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Abstract: Obesity is one of the most incident and concerning disease worldwide. Definite strategies
to prevent obesity and related complications remain elusive. Among the risk factors of the onset
of obesity, gut microbiota might play an important role in the pathogenesis of the disease, and it
has received extensive attention because it affects the host metabolism. In this study, we aimed to
define a metabolic profile of the segregated obesity-associated gut dysbiosis risk factor. The study
of the metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way for the
discrimination on the different biomarkers in the obesity onset. Thus, we developed a model of
this obesity risk factors through the transference of gut microbiota from obese to non-obese male
Wistar rats and performed a subsequent metabolic analysis in the receptor rats. Our results showed
alterations in the lipid metabolism in plasma and in the phenylalanine metabolism in urine. In
consequence, we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in
plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-coumaric acid.
Hereby, we propose these metabolites as a metabolic profile associated to a segregated dysbiosis state
related to obesity disease.

Keywords: microbial dysbiosis; gut microbiota; metagenomics; metabolomics; dysbiosis biomarkers;
metabolic profile; diacylglycerol 34:2; hippurate; 3-HPPA; o-coumaric acid

1. Introduction

Obesity has been defined as an excessive or abnormal accumulation of fat that rep-
resents a significant health risk [1]. The dramatical increase in the incidence of obesity
worldwide, during the last 20 years across all ages, has changed the health perspective
regarding this condition [2]. In fact, the term has evolved to “globesity,” referring to the
acquired pandemic characteristic of this condition due to globalization [3].

Lots of efforts have been devoted to try to decrease the incidence and prevalence, as
well as the health complications associated to obesity [4]. For instance, obesity-associated
risk factors have been associated with a large number of chronic diseases, including
cardiovascular diseases (e.g., heart disease or stroke), which are the leading causes of
death worldwide [5]. Furthermore, being obese can also lead to important disorders,
including diabetes and its associated conditions [6] and musculoskeletal disorders, such as
osteoarthritis [7]. In accordance to that, since 1980, the rates of diabetes have quadrupled
around the world [8]. Finally, even some cancers (including endometrial, breast, ovarian,
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prostate, liver, gallbladder, kidney, and colon cancers) have also been associated with
obesity [9,10]. Interestingly, the risk of these noncommunicable diseases significantly
increases even when a person is only slightly overweight and grows more seriously as the
body mass index (BMI) rises [11,12].

Unfortunately, definite strategies to tackle the prevention of obesity, and its related
complications, remain elusive. In this regard, epidemiological studies have highlighted
some potential environmental exposures, including diet, energy expenditure, early life
influences, sleep deprivation, endocrine disruptors, chronic inflammation, and altered gut
microbiota (GM) status, as important contributors to a higher obesity risk [13–15]. Among
these, the GM has received extensive attention during the previous decade because it has
been shown that manipulation of the GM may affect the host metabolism. In this sense, it
has been proved that obesity is accompanied by a deep alteration of the host microbiota,
and such condition has been defined as intestinal or gut dysbiosis [16–18].

In consequence, it has been demonstrated that the variation in GM might play an
important role in the pathogenesis of obesity [19]. Although in healthy individuals the
composition of intestinal microbiota is highly diverse, those exhibiting obesity, insulin
resistance, and dyslipidemia are characterized by low bacterial richness [20]. Moreover, the
GM composition differs between obese and lean individuals [20], e.g., Bacteroidetes abun-
dance is lower in obese individuals [20], and this proportion increases along with weight
loss based on a low-calorie diet [21]. Lactobacillus and Clostridium spp. are associated with
insulin resistance, being Lactobacillus positively correlated with fasting glucose and HbA1c
levels, whereas Clostridium showed a negative correlation with these parameters [22,23].
These data suggest that specific bacteria, as well as certain microbial metabolic activities,
could be beneficial or detrimental to the onset of obesity. Therefore, the GM has been
suggested to be a driving force in the pathogenesis of obesity [24].

Although the evidence for many classical obesity biomarkers (i.e., adiponectin and
C-reactive protein) has been initially promising in disease etiology, the evidence for a
clear causal role in humans remains limited [25]. Furthermore, the ability to improve
disease prediction has been little demonstrated beyond classical biomarkers. Hereby, it
is time to focus on the risk factors of the onset of obesity to open to novel biomarkers
discerning between health and disease. Consequently, in the “precision medicine” era,
there is an increasing demand of novel and growing sources of potentially promising
biomarkers, such as adipokines, cytokines, metabolites, and microRNAs, which are related
to obesity and could bring new improvement to personalized prevention [26]. The field of
metabolomics has been increasing as an important tool for the prognosis, and diagnosis,
of different diseases stages, by investigating the endogenous levels of small metabolites
in clinical practice from different biofluids standing out plasma/serum and urine [27,28].
Furthermore, the scientific community has been called to use these tools to obtain informa-
tion about the metabolism and potential biomarkers of obesity-associated risk factors [29].

Importantly, reshaping the GM has been shown as an effective strategy in weight loss
and metabolic diseases amelioration [30]. To illustrate this fact, in a recent study with obese
participants for avoiding weight gain after a weight reduction treatment, an autologous
fecal microbiota transplantation was proposed to prevent weight regain (instead to modify
the diet). The experimental approach focused on the idea that microbiota is more important
to modulate obesity than diet [31]. Interestingly, the results showed that the autologous
fecal microbiota transplantation preserved weight loss, and it was useful for glycemic
control [31].

However, the gradual changes in the GM during weight gain and the related onset
of metabolic abnormalities is still unclear in obesity [32]. In this sense, due to the urgent
need of development of new and more effective strategies for disease prevention, a better
understanding of the obesity pathophysiology, as well as new obesity-related biomarkers,
are constantly demanded. In consequence, as GM plays such important role in obesity, a
myriad of GM obesity associated biomarkers has been discovered. For example, it has been
shown that the size and composition of bile acid pool can change due to GM’s alterations,
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and this may evolve with subsequent altered signaling and activation of bile acid receptors
such as farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5)
and perturb, in consequence, lipid and glucose homeostasis [33,34]. Moreover, dysbiosis
alters short-chain fatty acids (SCFA) production with a consequent altered secretion of
gut peptide YY(PYY) and glucagon-like peptide 1 (GLP-1), thus affecting appetite and
satiety [35,36]. Similarly, biomarkers for GM metabolites and by-products may increase gut
permeability and nutrient absorption and therefore, additionally contribute to obesity. On
the other hand, the main factor responsible for inducing increased gut permeability and
microbiota translocation into host interior is the bacterial by-product lipopolysaccharide.
Nevertheless, due to the diverse outcomes of obesity-related complications (e.g., insulin
resistance, inflammation, or gut dysbiosis), that are intimately related to each other, there
is a lack of knowledge about the segregated effect of each obesity-related complications on
metabolism and its specific biomarkers.

In this study, we have stablished a pilot study for metabolic profiling of obesity-
associated microbial gut dysbiosis. In this sense, the transference of GM from obese to
non-obese rats could allow us the discovery of novel discriminatory biomarkers related to
this GM alterations, providing valuable information about the origin of obesity-associated
biomarkers.

