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Abstract. Network controllability focuses on the concept of driving the dynamical system as-
sociated to a directed network of interactions from an arbitrary initial state to an arbitrary final
state, through a well-chosen set of input functions applied in a minimal number of so-called input
nodes. In earlier studies we and other groups demonstrated the potential of applying this concept
in medicine. A directed network of interactions may be built around the main known drivers of
the disease being studied, and then analysed to identify combinations of drug targets controlling
survivability-essential genes in the network. This paper takes the next step and focuses on pa-
tient data. We demonstrate that comprehensive protein-protein interaction networks can be built
around patient genetic data, and that network controllability can be used to identify possible per-
sonalised drug combinations. We discuss the algorithmic methods that can be used to construct
and analyse these networks.
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1. Introduction

Precision medicine is centred on the general objective to integrate a patient’s own data with knowledge
about basic genetic and biological mechanisms of disease to identify her own disease activation path-
ways and based on them, potentially new therapeutic strategies uniquely suited to that patient [1], [2].
Mathematical models can integrate knowledge on patient genetic abnormalities, on tumour drivers,
and pharmacokinetics of drug combinations, to build comprehensive disease- and tumour-specific
models. Such models can then be analysed as dynamic complex systems based on directed graphs
to gain insights into the vulnerabilities of the tumour signalling network [3]. This approach can be
personalised in that the study is driven by the patient’s own data to identify her own unique molecular
network of disease. Such networks are discussed in this paper as directed graphs. The patient’s own
mutated genes are represented in the network as vertices. The edges represent interactions between the
genes (or in fact, without the risk of confusion, between the proteins encoded by the genes). Since we
want to describe also multi-step interactions between the patient’s mutated genes, additional vertices
may be added to the network, representing genes that influence or are being influenced by the mutated
genes. We take an elementary approach to representing such interactions as directed graphs and ignore
a number of additional attributes of the edges (e.g., type of interaction, strength, mechanistic details)
and of the vertices (e.g., copy number, activation status, the details of the mutation).

There is a wide spectrum of modelling methods that may be used to analyse a disease network and
the dynamical systems associated to it: ODE-based models [4], [5], Boolean and Bayesian models
[6], [7], executable models [8], network models [9, 10, 11], and many others. A major focus is
on finding novel personalised combinatorial drug therapies [12]. A very promising method that we
[13, 14] and others, e.g., [15, 16, 17], successfully used in this context is network controllability [18],
with many interesting applications also outside medicine, e.g., in directing the moves of a C.elegans
nematode [19], [20]. In brief, the concept of network controllability is that the dynamical system
associated to the network may be driven between arbitrary configurations by fixing the dynamic of a
small subset of its vertices (called input or driver nodes) to a suitable set of functions. The appeal for
the applications in medicine comes from considering the input vertices from those encoding for genes
that are targetable by available drugs. A solution to the network controllability problem in this case
gives a combination of such vertices (and hence a combination of available drugs) that may change
the dynamics of the network between arbitrary configurations, i.e., a (theoretical) suggestion for a
personalised combinatorial drug therapy.

We discuss in this paper the applicability of network controllability to patient data. Previous stud-
ies have focused mostly on disease networks (constructed around generic disease drivers and typical
mutated genes), see, e.g., [13]. In this paper we show that the method is also applicable to patient-
and tumour-data. We build and analyse three networks around the mutation data of three multiple-
myeloma tumour samples, each from a different patient, based on the data from [21]. We show that
network controllability can offer a variety of personalised drug combination options, including stan-
dard multiple-myeloma drugs, as well as suggestions for potentially useful new drug targets.

The paper is structured as follows. In Section 2 we discuss the network controllability problems
and some algorithmic heuristics for it. In Section 3 we discuss the data we used to generate the patient
disease networks. In Section 4 we discuss the results we obtained for the three cases we investigated.
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We conclude in Section 5 with some thoughts on the applicability of our methods for personalised
medicine.

2. A brief introduction to network controllability

2.1. Theory

We give here a brief introduction into the theory of network controllability. For more details we refer
to [14]. We discuss here the continuous formulation of the controllability problem; a discrete version
also exists.

All vectors are considered in the following to be column vectors. This makes all matrix-vector
multiplications below well defined.

