Some applications of differential subordination for certain starlike functions

Rahim KARGAR ${ }^{1}$ © ${ }^{(0)}$ Lucyna TROJNAR-SPELINA ${ }^{2 *}$ ©
Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
${ }^{2}$ Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Rzeszów, Poland

| Received: 09.03 .2019 | Accepted/Published Online: $06.06 .2019 \quad$ Final Version: 31.07 .2019 |
| :--- | :--- | :--- |

Abstract: Let $\mathcal{S}^{*}\left(q_{c}\right)$ denote the class of functions f analytic in the open unit disc Δ, normalized by the condition $f(0)=0=f^{\prime}(0)-1$ and satisfying the following inequality

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right|<c \quad(z \in \Delta, 0<c \leq 1)
$$

By use of the subordination principle for the univalent functions we have

$$
f \in \mathcal{S}^{*}\left(q_{c}\right) \Leftrightarrow \frac{z f^{\prime}(z)}{f(z)} \prec \sqrt{1+c z} \quad(z \in \Delta, 0<c \leq 1) .
$$

In the present paper, for an analytic function p in Δ with $p(0)=1$ we give some conditions which imply $p(z) \prec \sqrt{1+c z}$.
These conditions are then used to obtain some corollaries for certain subclasses of analytic functions.
Key words: Analytic, univalent, subordination, Janowski starlike functions, Bernoulli lemniscate

1. Introduction

Let Δ be the open unit disc in the complex plane \mathbb{C}, i.e. $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and $\mathcal{H}(\Delta)$ be the class of functions that are analytic in Δ. Also, let $\mathcal{A} \subset \mathcal{H}(\Delta)$ be the class of functions that have the following Taylor-Maclaurin series expansion

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta)
$$

Thus, if $f \in \mathcal{A}$, then it satisfies the following normalization condition

$$
f(0)=0=f^{\prime}(0)-1
$$

The set of all univalent (one-to-one) functions f in Δ is denoted by \mathcal{U}. Let f and g belong to class $\mathcal{H}(\Delta)$. Then we say that a function f is subordinate to g, written by

$$
f(z) \prec g(z) \quad \text { or } \quad f \prec g
$$

[^0]if there exists a Schwarz function w with the following properties
$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \Delta)
$$
such that $f(z)=g(w(z))$ for all $z \in \Delta$. In particular, if $g \in \mathcal{U}$, then we have
$$
f(z) \prec g(z) \Leftrightarrow(f(0)=g(0) \quad \text { and } \quad f(\Delta) \subset g(\Delta))
$$

Furthermore, we say that the function $f \in \mathcal{U}$ is starlike if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \quad(z \in \Delta)
$$

The familiar class of starlike functions in Δ is denoted by \mathcal{S}^{*}. Also the function $f \in \mathcal{U}$ is called convex if and only if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0 \quad(z \in \Delta)
$$

We denote by \mathcal{K} the class of convex functions in Δ. A function $f \in \mathcal{A}$ is said to be close-to-convex, if there exists a function $g \in \mathcal{K}$ such that

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>0 \quad(z \in \Delta)
$$

The class of close-to-convex functions is denoted by \mathcal{C}. Note that $\mathcal{C} \subset \mathcal{U}$.
Let $c \in(0,1]$. We say that the function $f \in \mathcal{A}$ belongs to the class $\mathcal{S}^{*}\left(q_{c}\right)$, if it satisfies the following condition

$$
\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right|<c \quad(z \in \Delta)
$$

The class $\mathcal{S}^{*}\left(q_{c}\right)$ was introduced by Sokól, see [19]. Also, the class $\mathcal{S}^{*}\left(q_{1}\right) \equiv \mathcal{S} \mathcal{L}^{*}$ was considered in [20]. In Geometric Function Theory there are many interesting subclasses of starlike functions which have been defined by subordination, see for example $[3-8,14,16-18]$. In the sequel we give a necessary and sufficient condition for the class $\mathcal{S}^{*}\left(q_{c}\right)$ by using the subordination.