2. Materials and Methods
2.1. Animal Procedure

The Animal Ethics Committee of the Universitat Rovira i Virgili (Tarragona, Spain) ap-
proved all the procedures (code 10454). The experimental protocol followed the “Principles
of Laboratory Care” and was carried out in accordance with the European Communities
Council Directive (86/609/EEC). All animals were housed individually at 22 ◦C with a
light/dark cycle of 12 h (lights on at 9 a.m.) and were given access to food and water ad
libitum during all the experiment. Individual housing allows to determine an accurate
estimation of food intake and to avoid crossed effects on microbiota because of the “co-
prophagy effect” usually shown in rats. Animals were randomly assigned to the different
groups considering similar average body weight. Body weight and food intake were
recorded weekly. For food intake estimation, the chow weight was assessed before and
after 24 h of the consumption.

The whole study was planned in two differentiated steps: in the first experimental
part, the CEC of cafeteria diet donors (CAF-D) and standard diet donors (STD-D) groups
were obtained to collect the cecal content, and in the second experimental part, healthy
rats corresponding to the cafeteria receptors (CAF-R) and the standard receptors (STD-R)
groups received the cecal content of the donors, including a control group receiving the
vehicle (CNT-R) (Figure 1).

2.1.1. Obtention of Cecal Donors Induced by Cafeteria Diet and Standard Diet

The first part of the experiment was performed using 14 male 8-week-old Wistar
rats (Harlan Laboratories, Barcelona, Spain), which were randomly distributed into two
experimental groups (n = 7). Afterwards, they were fed with two different diets depending
on the group for 12 weeks (Figure 1a): the animals from the STD-D group were fed with
standard chow diet (Tecklad Global 18% Protein Rodent Diet 2014, Harlan, Barcelona,
Spain), and the animals from the CAF-D group were fed with a cafeteria diet with the
following components (quantity per rat): bacon (8–12 g), biscuit with pâté (12–15 g),
biscuit with cheese (10–12 g), muffins (pastry) (8–10 g), carrots (6–8 g), milk with sugar
(220 g/L; 50 mL), water (ad libitum), and also with standard chow. Sample size and
nutrient compositions of CAF-D and STD-D used herein have been previously described
in the literature [37]. The day before the sacrifice, feces (FCS) were collected to perform
metagenomics. The animals were killed after 7 h of fasting by guillotine under anesthesia
(pentobarbital sodium, 50 mg/kg per body weight), and cecum (CEC) was rapidly removed,
weighed, frozen in liquid nitrogen, and stored at −80 ◦C for GM preservation. For the
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preparation of the second part of the experiment, the cecal content of each group was
pooled and diluted in 0.5% PBS-cys (4 g of CEC/15 mL of 0.5% PBS-cys). The cecal mixture
was centrifuged to eliminate solid residues and to facilitate the subsequent administration
by oral gavage. Finally, the mixture of each group was aliquoted (single-dose of 1.1 mL)
and stored at −80 ◦C for further treatment.
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(STD-R); red arrow, cafeteria receptors (CAF-R). OG, oral gavage; AB, antibiotic.

2.1.2. Model of Obesity-Associated Gut Dysbiosis with a Healthy Phenotype Induced by
Cecal Transplantation

The second part of the experiment was carried out using 21 8-week-old male Wistar
rats (Harlan Laboratories, Barcelona, Spain) and the procedure consisted into two parts
(Figure 1b). First, all the rats were treated with an antibiotic cocktail to deplete the host
microbiota. After the antibiotic treatment, the rats were randomly distributed into three
experimental groups (n = 7) for the restoration of the microbiota by the administration of
the vehicle or the external GM (CNT-R, STD-R, and CAF-R groups). The animals were fed
with a standard chow diet ad libitum (Teklad Global 18% Protein Rodent Diet 2014, Harlan,
Barcelona, Spain). All the procedure was carried out with the maximum sterility.

The antibiotic cocktail was administered by oral gavage twice daily for 13 consecutive
days to all groups (at 10:00 a.m. and 5:00 p.m.). It included a mixture of vancomycin
(50 mg/kg), neomycin, and metronidazole (each at 100 mg/kg). In addition, the drinking
water was supplemented with ampicillin (1 g/L) during the antibiotic treatment to avoid
the growing of microorganism during the treatment [38]. At the end of the antibiotic
treatment, FCS were collected to check the depletion of the host microbiota.

All animals received omeprazole (20 mg/kg) by oral gavage 24 h after the last an-
tibiotic treatment and 4–5 h before every transplant to reduce the acidification of the
environment and to allow the survival of microorganisms through the gastrointestinal
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tract. All the treatments were administered by oral gavage, and they consisted of following
treatments: the CNT group was treated with 0.5% PBS-cys and the STD-R and CAF-R
groups with STD-D and CAF-D cecal mix prepared in the first experiment, respectively.
The microbiota transplant consisted of 4 consecutive days of treatment during the first
week, 2 reminders on the second week, and finally, a weekly reminder over the last 2 weeks
with 4 weeks of total duration. The day before the sacrifice, FCS and urine were collected
to perform metagenomics and metabolomics, respectively. Urine was collected following
the recommended hydrophobic sand method (avoiding stress and metabolic changes) [39].
For each rat, a single 300 g pack of hydrophobic sand was spread (LabSand, Coastline
Global, Palo Alto, CA, USA) on the bottom of a mouse plastic microisolation cage. Urine
was gathered with sodium azide (Sigma, St Louis, MO, USA) as preservative every half
hour for 6 h and was subsequently pooled at the end of the session. The FCS and pooled
urine samples for each animal were stored at − 80 ◦C until further analysis. At the end
of the study, rats were killed under anesthesia (pentobarbital sodium, 50 mg kg−1 body
weight) by guillotine after 7 h of fasting to avoid interferences of the early postprandial
state in plasma metabolites. Blood was collected, and plasma was obtained by centrifu-
gation (2000× g for 15 min at 4 ◦C) and stored at −80 ◦C until analysis. Tissues were
rapidly removed, weighted, snap-frozen in liquid nitrogen, and stored at −80 ◦C until
further analyses.

2.2. Biochemical Parameters
2.2.1. Plasma Parameters

Enzymatic colorimetric kits were used for the determination of plasma total cholesterol,
triglycerides, and glucose (QCA, Barcelona, Spain) and non-esterified free fatty acids
(NEFAs) (WAKO, Neuss, Germany).

2.2.2. Liver Lipid Parameters

Liver lipids were extracted and quantified from a 100–120 mg liver piece using a
method previously described in the literature [40]. Briefly, lipids were extracted with 1 mL
of hexane/isopropanol (3:2, v/v) and degassed with gas nitrogen before leaving overnight
under orbital agitation at room temperature protected from light. After an extraction with
0.3 mL of Na2SO4 (0.47 M), the lipid phase was dried with nitrogen gas and total lipids were
quantified gravimetrically before emulsifying as described previously [41]. Triglycerides,
cholesterol, and phospholipids were measured with commercial enzymatic kits (QCA,
Barcelona, Spain).