A linear (time-invariant) dynamical system is an n-dimensional (n ≥ 1) vector x of real functions
x : R→ R

n defined through the system of ordinary differential equations

dx(t)

dt
= Ax(t), (1)

where A ∈ Rn×n. Such a system can be thought of as a continuous-time, n-state transition system,
with A the (time-invariant) state transition matrix describing how each of these states are influencing
the dynamics of the other states. Specifically, the (i, j)-entry ai,j of matrix A describes the weight of
the influence of node j over node i.

When an external input u is introduced in this system in order to (linearly) influence it, Equation
(1) develops into

dx(t)

dt
= Ax(t) +Bu(t), (2)

where u : R → R
m, m ≥ 1, is the external m-dimensional input vector, thought of as a time-

dependent set of functions influencing some of the states of the dynamical system. This influence is
described through matrix B ∈ Rn×m: the (i, j)-entry bi,j of B describes the weight of the influence
of input uj over the internal state xi. An internal state xi such that there is 1 ≤ j ≤ m with bi,j 6= 0 is
called a driven state. The intuition is that such a state is driven through a direct influence by one of the
inputs. The other, non-driven states are also indirectly influenced by the inputs through the cascading
influence of the internal nodes over each other, as described by matrix A.

In the additional case where the system also exports a set of k ≥ 1 output functions y : R→ R
k,

the system (2) becomes

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) (3)

where C ∈ Rk×n is the output matrix specifying how each of the k outputs depends on the n variables
of the system. We refer to systems of form (3) as the linear dynamical system (A,B,C).

Throughout this paper we are interested in the simpler case where the output function is of the
form y(t) = (xt1(t), xt2(t), . . . , xtk(t))

T . In other words, the output functions are simply collecting
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the values from some target nodes T = {t1, t2, . . . , tk} ⊆ {1, 2, . . . , n}. This means that matrix
C ∈ {0, 1}k×n is defined in the following way: ci,j = 1 if and only if i = j ∈ T . We denote CT the
output matrix associated in this way to target set T .

We illustrate in Figure 1 the structure of a network in the controllability setup, including the
interactions corresponding to matrices A, B and C, the input nodes u, the internal nodes x, the driven
nodes, the target nodes T , and the output nodes y.

Input nodes
Driven nodes

Internal nodes

Output nodes

Target nodes

Interactions corresponding 
to matrix B

Interactions corresponding to matrix A
Interactions corresponding 

to matrix C

Figure 1. The structure of a network in the controllability setup: the interactions corresponding to matrices A,
B and C, the input nodes, the driven nodes, the internal nodes, the target nodes, and the output nodes.

Given a target set T , a linear dynamical system (A,B,CT ) is said to be target controllable if for
any initial condition x0 ∈ Rn and any ỹ ∈ Rk, there is an input vector ux0,ỹ : R → R

m, m ≥ 1
such that y(τ) = ỹ, for some τ ≥ 0. Intuitively, a linear dynamical system being target controllable
means that for any initial configuration x0 of the system and for any configuration ỹ of the target states,
there is a suitable set of input functions able to “drive” the target states to ỹ in finite time. The input
functions may differ depending on x0 and ỹ.

We discuss the following two questions:

Q1. Decide if a given linear dynamical system (A,B,CT ) is controllable.

Q2. For A ∈ Rn×n and CT ∈ Rk×n, find the smallest m ≥ 1 and B ∈ Rn×m such that (A,B,CT )
is target controllable.

Question Q1 has an elegant answer in the form of the following algebraic result.
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Theorem 2.1. (Kalman’s condition [22]) A linear dynamical system (A,B,CT ) is controllable if and
only if rank[CTB,CTAB,CTA

2B, . . . , CTA
n−1B] = |T |.

Kalman’s condition is an elegant complete solution to the controllability problem. Its applicability
in practice is however limited because of two reasons. First, the matrices A and B have to be com-
pletely satisfied, so that the rank of the controllability matrix [CTB,CTAB,CTA

2B, ..., CTA
n−1B]

of (A,B,CT ) can be calculated. This means in particular that the weight of all internal interactions of
the system must be known. This is a major limitations for observed systems, whose interactions are
often partially unknown and not directly measurable. Second, even if all the internal interactions were
known and measured, Kalman’s condition is highly sensitive on the values of the entries of matricesA
and B. This is a major limitations for observed systems, whose internal settings can only be measured
or estimated with finite precision, leading to conflicting results on Kalman’s condition for numerical
settings within the range of the measurement/estimation errors. This motivates the question of whether
the controllability of a system could be defined in terms of its structure, rather than its numerical setup.
We discuss this in the following in terms of the structural controllability problem.

