code is
formed by repeating the pattern in the dashed box infinitely many times to the
left and to the right.

the segment of even size is not a vertex of V∞, so we also need to choose how
to associate a segment with a codeword. Notice that this prevents the usual
symmetry

vj ∈ Br(vi) ⇔ vi ∈ Br(vj)

which we earlier often used. In what follows, we always associate a segment in
the same way with every codeword.

The problem is stated analogously after selecting the association of a segment
with a codeword: how to place the codewords (segments) in P∞ in such a way
that every vertex of V∞, which is not in the code, belongs to at least one segment
and no two non-codewords belong to the same set of segments. Again, we would
like to have as small density of a code as possible. The density of a code C is
defined as usually

D(C) = lim sup
n→∞

|Qn ∩ C|
|Qn|

where Qn = {vi ∈ V∞ | − n ≤ i ≤ n}.
In [1], it is pointed out that the choice how to associate a segment with a

codeword affects on the minimum density of a locating-dominating code in P∞.
However, it is shown in Theorem 16 of [1] that no matter how one chooses the
association with a codeword, the smallest density is at least 1/3.

Related to this lower bound, the following conjecture is given in [1].

Conjecture 6.1. Let s be a positive integer divisible by 6. Then we can achieve
the density 1/3 for a locating-dominating code using segments of length s in P∞.

In the next theorem we shall confirm this conjecture.

Theorem 6.2. Let s be a positive integer divisible by 6. There exists a code
C ⊆ V∞ and an assignment of a segment of length s with a codeword such that
C is locating-dominating in P∞ with density 1/3.

Proof. Let s be a positive integer with s = 6k and k ≥ 1. Denote S =
{0, 1, 2, . . . , 3k − 2, 6k − 1}. Take

C = {vi ∈ V∞ | i ≡ x mod 9k for some x ∈ S}.

In Figure 3, the code C is illustrated when k = 3. Let us associate, for all the
codewords vc ∈ C, the segment as follows: B̃s(vc) = B̃6k(vc) = {vc−3k+1, . . . ,
vc, . . . , vc+3k}. Clearly, the density of the code is 1/3. Next we show that C is
locating-dominating in P∞ by determining any vertex vi ∈ V∞ \C with the aid
of the segments of codewords it belongs to.

First of all, every non-codeword vi belongs to some segment, namely to a
segment associated with vc1 ∈ C for some c1 ≡ 3k−2 (mod 9k) or with vc2 ∈ C
for some c2 ≡ 6k − 1 (mod 9k).
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Suppose first that there exists a codeword vc ∈ C such that c ≡ 6k − 1
(mod 9k) with vi ∈ B̃s(vc). If there is no other codeword to whose segment
vi belongs, then vi = vc+1. Assume then that we have at least one codeword
vc′ for which c′ > c and to whose segment vi belongs. Let c1 = max{a ∈ Z |
vi ∈ B̃s(va), va ∈ C}. Consequently, vi = vc1−3k+1. Suppose now that we do
not have codewords with larger index c′ than c for which vi ∈ B̃s(vc′). Let
c2 = min{a ∈ Z | vi ∈ B̃s(va), va ∈ C}. Then vi = vc2+3k.

Suppose finally that none of the codewords vc such that vi ∈ B̃s(vc) satisfies
c ≡ 6k − 1 (mod 9k). Now vi = vc2+3k−1 where again c2 = min{a ∈ Z | vi ∈
B̃s(va), va ∈ C}. This completes the proof.

Locating-dominating codes achieving the density 1/3 for the even segment
lengths satisfying s 6≡ 0 (mod 6), can be found in [1].

7 Conclusions

Previously, the exact values of MLD
1 (Pn) and MLD

2 (Pn) are known due to [14]
and [7], respectively. In Section 5, we computed the exact values of MLD

3 (Pn)
and MLD

4 (Pn). In Section 3, the exact values of MLD
r (Pn) have been determined

when 1 ≤ n ≤ 7r + 3. Furthermore, by Theorem 4.5, we have that MLD
r (Pn) =

d(n + 1)/3e when n ≥ 3r + 2 + 3(2r + 1)((r − 3)(2r + 1) + r). In conclusion,
although some of the exact values of MLD

r (Pn) are known when 7r + 3 < n <
3r + 2 + 3(2r + 1)((r − 3)(2r + 1) + r), the question remains open in general.
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