2.3. Metagenomic Analysis

The genomic bacterial DNA was obtained from 700 to 1000 mg of FCS and CEC of
previously collected with the QIAamp DNA stool kit (Qiagen, Hilden, Germany; cat. no.
51504) following the manufacturer’s protocol. Partial 16S ribosomal RNA gene sequences
were amplified from 20 ng of extracted DNA using three primer pairs, which target the
V3, V4, and V6 regions, respectively. Equimolar pools of each fragment were combined
to create the DNA library, which was subjected to a clonal amplification by an emulsion
PCR. After an Ion Sphere Particle enrichment process, samples were loaded onto 318 chips
and sequenced using the Ion Torrent PGM (Life Technologies, Carlsbad, CA, USA). The
individual sequence reads were filtered by the PGM software (Life Technologies, Carlsbad,
CA, USA) to remove low-quality and polyclonal sequences. Those reads were processed
using QIIME [42], selecting only sequences with 150–200 bp and omitting homopolymers.
16S ribosomal RNA operational taxonomic units (OTUs) were assigned using uclust (>97%
sequence homology) and a reference data set from Greengenes (Lawrence Berkeley National
Laboratory, Berkeley, CA, USA).
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2.4. Metabolomic Analysis: Plasma and Urine Approach

The method for the extraction of plasma lipids was ultrahigh performance liquid chro-
matography coupled with quadrupole time-of-flight (UHPLC-qTOF). For the extraction
of the hydrophobic lipids, a liquid–liquid extraction based on the Folch procedure was
performed by adding four volumes of chloroform:methanol (2:1, v/v) containing internal
standard mixture (Lipidomic SPLASH®) to plasma. Then, the samples were mixed and
incubated at −20 ◦C for 30 min. Afterwards, water with NaCl (0.8%) was added, and
the mixture was centrifuged at 21.420× g. Lower phase was recovered, evaporated to
dryness, reconstituted with methanol:methyl-tert-butyl ether (9:1, v/v), and analyzed by
UHPLC-qTOF (model 6550 of Agilent, Santa Clara, CA, USA) in positive electrospray
ionization mode. The chromatographic consists in an elution with a ternary mobile phase
containing water, methanol, and 2-propanol with 10 mM ammonium formate and 0.1%
formic acid. The stationary phase was a C18 column (Kinetex EVO C18 Column, 2.6 µm,
2.1 mm × 100 mm) that allows the sequential elution of the more hydrophobic lipids
such as TG, diacylglycerols (DG), phosphatidylcholines (PC), cholesterol esters (ChoE),
lysophospholipids (LPC), and sphingomyelins (SM), among others. The identification of
lipid species was performed by matching their accurate mass and tandem mass spectrum,
when available, to Metlin-PCDL from Agilent containing more than 40,000 metabolites
and lipids. In addition, chromatographic behavior of pure standards for each family and
bibliographic information was used to ensure their putative identification. After putative
identification of lipids, these were semiquantified in terms of internal standard response
ratio using one internal standard for each lipid family.

The methodology followed for the extraction of plasma metabolites was gas chro-
matography coupled with quadrupole time-of-flight (GC-qTOF). For the extraction, a
protein precipitation extraction was performed by adding eight volumes of methanol:water
(8:2, v/v) containing internal standard mixture (succinic acid-d4, myristic acid-d27, glicerol-
13C3, and D-glucose-13C6) to plasma samples. Then, the samples were mixed and incubated
at 4 ◦C for 10 min and centrifuged at 21.420× g, and supernatant was evaporated to dry-
ness before compound derivatization (metoximation and silylation). The derivatized
compounds were analyzed by GC-qTOF (model 7200 of Agilent, Santa Clara, CA, USA).
The chromatographic separation was based on the Fiehn method, using a J&W Scientific
HP5-MS (30 m × 0.25 mm i.d.), 0.25 µm film capillary column, and helium as carrier
gas using an oven program from 60 to 325 ◦C. Ionization was done by electronic impact
(EI), with electron energy of 70 eV and operated in full scan mode. The identification of
metabolites was performed by matching their EI mass spectrum and retention time to
metabolomic Fiehn library (Agilent, Santa Clara, CA, USA), which contains more than
1400 metabolites. After putative identification of metabolites, these were semiquantified in
terms of internal standard response ratio.

The methodology followed for the extraction of urine metabolites was proton nuclear
magnetic resonance (1H-NMR). The urine sample was mixed (1:1, v/v) with phosphate
buffered saline containing with 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt
(TSP) (Sigma Aldrich) and placed on a 5 nm NMR tube for direct analysis by 1H-NMR. 1H-
NMR spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker®, Karlsruhe,
Germany) operating at a proton frequency of 600.20 MHz using a 5 mm PBBO gradient
probe. Diluted urine aqueous samples were measured and recorded in procno 11 using a
one-dimensional 1H pulse. Experiments were carried out using the nuclear Overhauser
effect spectroscopy (NOESY). NOESY presaturation sequence (RD–90–t1–90–tm–90 ACQ)
was used to suppress the residual water peak, and the mixing time was set at 100 ms.
Solvent presaturation with irradiation power of 150 µW was applied during recycling
delay (RD = 5 s) and mixing time (noesypr1d pulse program in Bruker®) to eliminate
the residual water. The 90-pulse length was calibrated for each sample and varied from
11.21 to 11.38 ms. The spectral width was 9.6 kHz (16 ppm), and a total of 128 transients
were collected into 64 k data points for each 1H spectrum. The exponential line broadening
applied before Fourier transformation was of 0.3 Hz. The frequency domain spectra were
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manually phased and baseline-corrected using TopSpin software (version 3.2, Bruker).
Data was normalized by two different ways, by probabilistic method, to avoid differences
between sample due to different urine concentration, and by ERETIC software. The
acquired 1H-NMR spectra were compared to references of pure compounds from the
metabolic profiling AMIX spectra database (Bruker®), HMDB, and Chenomx databases
for metabolite identification. In addition, we assigned metabolites by 1H-1H homonuclear
correlation (COSY and TOCSY) and 1H-13C heteronuclear (HSQC) 2D NMR experiments
and by correlation with pure compounds run in-house. After pre-processing, specific
1H-NMR regions identified in the spectra were integrated using MATLAB scripts run in
house. Curated identified regions across the spectra were exported to excel spreadsheet to
evaluate robustness of the different 1H-NMR signals and to give relative concentrations.

2.5. Pathway Analysis

The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway map was used
to interpret the metabolomic data in the context of biological processes, pathways, and
networks [43]. The most important features were analyzed through KEGG to elucidate the
global effect in metabolism.

2.6. Statistical Analysis

The statistical analysis was performed using the R software (version 4.0.1) and different
libraries included in Bioconductor (version 3.11). The biochemical data are expressed as the
mean ± standard error of the mean (S.E.M.). Parametric unpaired t-test after a normality
study was used for single statistical comparisons, thus a two-tailed value of p < 0.05 was
considered. After parametric unpaired t-test, p-value adjustment for multiple comparisons
was performed according the Benjamin-Hochberg (B-H) correction considering a 5% of false
discovery rate (FDR). The magnitude of difference between populations was determined by
the determination of Fold Change (FC). For metagenomics, the number of OTUs per sample
were scaled so each sample had the same mean and were filtered to only include OTUs
that were present at 0.1% of the total counts in at least 3 samples [44]. Further, the random
forest classifier was calculated to sort the most important metabolites that distinguish
between the control (STD-R) and obesity-associated gut dysbiosis (CAF-R) group. Finally,
correlation analysis between metagenomics and metabolomics were performed by kernel
density plot and the correspondent test of equal densities.

2.7. Limitations

However, this research is limited by several shortcomings. As occurs in some studies,
the design of the current study must be considered as a “pilot study” because the number
of the animals is not high enough (n = 7 per group) to provide a strong statistical conclusion
about the biomarkers. In addition, females must be included for further studies. Nonethe-
less, these metagenomic results must be interpreted with caution because 16S sequencing
was performed. These issues should be considered to perform further experiments.