We say that two matrices X,Y ∈ Ru×v, u, v ≥ 1 are structurally equivalent if for all 1 ≤ i ≤ u,
1 ≤ j ≤ v, Xi,j 6= 0 if and only if Yi,j 6= 0. Equivalently, if we consider the two (weighted) graphs
having X and Y as their adjacency matrices, X,Y are structurally equivalent if and only if their two
(weighted) graphs have exactly the same set of edges (with potentially different weights).

We say that a linear dynamical system (A,B,CT ) is structurally controllable if and only if there
are matrices A′, B′ structurally equivalent to A and B, resp., such that (A′, B′, CT ) is controllable. In
other words, a linear dynamical system is structurally controllable if and only if by replacing arbitrarily
any of its non-zero coefficients with other non-zero coefficients, the system can be made controllable.
The intuition is that by doing so, the structure of the associated graph remains unchanged.

The following surprising result shows that controllability is in fact a structural concept, and not a
numerical one. We recall based on [23] that in mathematical analysis a thin set is a subset of Rn with
the property that each element of the set has a neighbourhood on which some non-zero holomorphic
function vanishes. In particular, a thin set is nowhere dense.

Theorem 2.2. ([24]) If a linear dynamical system (A,B,CT ) is structurally controllable, then (A′,
B′, CT ) is controllable for all matrices A′ and B′ equivalent to A and B, resp., except a thin subset of
R

n×n ×Rn×m.

Intuitively, Theorem 2.2 shows that question Q1 on the controllability of a linear dynamical system
is in fact a question about its structure, i.e., about the directed graph (or network) associated to it,
defined in the following way. Let B = {1′, 2′, . . . ,m′} be the set of input nodes, A = {1, 2, . . . , n}
be the set of internal nodes, and T ⊆ A the set of target nodes. The network associated to the linear
dynamical system (A,B,CT ) has as its set of verticesA∪B, with T a subset of it. Its set of (directed)
edges consists of two types: the input edges {(j′, i) | j′ ∈ B, i ∈ A, bi,j 6= 0} and the internal edges
{(j, i) | i, j ∈ A, ai,j 6= 0}. We also define the set of driven nodes {i ∈ A | ∃j′ ∈ B : bi,j 6= 0}, i.e.,
the set of nodes of A adjacent to the input node set B.

The following result describes structural controllability in terms of a simple property of the asso-
ciated network.
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Theorem 2.3. ([25]) If the linear dynamical system (A,B,CT ) with A ∈ Rn×n, B ∈ Rn×m, CT ∈
R

k×n is structurally controllable, then in its associated network there is a set of k paths starting in
the input nodes and ending in the target nodes, in such a way that no two paths intersect at the same
distance from their end points.

Theorem 2.3 gives the foundation of the algorithmic solution to question Q2, discussed in the
following section.

2.2. Algorithmics

We discuss now question Q2, of finding a minimum number of input nodes making the linear dynam-
ical system controllable. We follow here the presentation of [14]. Also, thinking of the application to
selecting drug combinations, we formulate a version of the controllability problem where the set of
driven nodes should be selected as much as possible from a given set of preferred driven nodes. A
similar discussion is also in [17]. In our applications the preferred driven nodes will be considered
to be genes that can be targeted by currently available drugs, hence our stress on including as many
of such genes as possible in the set of driven nodes offered by our solution to Q2. We reformulate
question Q2 as follows:

Q′2 (Constrained structural target controllability). Let A ∈ Rn×n, CT ∈ Rk×n. Let also D ⊆
{1, 2, . . . , n} be the set of preferred driven nodes. Find the smallest m ≥ 1 and B ∈ Rn×m

such that:

1. (A,B,CT ) is target controllable and

2. |{i ∈ D | ∃j ∈ {1, 2, . . . ,m} : bi,j 6= 0}| is maximal.

It has been proved in [14] that the Q′2 problem is NP-complete. A heuristic algorithm to give
an approximate solution is also given in [14], formulated in terms of the associated network problem,
based on Theorem 2.3. The objective of the algorithm is to find a set of k paths ending in T and starting
from a minimal number of driven nodes, selected as much as possible from the set of preferred driven
nodes. A minimum set of (new) input nodes is introduced as initial nodes for these paths, in such a
way that Theorem 2.3 holds. This also defines matrix B. The solution is based on an iterated maximal
matching algorithm as follows.