Define

$$
\begin{equation*}
q_{c}(z):=\sqrt{1+c z} \quad(z \in \Delta, c \in(0,1]) \tag{1.1}
\end{equation*}
$$

and Ω_{c} by

$$
\Omega_{c}:=\left\{\zeta \in \mathbb{C}: \operatorname{Re}\{\zeta\}>0,\left|\zeta^{2}-1\right|<c\right\}
$$

Then we have $q_{c}(\Delta)=\Omega_{c}$, see [19]. Indeed, the function $q_{c}(z)$ maps Δ onto a set bounded by Bernoulli lemniscate. It is easy to see that $f \in \mathcal{S}^{*}\left(q_{c}\right)$ if and only if it satisfies the following differential subordination

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q_{c}(z) \quad(z \in \Delta, c \in(0,1]),
$$

where q_{c} is defined by (1.1) and the branch of the square root is chosen to be $q_{c}(0)=1$. Noting to the above we have $\mathcal{S}^{*}\left(q_{c}\right) \subset \mathcal{S}^{*}$. Another class that we are interested to study is the class $\mathcal{U}(c)$ which is defined as follows:

$$
\mathcal{U}(c):=\left\{f \in \mathcal{A}:\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right| \leq c, 0<c \leq 1, z \in \Delta\right\}
$$

For each $c \in(0,1]$ we have $\mathcal{U}(c) \subset \mathcal{U}$, see [12]. Let A and B be two fixed constants such that $-1 \leq B<A \leq 1$. We denote by $\mathcal{S}^{*}[A, B]$ the class of Janowski starlike functions $f \in \mathcal{A}$ and satisfying the condition

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \Delta)
$$

This class was introduced by Janowski [2]. We remark that $\mathcal{S}^{*}[1,-1]$ becomes the class of starlike functions.
Next, we recall a lemma, called Jack's lemma.

Lemma 1.1 (see [1], see also [15, Lemma 1.3, p. 28]) Let w be a nonconstant function meromorphic in Δ with $w(0)=0$. If

$$
\left|w\left(z_{0}\right)\right|=\max \left\{|w(z)|:|z| \leq\left|z_{0}\right|\right\} \quad(z \in \Delta)
$$

then there exists a real number $k(k \geq 1)$ such that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$.
In this paper, for an analytic function $p(z)$ in the unit disk Δ we find some conditions that imply $p(z) \prec$ $\sqrt{1+c z}$. Also, some interesting corollaries are obtained.

2. Main Results

We start with the following.

Theorem 2.1 Let p be an analytic function in Δ with $p(0)=1,|A| \leq 1,|B|<1,0<c \leq 1$. Also let γ satisfy the following inequality

$$
\begin{equation*}
\gamma \geq \frac{2(|A|+|B|)}{c(1-|B|)}(1+c) \tag{2.1}
\end{equation*}
$$

Then the following subordination

$$
\begin{equation*}
1+\gamma \frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

implies that

$$
p(z) \prec \sqrt{1+c z} \quad(z \in \Delta) .
$$

Proof Let γ satisfy the condition (2.1) and consider

$$
\begin{equation*}
F(z):=1+\gamma \frac{z p^{\prime}(z)}{p(z)} \tag{2.3}
\end{equation*}
$$

for all $z \in \Delta$. Define the function w by the relation

$$
\begin{equation*}
p(z)=\sqrt{1+c w(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{2.4}
\end{equation*}
$$

or $w(z)=\left(p^{2}(z)-1\right) / c=w_{1} z+\cdots$. By the hypothesis, since p is analytic and $p(0)=1$, thus w is meromorphic in Δ and $w(0)=0$. We shall show that $|w(z)|<1$ in Δ. With a simple calculation (2.4) gives

$$
\gamma \frac{z p^{\prime}(z)}{p(z)}=\frac{c \gamma z w^{\prime}(z)}{2(1+c w(z))}
$$

Using the last equality in (2.3) we get

$$
F(z)=1+\frac{c \gamma z w^{\prime}(z)}{2(1+c w(z))}
$$

and thus by computation we obtain

$$
\frac{F(z)-1}{A-B F(z)}=\frac{c \gamma z w^{\prime}(z)}{2 A(1+c w(z))-B\left[2(1+c w(z))+c \gamma z w^{\prime}(z)\right]}
$$