3. Results
3.1. Characterization and Metagenomic Analysis of Donor Animals: Induced by Cafeteria Diet and
Standard Diet

Animals fed with an obesogenic diet presented a significant increase in body weight
(g) (CAF-D = 550.09 ± 18.17 and STD-D = 443.05 ± 24.92; p = 0.005) and a huge decrease in
CEC weight (g) (CAF-D = 4.34 ± 0.17 and STD-D = 5.59 ± 0.19; p < 0.001), respect those
fed with a standard diet, in agreement with other researchers [45,46].

To study the metabolic alterations of obesity-associated gut dysbiosis with a healthy
phenotype, the previous step was the obtention of CEC donors for further transplant.
Therefore, a metagenomic analysis was performed in donor groups (CAF-D and STD-D) in
CEC and FCS to check the success on the obesity-associated gut dysbiosis. The reads count
in 16S rRNA gene sequencing were 200.624–988.148 per sample.
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Results from CEC showed a significant change in the two major phyla of the GM:
Firmicutes (STD-D: 85.26%, CAF-D: 49.39%; q = 0.001) decreased and Bacteroidetes (STD-D:
12.83%, CAF-D: 34.77%; q = 0.025) increased in CAF-D group. Thus, there was an increase
of the ratio of Bacteroidetes/Firmicutes in the CAF-D group (STD-D = 0.16 ± 0.04 and CAF-
D = 0.81 ± 0.21; p = 0.009). Nevertheless, these alterations were not observed in FCS.
Moreover, the results showed some changes in less represented phyla, e.g., the phylum
Tenericutes was significantly decreased in the CAF-D group (STD-D: 0.29%, CAF-D: 0.11%;
q = 0.034), the Proteobacteria (STD-D: 0.31%, CAF-D: 3.47%; q = 0.034) was increased, and the
phylum Verrucomicrobia was almost significantly increased (STD-D: 1.21%, CAF-D: 12.01%;
q = 0.053).

Focusing on genera, the differences between donor groups were summarized in Table S1
standing out that Clostridiales and Bacteroidales were the most altered taxa representing
the main differences in Firmicutes and Bacteroidetes phyla, respectively. In the CAF-D
group, some genera experienced changes as well: there was a significant increase of
Ruminococcus, Blautia, and Parabacteroides. Some differences were common between FCS
and CEC at genus level, as both experienced a significant decrease in an uncharacterized
genus belonging to of Clostridiales (STD-D: 29.73%, CAF-D: 5.59%; q = 0.019) and an increase
of Parabacteroides genus (STD-D: 0.42%, CAF-D: 3.44%; q = 0.047) in the CAF-D group. Other
genus significantly decreased in CAF-D FCS group were, e.g., two Clostridiales, Oscillospira
(STD-D: 5.03%, CAF-D: 1.93%; q = 0.027), and Dehalobacterium (STD-D: 0.16%, CAF-D: 0.05%;
q = 0.047), and an uncharacterized genus of the Rikenellaceae family in the Bacteroidales order
(STD-D: 2.17%, CAF-D: 0.83%; q = 0.019).

Alpha diversity values, i.e., measures of variability within a sample, were calculated
with a variety of indices that measure richness and variation (including Shannon, Simpson,
chao1, observed OTUs index, and phylogenetic diversity) (Figure S1). Shannon and Simp-
son indices showed evenness in the population of both groups. The observed OTUs index
was significantly decreased in FCS in the CAF-D group, though it was non-significantly
decreased in CEC (FCS p = 0.036; CEC p = 0.066). However, chao1 was significantly lower in
both, FCS and CEC (FCS p = 0.036; CEC p = 0.048). In addition, the phylogenetic diversity
was significantly lower in CAF-D (FCS p = 0.030; CEC p = 0.012). The estimation of beta
diversity, i.e., an indication of variability among groups, by means of a Principal Coordinate
Analysis (PCoA) (Figure 2b) showed a clear and statistically significant separation between
the STD-D and CAF-D groups (q < 0.001).

3.2. Depletion of Microbiota in Receptor Animals after the Antibiotic Treatment

After the obtention of the donors cecal content, the transplant in healthy animals
was performed. Previously, the experimental procedure requires a previous depletion of
the host microbiota by means of an antibiotic treatment, and a subsequent metagenomic
analysis of the FCS to evaluate the success of the depletion. The reads count in 16S rRNA
gene sequencing were 188–342.242 per sample. The low minimum reads corresponds
with a low quantity of bacterial DNA, which was also difficult to amplify. Data from the
STD-D group were used to compare the microbiota after the antibiotic treatment. At the
phylum level, all FCS samples had similar taxonomic relative abundance, composed mainly
by Firmicutes (57%) and Bacteroidetes (30.09%) (Figure S2a). Other less abundant phyla
included Proteobacteria (3.8%), Verrumicomicrobia (2.6%), Spirochaetes (1.6%), Actinobacteria
(1%), Cyanobacteria (1%), and additional phyla not listed due to represent <1%. Thus, there
is an emergence of less abundant phyla and a decrease in most abundant phyla (Figure S2b).
Alpha diversity indices confirmed the decrease in bacteria after the treatment (Figure S2c).
More concisely: (1) FCS samples showed lower levels of OTUs index per genus compared
to the STD-D group; (2) Shannon and Simpson indices were 6.63 ± 0.12 and 0.99 ± 0.002,
respectively; (3) the average of observed OTUs (124 ± 5.90) and chao 1 (465.65 ± 55.86) in
the FCS were three orders of magnitude lower compared to the STD-D group; and 4) the
phylogenetic diversity was 14.69 ± 1.38, being values too low compared to other studies.
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Moreover, the PCoA confirmed the homogeneity of the beta diversity of the host microbiota
after the depletion treatment with antibiotics (Figure S2d).
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Principal Coordinate Analysis (PCoA) with unweighted UniFrac.