Algorithm to find an approximation of a solution to Q′2 [14]. We are given a network G with
vertices A, a set of targets T ⊆ A of cardinality k and a set of preferred driven nodes D ⊆ A. We
seek a set of k paths ending in T and starting from a minimal number of nodes, selected as much as
possible from the set of preferred driven nodes. One more step then gives the final set of driver nodes
and matrix B, as explained above. In the description below we omit this final step because the focus
is on finding drug target nodes, with the set of drugs acting on them left to be documented from the
DrugBank database [26]. Skipping the additional step of mathematical optimisation helps to avoid
predictions of hypotehtical “super-drugs”, able to act simultaneously on many diverse targets.

We say that a set of nodes X dominates another set of nodes Y in a directed graph, if all nodes in
Y are successors of some nodes in X .



J.A. Sanchez Martin and I. Petre / Network Controllability of Three Multiple-myeloma Genetic Mutation Datasets 287

Step 1. Let T ′ = T be the current set of targets to be matched, I = ∅ the current set of initial nodes
for the control pathways.

Step 2. For up to n steps or until T ′ becomes the empty set, repeat the following. Select a set of
predecessors T ′′ of T ′ in G dominating a maximal subset of T ′, such that no two nodes in T ′

share a selected predecessor. Add to I the nodes of T ′ not dominated by T ′′ and let T ′ = T ′′.

Output Add all remaining nodes in T ′ to I and output I as the set of driven nodes.

Note that Step 2 of the algorithm allows for the choice of any set of predecessors T ′′ satisfying the
conditions formulated in the algorithm. This allows a randomised implementation of the algorithm, as
done in [27]. It also allows for several heuristics to support the objective of selecting as many input
nodes from T as possible. The obvious one is to select in T ′′ in each step a maximal number of nodes
from D. Several other heuristics are formulated in [14] and are implemented in [27].

3. Data

We discuss in this section the data we used to generate the three networks we analysed.

3.1. Patient mutation data

The genetic mutation data used in our study is from [21]. The provided dataset includes 203 different
tumour samples with thorough information about the mutated genes, the specific details of the muta-
tion and the patients’ characteristics, such as age, race and gender among others. We included in our
study only the information about the mutated genes in each sample. Table 4 summarises the mutation
data of [21].

Table 1. Patient mutation dataset statistics.

Number of tumour samples 203

Number of genes mutated in at least one of the samples 14 562

Number of genes mutated in at least 10 % of the samples 403

Number of genes mutated in at least 20 % of the samples 1

We chose for our analysis tumour samples 389, 343, and 191. We chose sample 389 because it
contains the largest number of mutated genes. We chose samples 343 and 191 for the diversity of
the network controllability analysis results, helping us to demonstrate the feasibility of the approach
in the medical context. For tumour 343 our results, discussed below, include both standard multiple
myeloma drugs, as well as a gene not targeted by current drugs, that is predicted to have strong effect
on this tumour: it controls 12 essential genes in the network. For tumour 191 we identified a multiple
myeloma drug that is not typically used in first-line treatments for this disease, yet it controls 11
essential genes in this network.
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3.2. Multiple myeloma survivability-essential genes

A gene is called survivability-essential for a cell if knocking it out leads to cell death [28, 29]. Through
the CRISPR-Cas9-based genome editing analysis, a wide range of results became recently available
for disease-specific survivability-essential gene, see [30, 31, 32]: these are genes whose knocking out
leads to cell death in diseased cells, but appears neutral in healthy cells. The concept of disease-specific
essential genes is immediately amenable to investigations for potential drug targeting. Unfortunately,
most such genes are untargettable by currently available drugs. Our conceptual alternative to this
problem is to use network controllability to find combinations of targets of available drugs, that can
control the disease-specific essential genes included in the tumour-specific network being analysed,
if any exist. This is the objective of our analysis, described in Section 4. The list of 70 multiple
myeloma-specific essential genes we used is from [32, 33, 34] and is shown in Table 2.

Table 2. Multiple myeloma: disease-specific surviavability-essential genes [32, 33, 34].