Now assume that there exists a point $z_{0} \in \Delta$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Therefore, by Lemma 1.1, there exists a number $k \geq 1$ such that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$. Without loss of generality we may assume that $w\left(z_{0}\right)=e^{i \delta}$ where $\delta \in[-\pi, \pi]$. For this z_{0}, we have

$$
\begin{aligned}
\left|\frac{F\left(z_{0}\right)-1}{A-B F\left(z_{0}\right)}\right| & =\left|\frac{c k \gamma e^{i \delta}}{2 A\left(1+c e^{i \delta}\right)-B\left[2\left(1+c e^{i \delta}\right)+c \gamma k e^{i \delta}\right]}\right| \\
& \geq \frac{c k \gamma}{2|A|\left|1+c e^{i \delta}\right|+|B|\left|2+(2 c+c \gamma k) e^{i \delta}\right|} \\
& =\frac{c k \gamma}{2|A| p_{1}(\delta)+|B| p_{2}(\delta)} \\
& =: H(\cos \delta)
\end{aligned}
$$

where the expressions $p_{1}(\delta)$ and $p_{2}(\delta)$ have a form

$$
\begin{gathered}
p_{1}(\delta)=\sqrt{1+2 c \cos \delta+c^{2}} \\
p_{2}(\delta)=\sqrt{4+c(2+\gamma k)[4 \cos \delta+c(2+\gamma k)]}
\end{gathered}
$$

and

$$
H(t)=\frac{c k \gamma}{2|A| \sqrt{1+2 c t+c^{2}}+|B| \sqrt{4+4(2 c+c \gamma k) t+(2 c+c \gamma k)^{2}}}
$$

By a simple computation it can be easily seen that $H^{\prime}(t)<0$. Thus, H is a decreasing function when $-1 \leq t=\cos \delta \leq 1$ and consequently

$$
\begin{equation*}
H(t) \geq H(1)=\frac{c k \gamma}{2|A|(1+c)+|B|(2+2 c+c \gamma k)} \tag{2.5}
\end{equation*}
$$

Now consider the function

$$
\begin{equation*}
L(k)=\frac{c k \gamma}{2|A|(1+c)+|B|(2+2 c+c \gamma k)} \quad(k \geq 1) \tag{2.6}
\end{equation*}
$$

It is easy to see that $L^{\prime}(k)>0$. In conclusion,

$$
\begin{equation*}
L(k) \geq L(1)=\frac{c \gamma}{2|A|(1+c)+|B|(2+2 c+c \gamma)} \tag{2.7}
\end{equation*}
$$

Finally from the definition of H and from (2.5)-(2.7), it follows that

$$
\left|\frac{F\left(z_{0}\right)-1}{A-B F\left(z_{0}\right)}\right| \geq \frac{c \gamma}{2|A|(1+c)+|B|(2(1+c)+c \gamma)}=: T(A, B, c, \gamma)
$$

The inequality (2.1) implies that $T(A, B, c, \gamma)>1$. However, this is a contradiction with the assumption (2.2). This is the end of the proof.

$$
\text { If we put } p(z)=z f^{\prime}(z) / f(z) \text { in Theorem 2.1, then we obtain the following result: }
$$

Corollary 2.1 Let $|A| \leq 1,|B|<1,0<c \leq 1$ and let

$$
\gamma \geq \frac{2(|A|+|B|)}{c(1-|B|)}(1+c)
$$

If f satisfies the subordination

$$
1+\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{1+A z}{1+B z} \quad(z \in \Delta)
$$

then $f \in \mathcal{S}^{*}\left(q_{c}\right)$.
If we let $c=1$ in Corollary 2.1, then we have:

Corollary 2.2 Let $|A| \leq 1, B \mid<1$ and let

$$
\gamma \geq \frac{4(|A|+|B|)}{1-|B|}
$$

If f satisfies the following subordination

$$
1+\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{1+A z}{1+B z} \quad(z \in \Delta)
$$

then $f \in \mathcal{S} \mathcal{L}^{*}$.
Taking $A=1$ and $B=0$ in Corollary 2.2, we obtain:
Corollary 2.3 Let $\gamma \geq 4$. If f satisfies the following inequality

$$
\operatorname{Re}\left\{1+\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}>0
$$

for all $z \in \Delta$, then $f \in \mathcal{S} \mathcal{L}^{*}$.
If we put $p(z)=z \sqrt{f^{\prime}(z)} / f(z)$ in Theorem 2.1, then we have:
Corollary 2.4 Let $|A| \leq 1,|B|<1,0<c \leq 1$ and let

$$
\gamma \geq \frac{2(|A|+|B|)}{c(1-|B|)}(1+c)
$$

If the function f satisfies the following condition

$$
1+\gamma\left(1+\frac{1}{2} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{1+A z}{1+B z} \quad(z \in \Delta)
$$

then

$$
\left|\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)-1\right| \leq c \quad(z \in \Delta)
$$