3.3. Metagenomic Characterization of the Model of Obesity-Associated Gut Dysbiosis with a
Healthy Phenotype

The biometric and biochemical parameters, plasma parameters, and liver biochemistry,
which are summarized in Table S2, were carried out to better characterize the model of
obesity-associated gut dysbiosis in the context of a healthy phenotype. Focusing on
biometric parameters, the total white adipose tissue weight (gr.) increased in CAF-R
group compared to the STD-R group; concretely a tendency to increase in MWAT (STD-R:
4.04 ± 0.26, CAF-R: 5.16 ± 0.52; p = 0.09) was observed and a slight increase in RWAT (STD-
R: 7.14 ± 0.90, CAF-R: 9.70 ± 1.70; p = 0.22) was also assessed. Once the transplant was done,
the effect of the cecal content transplant was mainly observed by a significant decrease in
CEC weight (gr.) in the cecal content receptors groups versus the control group (CNT-R:
8.43 ± 0.63, STD-R + CAF-R: 5.28 ± 0.32; p = 0.002). Some plasma parameters presented a
tendency to increase, including TG (STD-R: 80.91 ± 14.01, CAF-R: 117.30 ± 17.12; p = 0.1),
TC (STD-R: 44.81 ± 9, CAF-R: 68.19 ± 11; p = 0.1), and NEFAs (STD-R: 0.37 ± 0.02, CAF-R:
0.43 ± 0.03; p = 0.1), while glucose remained unaltered. However, total liver lipids (STD-R:
38.57 ± 2.20, CAF-R: 28.99 ± 2.22; p = 0.01) significantly decreased in the CAF-R group, and
specifically phospholipids (STD-R: 12.85 ± 0.60, CAF-R: 10.67 ± 0.67; p = 0.03) presented
the highest decrease.
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The reads count in 16S rRNA gene sequencing were 151.796–522.785 per sample. After
the microbiota transplant, the composition of the communities showed a separation of the
FCS and CEC samples in the second component (PC2) of the PCoA (Figure 3). The first
component (PC1) of the PCoA clearly separates CNT-R and the transplanted rats (STD-R
and CAF-D) (Figure 3). Thus, PC1 and PC2 explain 13.42% and 7.65% of the variability,
respectively. Furthermore, the CNT-R group versus the transplanted microbiota rats (STD-
R and CAF-D) had a smaller number of species, as shown by a significant decrease in the
alpha diversity indices in CEC, i.e., chao1, observed OTUs and phylogenetic diversity. This
decrease was not-significantly decreased in FCS (Figure S3).
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At phylum level, the effect of the transplant in STD-R promoted an establishment
of Firmicutes in CEC (CNT-R: 71.82% vs. STD-R: 91.02%; p = 0.05; q = 0.09) and in FCS
(CNT-R: 40.5% vs. STD-R: 52.59%; p = 0.14; q = 0.28), whereas Bacteroidetes remained low
in CEC (CNT-R: 18.86% vs. STD-R: 7.86%; p = 0.15; q = 0.18) and almost unaltered in FCS
(CNT-R: 44.88% vs. STD-R: 43.2%; p = 0.79; q = 0.79). Otherwise, minor represented phyla
such as Verrucomicrobia (CNT-R: 8.46% vs. STD-R: 0.78%; p = 0.02; q = 0.07), Proteobacteria
(CNT-R: 0.66% vs. STD-R: 0.21%; p = 0.05; q = 0.09), and Actinobacteria (CNT-R: 0.14% vs.
STD-R: 0.03%; p = 0.008; q = 0.05) were decreased in CEC. The sorted minor phyla had more
presence in CNT-R CEC instead of STD-R CEC compensating the non-establishment of
the two major phyla (Figure 4a). Focusing on genera, the differences between CNT-R and
STD-R are summarized in Table S3. Thus, the differences in Firmicutes were characterized in
the cecum of STD-R group by the significative alteration of Ruminococcus, Oscillospira, and
Coprococcus and an uncharacterized genus in the Clostridiales order (Figure 4d). Moreover,
some differences were also found in feces of STD-R group characterized by changes in
rc4-4 genus and an uncharacterized genus.



Biomolecules 2021, 11, 303 11 of 22Biomolecules 2021, 11, 303 11 of 22 
 

 

 
Figure 4. Microbiota composition between CNT-R, STD-R, and CAF-R groups represented by 
abundance: (a) phylum level in CNT-R vs. STD-R, (b) phylum level in CNT-R vs. CAF-R, (c) phy-
lum level in STD-R vs. CAF-R, (d) genus level in CNT-R vs. STD-R, (e) genus level in CNT-R vs. 
CAF-R, (f) genus level in STD-R vs. CAF-R. 

Regarding the CAF-R group, the differences were similar as previously described for 
the STD-R group with the establishment of Firmicutes in CEC (CNT-R: 71.82% and CAF-
R: 89.3%) and in FCS (CNT-R: 40.5% and CAF-R: 52.05%), while Bacteroidetes remain low 
in CEC (CNT-R: 18.86% and CAF-R: 9.14%) and almost equal in FCS (CNT-R: 44.88% and 
STD-R: 43.89%). Besides, Verrucomicrobia phylum was increased in the CNT-R group 
having more differences in CEC than in FCS group (Figure 4b). Focusing on genera, the 
differences between CNT-R and CAF-R are summarized in Table S4. Thus, Oscillospira 
genus was the main altered genus presenting a significative increase in both sample types 
among other interesting changes in CEC genera as Coprococcus and Ruminococcus (Fig-
ure 4e). 

The receptors of cecal content, the STD-R and the CAF-R groups, had a similar phyla 
composition (Figure 4c). Focusing on genera, the statistical analysis between STD-R and 
CAF-R are summarized in Table S5. Although the animals presented a similar phyla com-
position, some differences could be observed in genera as it is shown in Figure 4f. In this 
case, more differences were observed in FCS than in CEC. In the case of CEC, an unchar-
acterized genus of Lachnospiraceae family presented a significant one-half decrease in 
CAF-R. Although there were not any more statistically significant differences, there were 
some genera with interesting fold changes as the case of Parabacteroides. 

3.4. Metabolomic Characterization of the Model of Obesity-Associated Gut Dysbiosis with a 
Healthy Phenotype 

The plasma metabolomic approach was based on a multiplatform global analysis in-
cluding 139 metabolites belonging to: the metabolism of lipids as a wide diversity of dif-
ferent triglycerides (TG), ester cholesterols (ChoE), diacylglycerols (DG), sphingomyelins 
(SM), phosphatidylcholines (PC), and lysophospholipids (LPC); metabolism of carbohy-
drates as the main metabolites of citric acid pathway were included; and metabolism of 
the main amino acids affecting the microbiota and diet were included among other inter-
esting metabolites. The analysis showed differences on the lipid metabolism in the CAF-
R group in comparison to the STD-R group (Table S6). After the parametric unpaired t-
test, 7 different significant lipids were determined as potential biomarkers in plasma (DG 
34:2, DG 34:3, DG 36:2, DG 36:4, LPC 20:0, DG 34:1, and PC 31:0). However, only one 

Figure 4. Microbiota composition between CNT-R, STD-R, and CAF-R groups represented by abundance: (a) phylum level
in CNT-R vs. STD-R, (b) phylum level in CNT-R vs. CAF-R, (c) phylum level in STD-R vs. CAF-R, (d) genus level in CNT-R
vs. STD-R, (e) genus level in CNT-R vs. CAF-R, (f) genus level in STD-R vs. CAF-R.

Regarding the CAF-R group, the differences were similar as previously described
for the STD-R group with the establishment of Firmicutes in CEC (CNT-R: 71.82% and
CAF-R: 89.3%) and in FCS (CNT-R: 40.5% and CAF-R: 52.05%), while Bacteroidetes remain
low in CEC (CNT-R: 18.86% and CAF-R: 9.14%) and almost equal in FCS (CNT-R: 44.88%
and STD-R: 43.89%). Besides, Verrucomicrobia phylum was increased in the CNT-R group
having more differences in CEC than in FCS group (Figure 4b). Focusing on genera, the
differences between CNT-R and CAF-R are summarized in Table S4. Thus, Oscillospira
genus was the main altered genus presenting a significative increase in both sample
types among other interesting changes in CEC genera as Coprococcus and Ruminococcus
(Figure 4e).

The receptors of cecal content, the STD-R and the CAF-R groups, had a similar phyla
composition (Figure 4c). Focusing on genera, the statistical analysis between STD-R and
CAF-R are summarized in Table S5. Although the animals presented a similar phyla
composition, some differences could be observed in genera as it is shown in Figure 4f.
In this case, more differences were observed in FCS than in CEC. In the case of CEC, an
uncharacterized genus of Lachnospiraceae family presented a significant one-half decrease
in CAF-R. Although there were not any more statistically significant differences, there were
some genera with interesting fold changes as the case of Parabacteroides.