AGTRAP CUL9 IKZF3 NDC80 PSMA4 RPL38 TRIM68
AURKB EFNA2 IRF4 NFKB1 PSMA6 RRM1 TUBGCP6
CARS EIF3C KIF11 NFKB2 PSMC3 RSF1 UBB
CCND2 EIF4A3 KIF18A NUF2 PSMC4 SF3A1 UBQLNL
CDK11 GNRH2 KIFC2 PCDH18 PSMC5 SLC25A23 ULK3
CDK11A GPR77 LEPROT PIM2 RAB11A SNRPA1 USP36
CDK11B HIP1 MAF PLK1 RELA SNW1 USP8
CKAP5 IK MCL1 PRPF8 RELB TNK2 WBSCR22
COPB2 IKBKB MED14 PSMA1 RGAG1 TPMT WEE1
CSNK1A1 IKZF1 MED15 PSMA3 RPL27 TRIM21 XPO1

3.3. Multiple myeloma drug targets

The input node subset in the network controllability heuristics is constrained to the targets of the drugs
used in the standard therapy lines for multiple myeloma. With this selection, the algorithm gives
preference to the control pathways starting from such nodes, if any are found in the network being
analysed. This will maximise the number of drugs offered by our analysis as (theoretical) suggestions
for treatment of the tumours modelled by our networks. The list of the targets of the standard multiple-
myeloma drugs is in Table 3, with the data coming from [26, 35]. In the case of drugs having several
targets, we list all of them.

Table 3. The targets of the drugs used in standard therapy lines for multiple myeloma [26, 35].

ANXA1 CRBN HSD11B1 NOS2 NR3C1 PSMB2 PSMB9 TNF TUBA4A
CD38 FGFR2 NFKB1 NR0B1 PSMB1 PSMB5 PTGS2 TNFSF11 TUBB
CDH5 GSR NOLC1 NR1I2 PSMB10 PSMB8 SLAMF7 TOP2A
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3.4. Protein-protein interaction data

The edges of the network were constructed based on data on protein-protein interactions coming from
several public pathway databases: KEGG [36], OmniPath [37], InnateDB [38] and Signor [39]. We
only used interactions that can be interpreted as directed influences, such as protein activation and
inhibition. Each of these datasets comes in its own format, making it quite challenging to integrate
their data into a single network. We generated networks separately using each of them, and then
integrated them into a single network as described in Section 3.5.

3.5. Patient-specific protein-protein interaction networks

The networks associated to each of the patients (tumour samples) were constructed using the applica-
tion NetControl4BioMed [27], freely available at [40]. This is a bioinformatics software tool which
generates large protein-protein interaction networks around a given set of genes. In our case, the ini-
tial set of genes was the mutated genes in each of the three samples we analysed. The application can
generate such networks based on interaction data from KEGG, OmniPath, InnateDB and Signor. We
included in our networks all the edges between these genes. We also included all paths of length up to
three (a parametric value of NetControl4BioMed) between these genes, and added all the intermediary
new vertices to the network. For each sample we generated separate networks based on each of these
four interaction databases. We combined them offline through graph union, with the matching done
on vertices, based on their gene name annotation. We then eliminated all isolated nodes from the
networks. The three networks are quite different in size, consequence of the different numbers of the
mutated genes in each sample, and their connectivity in the interaction databases we used. A summary
of the networks topology is in Table 4 and in Figures 2-3. The three networks are available at [41] in
the Cytoscape [42] format.

Table 4. Summary of the topology of the three networks in our study.

MM-389 MM-343 MM-191

Number of mutated genes 4065 2774 217

Number of nodes 3740 3678 1306

Number of essential gene nodes 25 33 22

Number of multiple myeloma drug target nodes 33 35 36

Number of edges 9471 11520 2576

Network diameter 14 12 10

Characteristic path length 4.7 4.4 4.5

Average number of neighbours 4.6 5.7 3.2

4. Results

We ran the network controllability analysis of NetControl4BioMed with the control target set to the
list of multiple-myeloma essential genes in Table 2. We used as the preferred set of input nodes the
list of multiple myeloma drug targets in Table 3.



290 J.A. Sanchez Martin and I. Petre / Network Controllability of Three Multiple-myeloma Genetic Mutation Datasets

(a) (b) (c)

Figure 2. Out-degree distribution (logarithmic scale) for the network associated to: (a) tumour sample 389;
(b) tumour sample 343; (c) tumour sample 191.

(a) (b) (c)

Figure 3. Shortest path length distribution (a) tumor sample 389; (b) tumor sample 343; (c) tumor sample 191.
Note the different scale of the figures.