3.4. Metabolomic Characterization of the Model of Obesity-Associated Gut Dysbiosis with a
Healthy Phenotype

The plasma metabolomic approach was based on a multiplatform global analysis
including 139 metabolites belonging to: the metabolism of lipids as a wide diversity of dif-
ferent triglycerides (TG), ester cholesterols (ChoE), diacylglycerols (DG), sphingomyelins
(SM), phosphatidylcholines (PC), and lysophospholipids (LPC); metabolism of carbohy-
drates as the main metabolites of citric acid pathway were included; and metabolism
of the main amino acids affecting the microbiota and diet were included among other
interesting metabolites. The analysis showed differences on the lipid metabolism in the
CAF-R group in comparison to the STD-R group (Table S6). After the parametric unpaired
t-test, 7 different significant lipids were determined as potential biomarkers in plasma
(DG 34:2, DG 34:3, DG 36:2, DG 36:4, LPC 20:0, DG 34:1, and PC 31:0). However, only
one plasma metabolite was significantly differentiated after the multivariate correction,
which was the DG 34:2. Specifically, the DG 34:2 was significantly increased in CAF-R
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compared to CNT-R (q = 0.009) and STD-R (q = 0.045) (Table 1). Moreover, DG 34:2 is the
most important feature in the model after applying the Random Forest classifier presenting
the highest value by far in comparison to the second metabolite in the list (Table S7).

Table 1. Metabolites significantly altered affected by the microbiota transplant in plasma and urine. The statistically
significant p-values (p < 0.05) and q-values (q < 0.05) are highlighted in bold. DG 34:2, diacylglycerol 34:2; 3-HPPA,
3-hydroxyphenylpropionate.

Biofluid Plasma Urine Urine Urine

Metabolite DG 34:2 Hippurate o-Coumaric Acid 3-HPPA

Mean ± S.E.M.

CNT-R 0.40 ± 0.03 192.13 ± 48.87 4.36 ± 0.84 15.58 ± 5.87

STD-R 0.42 ± 0.04 295.91 ± 20.55 2.16 ± 0.20 2.31 ± 0.60

CAF-R 0.72 ± 0.05 145.49 ± 21.45 6.14 ± 0.76 21.30 ± 3.91

CNT-R vs. STD-R

p-value 0.549 0.086 0.039 0.064

q-value 0.963 0.351 0.290 0.290

FC 1.07 1.54 0.50 0.15

CNT-R vs. CAF-R

p-value <0.001 0.407 0.141 0.435

q-value 0.009 0.770 0.770 0.783

FC 1.82 0.77 1.41 1.37

STD-R vs. CAF-R

p-value <0.001 <0.001 0.002 0.003

q-value 0.045 0.013 0.035 0.039

FC 1.69 0.49 2.84 9.24

Bold figures mean significant.

The urine metabolomic approach was based on untarget 1H-NMR methodology detect-
ing 45 metabolites belonging, mainly, to the metabolism of amino acids (e.g., phenylalanine,
tyrosine, and tryptophan metabolism; glycine, serine, and threonine metabolism; alanine,
aspartate, and glutamate metabolism; glutathione metabolism; and taurine and hypotau-
rine metabolism) and the energetic metabolism (e.g., citrate cycle, pyruvate metabolism,
and glycolysis/gluconeogenesis) (Table S8). After the parametric unpaired t-test, 6 differ-
ent significant metabolites were determined as potential biomarkers in urine (hippurate,
o-coumaric acid, 3-HPPA, HPPA sulfate, tyrosine, and phenylacetylglycine). After the
multivariate correction, the results pointed out three metabolites involved in the pheny-
lalanine metabolism that were significantly altered in the CAF-R group compared to the
STD-R group (hippurate, o-coumaric acid, 3-HPPA). On the one hand, the o-coumaric acid
(q = 0.035) and the 3-hydroxyphenylpropionate (3-HPPA) (q = 0.039) were significantly
increased in the CAF-R group compared with the STD-R group, almost 3 and 10 times
more elevated, respectively. On the other hand, the hippurate (q = 0.013) was significantly
decreased by a half in the CAF-R group in comparison to the STD-R group (Table 1).
Moreover, those metabolites are the most important features in the model after applying
the Random Forest classifier being the top metabolites to discern between the STD-R and
CAF-R groups (Table S9).

3.5. Correlation between Metagenomics and Metabolomics in the Obesity-Associated Gut Dysbiosis

Focusing on the metabolic differences between the STD-R and the CAF-R groups, none
of the metabolites (n = 4) used in this study were correlated with values of metagenomic
diversity (Table S10). Nevertheless, we focused on specific genus. In this case, the Kernel
density distribution of altered metabolites was correlated with some genus normalizing
the relative values of the metabolites by the different genus, discerning between STD-R
and CAF-R groups. Thus, 28 genera with a higher abundance of 0.1% were selected to
study the density distribution. Interestingly, the density distribution of the STD-R and the
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CAF-R groups was significantly different in 3 genera for DG 34:2, 19 genera for 3-HPPA,
9 genera for Hippurate, and 14 genera for o-coumaric acid (Table S11). Indeed, Firmicutes
was the phylum with the great part of genus affecting the distribution between groups.
For example, the Oscillospira genus was differently distributed between groups in the four
selected metabolites (Figure 5), and differences were found in donors and receptors. In
addition, besides Oscillospira genus, other genera from the Clostridiales order have at least
3 altered metabolites, i.e., Coprococcus and an uncharacterized genus of Lachnospiraceae
family; Dehalobacterium genus of Dehalobacteriaceae family; and an uncharacterized genus of
uncharacterized family (Figure 5).
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metabolites normalized by one selected genus. Each column shows the metabolites represented in the Kernel density plot.
The significant differences are highlighted by an asterisk. Green line: STD-R; Red line: CAF-R.

4. Discussion

In the present study, a pilot metabolomic approach in healthy rats, that received cecal
microbiota from obese ones, has been carried out to find a metabolic profile of obesity-
associated GM with a healthy phenotype, avoiding metabolic disturbances related to other
risk factors. Importantly, the transference of GM from obese to non-obese rats could help
to discover new biomarkers exclusively related to this GM alterations that could provide
interesting information about the metabolic profile of a segregated obesity-associated gut
dysbiotic state.

Interestingly, focusing on biometric parameters, a huge significant decrease in CEC
weight was observed which could be directly induced by the effect of the cecal content.
Additionally, there was a tendency to increase in the total weight of white adipose tissue,
which was more evident in MWAT although a slight increase was also observed in RWAT.
Thus, the transplanted cecal content affected the weight of the white adipose tissue. Fo-
cusing on plasma biochemistry, the glucose levels remained unaltered but TG, TC, and
NEFAs presented a clear tendency to increase in the CAF-R group supporting the changes
observed in MWAT and RWAT. On the other hand, the total liver lipids decreased in the
CAF-R group, and specifically the phospholipids were the representative lipid species
that also correlated with this decrease. Globally, all these changes demonstrate the impact
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of the different cecal donors’ content in transplant on some biometric and biochemical
parameters.

In our study, the depletion of host microbiota after the antibiotic treatment, which
produces a decrease in the number of microbes, was characterized by an emergence of
less abundant phyla and a decrease in most abundant phyla in receptors animals (CNT-R,
STD-R, and CAF-R). In our pilot model of obesity-associated gut dysbiosis in rats, we
altered the microbiota of cecal receptors (STD-R and CAF-R) by oral gavage of cecal donors
content (STD-D and CAF-D), which were fed with a standard diet. First, to determine
the success of the transplant, the control group (CNT-R) and CEC receptors groups were
compared (STD-R and CAF-R). Results showed an increase of bacteria and diversity in
CEC receptors groups, as well as a decrease in CEC weight. Moreover, we observed slight
differences between STD-R and CAF-R, where there was a change in the distribution of
bacteria. Significant increases in genera of the STD-R group were induced in the Clostridiales
spp.; Ruminococcus, Oscillospira, Coprococcus; and an uncharacterized genus (which were
increased in CEC). On the other hand, an uncharacterized genus of Ruminococcaceae and rc4-
4 genus was significantly increased in FCS. In the case of CAF-R versus CNT-R, Oscillospira
genus was increased either in CEC or FCS following the trend of STD-R. The differences
in Oscillospira genus were maintained between the donors and receptors, which has been
defined as a component of the GM related to leanness or lower BMI, confirming our model
of obesity-associated to GM in a healthy phenotype [47]. Finally, some minor changes in the
genera could be observed, including some important genera in the development of obesity
(e.g., changes in the composition of Clostridiales spp.). Although, clear statistical differences
between STD-R and CAF-R groups were not observed in metagenomics analysis, if we
consider all these changes together with the biometric and biochemical parameters, we
could sense a segregated model of obesity-associated gut dysbiosis.

In addition, some metabolic changes were observed in the host, induced by the alter-
ation of the complexity microbial biofilm. In fact, the most interesting altered metabolites
included those in plasma (e.g., DG 34:2) and urine (e.g., Hippurate, 3-HPPA, and o-coumaric
acid), pointing out urine as a fundamental part of the metabolic profile of our model. These
metabolic variations provide another hint to prove the achievement of the segregated
dysbiosis between STD-R and CAF-R groups. In this sense, taking together the biometric
and biochemical parameters, the metagenomics and, finally, the metabolomics, the general
picture of the model would be elucidated. Thus, we can consider the experiment as a
successful pilot model of obesity-associated gut dysbiosis.

DG were the main metabolites with altered circulating plasma levels that were found
in transplanted rats; being increased in CAF-R compared to CNT-R and STD-R. However,
after the multivariate correction, only the DG 34:2 was statistically significant. DG are
glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule
through ester linkages [48] and, apart from being the central intermediate in the synthesis
of membrane phospholipids and the lipid storage [49], they are key regulators of cell phys-
iology, controlling the membrane recruitment and activation of signaling molecules [50].
For example, Backhed and collaborators have suggested that because of dysbiosis, GM
can stimulate the levels of TG and DG through the suppression of the intestinal epithelial
expression of the fasting-induced adipose factor (Fiaf), a natural inhibitor of circulating
lipoprotein lipase (LPL) [51], which is the main rate-limiting enzyme in lipid metabolism,
catalyzing the hydrolysis of TGs and DG [52]. Our results suggest that microbial alteration
associated to obesity could stimulate Fiaf expression, potentiating the inhibition of LPL
and therefore, increasing the circulating levels of DG, specifically the DG 34:2. In this
sense, the DG 34:2 is a diacylglycerol with fatty acids containing a total of 34 carbons and
2 double bonds joined via ester linkages at unknown positions (sn1, sn2, or sn3), it is mainly
implicated in the novo triacylglycerol biosynthesis of several TG as other DG [53]. This
specific lipid has been attracting attention in studies of lipidomics in diverse fields focusing
on, e.g., diabetic kidney tissue of diabetic rats [54] and liver tissue of hypertensive rats [55].
Despite this metabolite was found as a biomarker in several pathologies and tissues in rats
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as it has been described before, we also propose this specific lipid to do further studies in
obesity-associated to gut dysbiosis. Although the first lipidomic biomarkers are entering in
the clinic, certain analytical standards need to be established in order to make lipidomic
measurements generally accepted in clinical settings [56]. However, tissues responsible
for DG levels in plasma are still unknown. Several authors have pointed out the utility
of increased levels of plasma DG, as well as its composition, as biomarkers of metabolic
syndrome and obesity in rodents [57,58], rhesus monkeys [59], and humans [60], although
without specifying the type/s of DG.

On the other hand, a relevant finding in our pilot study is the alteration on hepatic
lipids observed in transplanted animals. CAF-R group showed decreased levels of total
hepatic lipids and phospholipids compared to STD-R and CNT-R groups. Interestingly, it
has been recently shown [61] that the transfer of dysbiotic gut microbiota from obese to
antibiotic-free conventional mice changes gut microbiota and microbiome of recipient mice,
ameliorates hepatic gluconeogenesis, and prevents high-fat diet-induced dysmetabolism.
These results are in agreement with our present results and point out the potential success
of our dysbiosis model. Additionally, despite not directly related to microbiota transfer,
another interesting study [62], where the connection of the antifungal carbendazim (CBZ)
on lipid metabolism was studied discovered that CBZ chronic treatment induced gut
microbiota dysbiosis in mice and such dysbiosis was associated with a reduced lipid liver
synthesis and an increased lipid storage in the fat. More concisely, regarding the liver, some
genes involved in TG synthesis, such as Dgat1 and Gpat, were significantly downregulated
by the CBZ chronic treatment.

Furthermore, there are, mainly, two enzymes, the diacylglycerol acyltransferase
(DGAT) and ethanolamine phosphotransferase, which control the use of DG for lipid
synthesis, suggesting the presence of a common DG pool for lipid synthetic pathways [63].
Another DG pool is also available for glycerolipid synthesis because DG that is released
from TG stores in human fibroblasts can be converted to phospholipids [64]. Segregation
of DG toward different metabolic routes seems to occur according to the cell’s needs. For
instance, the DG originally destined to form phospholipids is re-directed toward TG when
phospholipid synthesis is inhibited [65]. In our animal model, the obesity-associated gut
dysbiosis model produces a significant increase in plasma DG levels, as the DG 34:2, and
a decrease in hepatic phospholipids. Thus, it would be expected an increase in plasma
or liver TG, although they were not changed. Further studies are needed to elucidate the
relation between microbes, DG 34:2, and liver phospholipids.

The obesity-associated to gut dysbiosis in a healthy phenotype also produced the
alteration of three main metabolites, i.e., hippurate, o-coumaric acid, and 3-HPPA, in urine.
These metabolites, which belong to the phenylalanine metabolism, have also been related
to the degradation of phenolic compounds that have been traditionally associated with the
ingestion of polyphenols-rich food [66]. In this sense, diet is one of the major environmental
factor that modulates the composition and the metabolic activity of GM, forming the food–
gut axis [67]. Polyphenols are plant secondary metabolites, and there are many studies
that support the idea that phenolic compounds modulate the composition and metabolic
activities of GM, as well as GM metabolize polyphenols into bioactive compounds that
produce clinical benefits [68,69]. Hence, it has been postulated that changes in the species
population or GM activities result in changes in the metabolic processing of polyphenolic
compounds that can be observed in the derived urinary metabolites [70].