The result of the network controllability analysis is a set of input nodes that controls the set of
control target nodes. For those input nodes that were from the list of preferred inputs in Table 3, we
listed the drugs targeting these nodes, as obtained from [26]. As validation we compared this list
of drugs predicted by our analysis with the current state of the art regarding the multiple myeloma
therapy. We verified if among our predicted drugs there are instances of drugs commonly used in
primary and secondary treatments for multiple myeloma. We discuss separately each of the three
tumour samples analysed in our study. The network visualisation is done with Cytoscape [42], an
open source software platform for analysing complex networks and integrating these networks with
annotations, gene expression profiles and other data.

4.1. Tumour Sample 389

Tumour sample 389 has 4065 mutated genes, the largest number of mutated genes in the dataset of
[21]. The network we built for this sample is shown in Figure 4(a). There are 25 essential genes in
this network and the network control analysis found for them the control pathways shown visually in
Figure 4(b), listed also in Table 5.

Among the input nodes of these control pathways there were four (TNF, PSMB1, HDAC6, NFKB1)
that can be targeted by 5 FDA approved multiple myeloma drugs, namely Thalidomide, Pomalidomide,
Bortezomib, Carfilzomib and Panobinostat. This demonstrates that our analysis may help identify
several multiple-myeloma drugs targeting the specific interaction network of this tumour sample.
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(a) (b)

Figure 4. (a) The protein-protein interaction network associated to tumour sample 389 of [21]; (b) the subnet-
work induced by the nodes on the control pathways identified by our analysis. The larger nodes are those on the
control pathways. The ones in red are the multiple-myeloma-specific essential genes and the ones in light green
are the drug target genes. The edges of the control pathways are thicker.

Table 5. Tumour sample 389: the control pathways to the multiple myeloma essential genes in the network.
The essential genes are indicated in bold and the targets of standard multiple myeloma drugs in italics

MIR10A → MAPK1 → CAPN2 → GSK3B → CSNK1A1 → CHRM3 → GNAQ → PLCE1 → HRAS →
RAF1→ STK3→ PRKCA→ IRS1→ IGF1R→ PDPK1→ PRKCB→ CASR→ GNAI1→ PLCB1→
PRKCE→ COPB2

MIR10A → MAPK1 → CAPN2 → GSK3B → CSNK1A1 → CHRM3 → GNAQ → PLCE1 → HRAS →
RAF1→ STK3→ PRKCA→ IRS1→ IGF1R→ PDPK1→ PRKCB→ RAB11A

MIR10A → MAPK1 → CAPN2 → GSK3B → CSNK1A1 → CHRM3 → GNAQ → PLCE1 → HRAS →
RAF1→ STK3→ PRKCA→ EGFR→ HTT→ HIP1

MIR10A → MAPK1 → CAPN2 → GSK3B → CSNK1A1 → CHRM3 → GNAQ → PLCE1 → HRAS →
RAF1→ CAMK2A→ NCOR2→ SNW1

MIR10A → MAPK1 → CAPN2 → GSK3B → CSNK1A1 → CHRM3 → GNAQ → PLCE1 → HRAS →
RAF1→ STK3→ PRKCA→ EGFR→ TNK2

MIR10A→ GRB2→ SYK→ PTPN6→ SRC→ IKBKB→ PLK1
MIR10A→ GRB2→ SYK→ PTPN6→ SRC→ IKBKB
MIR10A→MAPK1→ CAPN2→ GSK3B→ CSNK1A1
MIR10A→MAPK1→MCL1
MIR10A→ GRB2→ SYK→ IKZF1
TNF→ BIRC2→ CD40→ TRAF2→MAP3K14→ RPL27
TNF→ BIRC2→ CHEK1→WEE1
PSMB1→ PSMB5→ PSMB9→ PSMD3→ PSMA6
HDAC6→ TUBA4A→ UBB
NFKB1→ RSF1
TPMT
AURKB
EFNA2
USP8
XPO1
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The control pathway results also suggest that the gene MIR10A, which controls 10 essential genes,
could be helpful for the treatment of this specific tumour. MIR10A is an RNA gene involved in gene
regulation, with an affinity for Hox genes, important in development processes. There are no approved
drugs currently available targeting this gene. We found that MIR10A is documented in dozens of
recent articles to be differentially expressed in cancer, see, e.g., [43, 44]. This is specifically linked to
multiple myeloma, see [45, 46]. We also found that MIR10A is succeeded on all the control pathways
found by our analysis by either MAPK1 or by GRB2. Both these genes are documented to be linked to
multiple myeloma, see [47, 48, 49, 50]. There is even a current clinical trial for multiple myeloma in
which MPAK1 alterations is an inclusion criterion. Since our algorithm searches for a minimization of
the number of input nodes, the selection of MIR10A to give simultaneous control over both MPAK1and
GRB2 is justified.

4.2. Tumor Sample 343

Tumour sample 343 has 2774 mutated genes. Its interaction network has 3678 nodes, out of which
33 were essential genes and 35 were targetable by multiple-myeloma drugs. Our analysis identified
three such drugs (Dexamethasone, Prednisone, Panobinostat) to help controlling some of the essential
genes. The network is shown in Figure 5(a) and the control pathways shown visually in Figure 5(b),
listed also in Table 6.

(a) (b)

Figure 5. (a) The protein-protein interaction network associated to tumour sample 343 of [21]; (b) the subnet-
work induced by the nodes on the control pathways identified by our analysis. The larger nodes are those on the
control pathways. The ones in red are the multiple-myeloma-specific essential genes and the ones in light green
are the drug target genes. The edges of the control pathways are thicker.

We also identified that targeting gene TNNT2 (for which no drug is available) could be highly
efficient for this sample, as it leads to controlling 12 essential genes, the highest such number we
obtained in our analyses. TNNT2 encodes for the cardiac muscle troponin T protein, with a role in
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Table 6. Tumour sample 343: the control pathways to the multiple myeloma essential genes in the network.
The essential genes are indicated in bold and the targets of standard multiple myeloma drugs in italics

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ CCR5→ JAK2→ RAF1
→MAP2K1→MAPK14→ TAB1→ CSNK1A1→ ATM→ RPA2→ CDK7→ CDK11B

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ CCR5→ JAK2→ RAF1
→MAP2K1→MAPK14→ TAB1→ CSNK1A1→ PLK1

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ CCR5→ JAK2→ RAF1
→MAP2K1→MAPK14→ TAB1→ IKBKB

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ GSK3B→ TP53→ BAX
→ BCL2L1→MAPK8→ XPO1

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ GRK2→ GNAQ→ RHOA
→ DIAPH1→ UBB

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ GSK3B→ TP53→ CHEK1
→ AURKB

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ MAP2K7→ MAPK10→
MCL1

TNNT2→ TNC→ EGFR→ FGFR1→ SHC2→ SRC→ PDPK1→ PRKCA→ GSK3B→ CSNK1A1
TNNT2→ TNC→ EGFR→ CRK→ PTK2→ PTEN→ RAC1→ PAK1→WEE1
TNNT2→ TNC→ EGFR→MAPK14→ RPS6KA6→ PPP1CA→ IKZF1
TNNT2→ TNC→ EGFR→ FGFR1→ GRB2→ IKZF3
TNNT2→ TNC→ EGFR→ TNK2
NR3C1→ NFKBIA→ NFKB1→ NCOR2→ SNW1
AP2M1→ CLTA→ HTT→ HIP1
PLCB1→ PRKCB→ RAB11A
HDAC6→ RELB
EIF3C
EFNA2
PSMA1
PSMA3
PSMA4
PSMA6
PSMC3
PSMC4
PSMC5
RSF1
USP8

regulating muscle contraction in response to alterations in intracellular calcium ion concentrations.
Amplifications in this gene is documented in some patients with prostate or breast cancer, see [51],
but it is not specifically linked to multiple myeloma. However, TNNT2is succeeded on our control
pathways by either TNC or EGFR, both very well documented in the context of multiple myeloma,
see [52, 53].

4.3. Tumour Sample 191

Tumour sample 191 has only 217 mutated genes. The network we built for it has 1306 nodes, out of
which 22 are essential genes and 36 are targetable by multiple myeloma drugs. The network is shown
in Figure 6(a) and the control pathways shown visually in Figure 6(b), listed also in Table 7. Our
analysis identified only one multiple myeloma drug (Dexamethasone) controlling some of its essential
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(a) (b)

Figure 6. (a) The protein-protein interaction network associated to tumour sample 191 of [21]; (b) the subnet-
work induced by the nodes on the control pathways identified by our analysis. The larger nodes are those on the
control pathways. The ones in red are the multiple-myeloma-specific essential genes and the ones in light green
are the drug target genes. The edges of the control pathways are thicker.