In our case, the changes in urine metabolomics are explained by the microbiota
transplant and not by the modulation of dietary polyphenols, because all the animals
received the same diet (without differences in trace polyphenols). The phenolic compounds
that have been found altered in our urine model are included in the group of chlorogenic
acids, standing out the contradictory information in literature about the bioavailability and
effects of these type of polyphenols [66]. Interestingly, Clayton and collaborators proposed
two distinct rat urinary compositional phenotypes, i.e., these may arise from differences
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in the gut microbially mediated metabolism of phenylalanine that are characterized by
differences in hippurate and 3-HPPA, among other metabolites [71].

Hippurate is a glycine conjugate of benzoic acid formed in the mitochondria of the
liver and kidneys and then excreted in the urine [72] and is considered a gut microbial-
mammalian co-metabolite that can be made by Clostridium spp., primarily from polyphe-
nols [73]. In our study, hippurate was reduced by a half in the CAF-R group compared
to the STD-R group. In this sense, hippurate excreted in urine has been found as a dis-
tinguishing feature of different range on physiological and pathological conditions (e.g.,
obese phenotypes [74,75], metabolic syndrome [76], Crohn’s disease [77], psychological
disorders [78], among others). Additionally, many studies have shown an increased excre-
tion of hippurate resulted from the ingestion of specific dietary components containing
phenolic molecules, as teas [79,80] or edible fruits [81]. Taking into account the previous
information, hippurate could be considered as a biomarker of health but this concept is
ambiguous, since the source has not been robustly addressed. Thus, the wide associations
of hippurate to different conditions support the idea of our findings that the changes in
its excretion are caused by the GM and not by the disease. These results are in agreement
with a recent review showing that the differences in hippurate excretion are due, at least in
part, to functional or compositional differences in GM, regardless of the specific diet [70].

Related to hippurate, the 3-HPPA is a phenol derivative formed through fermentation
of tyrosine by Clostridium spp., that could be further metabolized to benzoic acid and
excreted as hippurate [82,83]. Interestingly, related to chlorogenic acids availability, 3-
HPPA has been shown to be able to freely cross the gut epithelium [84] into the blood
and brain [85]. In our animal model, 3-HPPA was increased almost 10 times in the CAF-R
group compared to the STD-R. In a recent study, the effect of procyanidin A2, and its major
colonic metabolite 3-HPPA, was investigated on the suppression of macrophage foam cell
formation. The results showed a significant reduction in the cellular lipid accumulation and
the inhibition of foam cell formation by both compounds [86]. According to our study, we
speculate that the increased level of 3-HPPA urine excretion in CAF-R could be related to
the reduction in lipid accumulation because CAF-R showed a lower 3-HPPA compared to
STD-R. However, this mechanism would not directly explain the reduction in total lipids in
liver showed in CAF-R animals. Taking all of these data into consideration, we hypothesize
that 3-HPPA could be a direct explanation of the decrease in hippurate because of elevated
excretion levels in the urine profile. In agreement, there was no 3-HPPA availability in the
CAF-R animals to metabolize hippurate. Furthermore, dietary modulation was found to
cause a change in the excretion of 3-HPPA, which was replaced by hippurate in Wistar
rats [87]. Surprisingly, the excretion of hippurate persisted when the animals returned to
the original diet. It was proposed that, in addition to the precursors available in the diet,
the absence or presence of urinary hippurate and 3-HPPA was influenced by variation on
the GM. Additionally, this research proposed that a change in diet could potentially have
caused a redistribution of the microbiota, resulting in the production of hippurate as the
primary excretion product, regardless of the specific diet [87].

o-coumaric acid, which is an hydroxycinnamic acid, has been described to act as pow-
erful antioxidant and as an important biological protector from oxidation [88]. Interestingly,
our findings showed that o-coumaric acid excretion in urine was increased three times in
the CAF-R group compared to the STD-R. Related to this, a research performed in rats
fed with high-fat diet (HFD) showed that supplementing the HFD with o-coumaric acid
for 8 weeks suppressed the increases in body weight, liver weight, and adipose tissue
weights of peritoneal and epididymal fat induced by the hypercaloric diet [89]. Thus, in our
case, the high increase in the o-coumaric secretion in urine may be hypothetically related
to a decreased systemic protective effect in the CAF-R group, having, in consequence, a
predisposition to develop obesity in the future. As far as we know, this is the first time that
o-coumaric acid is proposed as a dysbiosis biomarker.

Finally, some correlations will be discussed to directly connect the obesity-associated
gut dysbiosis with the host metabolism. There was a significant correlation between some
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genera in Clostridiales order and the metabolites included in the profile of metabolic changes.
The Oscillospira genus was highly correlated with the selected metabolites followed by
other genus with three out of four metabolites including the following genera: Copro-
coccus and an uncharacterized genus of Lachnospiraceae family, Dehalobacterium genus of
Dehalobacteriaceae family, and an uncharacterized genus of uncharacterized family. Previous
intervention studies in humans showed minor effect on the metabolism of phospholipids
and cholesterol (in large VLDL), after changes in the metagenomic composition induced
by moderate exercise [90]. Other studies have shown correlation of metagenomics with
imbalanced metabolome, resulting in a source of potential biomarkers of obesity [91],
chronic obstructive disease in humans [92], the dietary effect of the insulin feeding in
pigs [93], the quantifying diet effect in humans [94], or tracking a healthy dietary pat-
tern [95]. Thus, external factors that induce changes in the microbial community, lead to
changes in the metabolism.

Previous studies have found that changes in the microbiota produce metabolic alter-
ations, however, to the best of our knowledge, this is the first study that focuses on changes
in the metabolism caused by obesity-associated gut dysbiosis with a healthy phenotype.
This study, under controlled experimental conditions, elucidates the metabolic changes
caused by an obesity-associated gut dysbiosis. This fact opened a window of opportuni-
ties to propose metabolic biomarkers of segregated obesity-associated gut dysbiosis in a
healthy population.

5. Conclusions

The important point in the present study is that we have developed a pilot experiment
trying to isolate dysbiosis from the rest of obesity-associated complications (e.g., hyper-
glycemia, hyperinsulinemia, hyperlipidemia, hypercoagulable state, etc.). In this sense,
we have been able to discriminate the alterations induced by the dysbiosis component
of obesity in a relative isolated way. Our model of obesity-associated microbial gut dys-
biosis in healthy rats produced biometric and biochemical changes, as well as metabolic
changes, mainly in the lipid (DG 34:2 in plasma) and phenylalanine (hippurate, 3-HPPA,
and o-coumaric acid in urine) metabolism. In consequence, we propose that external factors
that induce changes in the microbial community may trigger the mechanism of obesity
by altering mainly the lipid and phenylalanine metabolism of the host. To the best of our
knowledge, this is the first study proposing this model of a segregated risk factor of obesity,
expanding, in consequence, the knowledge about the metabolism on obesity-associated
microbial gut dysbiosis as well as the determination of a metabolic profile of the risk
factor. Hereby, we propose an obesity-associated metabolic profile, including DG 34:2,
hippurate, 3-HPPA, and o-coumaric, that can be utilized as tentative biomarkers of an
obesity-prone state mainly related to a dysbiotic state. These pilot approach and associated
results provide the basis for a better understanding of the biological role played by GM
and for the discovery of novel biomarkers in future obesity studies.
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QIIME command α rarefraction after the microbiota transplant in different metagenomic biofluids
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Biometric parameters, plasma parameters and liver biochemistry of transplant model; Table S3:
Summary of metagenomics in the control group (CNT-R) and the standard receptors (STD-R) groups
in CEC and FCS focusing on taxonomic data; Table S4: Summary of metagenomics in the CNT-R
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