Table 7. Tumour sample 191: the control pathways to the multiple myeloma essential genes in the network.
The essential genes are indicated in bold and the targets of standard multiple myeloma drugs in italics

ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ HDAC6→ EGFR→ HDAC6→ EGFR
→ HDAC6→ EGFR→ PTGS2→ TP53→ PLK2→WEE1

ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ NR3C1→ NFKB1→ BIRC2→ CD40
→ TRAF6→ PSMB5→ PSMB1→ PSMB2→ PSMA4

ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ NR3C1→ NFKB1→ BIRC2→ CD40
→ TRAF6→ PSMB5→ PSMB1→ PSMC4

ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ NR3C1→ NFKB1→ IFNG→ PSMB8
→ PSMB9→ PSMC3

ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ NR3C1→ NFKB1→ BIRC2→ CD40
→ TRAF6→ PSMB5→ PSMC5

ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ NR3C1→ NFKB1→ RSF1
ANXA1→ RIPK1→ IKBKB→ PRKCA→ ADAM17→MAPK1→ HDAC6→ RELB
ANXA1→ RIPK1→ IKBKB→ PRKCA→ RPL10→ RPL38
ANXA1→ RIPK1→ IKBKB→ IKBKE→ KIF11
ANXA1→ RIPK1→ IKBKB→ PLK1
ANXA1→ RIPK1→ IKBKB
RASSF1→ ATM→ PSMA3
NOLC1→ UBB
AURKB
CSNK1A1
MED14
PSMA1
PSMA6
RPL27
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genes. However, this drug is predicted to have an unusual strong effect on this sample, as it controls
11 essential genes, the highest such number in our analyses. Dexamethasone is not typically used in
the first-line treatment for multiple myeloma, and our analysis offers the prediction that perhaps in this
case it could be used as such.

5. Discussion

We discussed in this paper how network controllability can be used to analyse tumour-level data. The
set of mutated genes in a tumour sample can be integrated into a directed protein-protein interaction
network by considering all interactions between the mutated genes. Such interactions may involve
also additional genes. The genes are represented as nodes in the network, and the interactions be-
tween them are represented by paths. In this interaction network one can then identify disease-specific
survivability-essential genes. Our objective was to find control pathways for them, starting as much
as possible from genes targetable by currently available drugs. We demonstrated how the results can
be interpreted as suggestions for combinatorial drug therapies.

Generating large interaction networks around the set of mutations of a sample is straightforward
through mining current interaction databases. We used the software in [27]. The networks we con-
structed consisted of between 1000 and 4000 nodes, and 2500 to 12 000 edges. Even larger, more
comprehensive networks can be constructed by including longer paths between the mutated genes.
The three networks we constructed share similar topological properties, summarised in Table 4 and in
Figures 2-3: a power-law distribution of their outdegrees, relatively small diameter, and the shortest
path lengths distributed roughly Poisson. These observations are consistent with the networks being
scale-free, in line also with observations of [54], [15], and others.

Network controllability turns out to be a powerful tool allowing us to connect disease-specific
essential genes with drugs, along with the accompanying pathway of the drug’s mechanism of action.
With the networks being constructed around the individual mutations of a tumour, this demonstrates
the (theoretical) potential of network controllability for personalised drug combination therapies on the
tumour level. We showed that some of the results we obtained can be traced back to drugs commonly
used in the treatment of multiple myeloma, which can be considered as (indirect, partial) validation of
the applicability of controllability for personalised medicine. Furthermore, some other findings seem
to suggest novel, highly efficient potential therapeutics: genes that if properly targeted may lead to the
control of several essential genes, or drugs typically used on later treatment lines that should perhaps
be used upfront. Such findings may be useful to design studies of novel targets and for deciding
optimal personalised treatment strategies.

A node in a network may be seen as influential (sometimes called hub) if its outdegree is high.
They are often singled out by simple topological network analyses and checked for their potential
as therapy targets. Our controllability results identify some nodes with high outdegree, but also,
somewhat unexpectedly, find drug targets that have a low outdegree but do control a high number of
essential genes. This is the case of node/gene ANXA1 in MM-191 that has outdegree 7, but controls
(through longer pathways) 11 essential genes.
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Controllability is a topic explored for many types of networks, including Petri nets, see [55]. Their
potential in the context of biological or biomedical applications such as those in [56], remains to be
explored, along similar lines as those explored in this paper.
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