This means that $f \in \mathcal{U}(c)$, hence it is univalent in Δ.
If we put $p(z)=\sqrt{f^{\prime}(z)}$ and $c=1$ in Theorem 2.1, then we have the following result:
Corollary 2.5 Assume that $|A| \leq 1,|B|<1$ and that

$$
\gamma \geq \frac{4(|A|+|B|)}{1-|B|}
$$

If

$$
1+\gamma\left(\frac{1}{2} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{1+A z}{1+B z} \quad(z \in \Delta)
$$

then f is univalent in Δ by [13].
If we put $p(z)=f(z) / z$ in Theorem 2.1, then we obtain the following result.
Corollary 2.6 Let $|A| \leq 1,|B|<1,0<c \leq 1$ and let

$$
\gamma \geq \frac{2(|A|+|B|)}{c(1-|B|)}(1+c)
$$

If the function f satisfies the following condition

$$
1+\gamma\left(\frac{z f^{\prime}(z)}{f(z)}-1\right) \prec \frac{1+A z}{1+B z} \quad(z \in \Delta)
$$

then

$$
\left|\left(\frac{f(z)}{z}\right)^{2}-1\right|<c
$$

for all $z \in \Delta$.
Taking $A=1$ and $B=0$ in Corollary 2.6, we obtain:
Corollary 2.7 Let $\gamma \geq 2(1+1 / c)$ with $c \in(0,1]$. If the following inequality holds

$$
\operatorname{Re}\left\{1+\gamma\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0 \quad(z \in \Delta)
$$

then

$$
\left|\left(\frac{f(z)}{z}\right)^{2}-1\right|<c \quad(z \in \Delta)
$$

For the proofs of next theorems we need a couple of lemmas.

Lemma 2.1 ([11]) Let q be univalent in the unit disk Δ and θ and ϕ be analytic in a domain \mathbb{U} containing $q(\Delta)$ with $\phi(w) \neq 0$ when $w \in q(\Delta)$. Set $Q(z)=z q^{\prime}(z) \phi(q(z)), h(z)=\theta(q(z))+Q(z)$. Suppose that Q is starlike (univalent) in Δ, and

$$
\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{\frac{\theta^{\prime}(q(z))}{\phi(q(z))}+\frac{z Q^{\prime}(z)}{Q(z)}\right\}>0 \quad(z \in \Delta)
$$

If p is analytic in Δ, with $p(0)=q(0), p(\Delta) \subset \mathbb{U}$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \phi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \phi(q(z)) \tag{2.8}
\end{equation*}
$$

then $p(z) \prec q(z)$, and q is the best dominant of (2.8).

Lemma 2.2 (see [9], see also [10, p. 24]) Assume that \mathcal{Q} is the set of analytic functions that are injective on $\bar{\Delta} \backslash E(f)$, where $E(f):\left\{\omega: \omega \in \partial \Delta\right.$ and $\left.\lim _{z \rightarrow \omega} f(z)=\infty\right\}$, and are such that $f^{\prime}(\omega) \neq 0$ for $(\omega \in \partial \Delta \backslash E(f)$. Let $\psi \in \mathcal{Q}$ with $\psi(0)=a$ and let $\varphi(z)=a+a_{m} z^{m}+\cdots$ be analytic in Δ with $\varphi(z) \not \equiv a$ and $m \in \mathbb{N}$. If $\varphi \nprec \psi$ in Δ, then there exist points $z_{0}=r_{0} e^{i \theta} \in \Delta$ and $\omega_{0} \in \partial \Delta \backslash E(\psi)$, for which $\varphi\left(|z|<r_{0}\right) \subset \psi(\Delta)$, $\varphi\left(z_{0}\right)=\psi\left(\omega_{0}\right)$ and $z_{0} \varphi^{\prime}\left(z_{0}\right)=k \omega_{0} \psi^{\prime}\left(\omega_{0}\right)$, for some $k \geq m$.

Next we prove the following.

Theorem 2.2 Let $p \in \mathcal{H}(\Delta)$ with $p(0)=1$ and $c \in(0,1]$. If the function p satisfies the subordination

$$
\begin{equation*}
\frac{1}{3} p^{3}(z)+z p^{\prime}(z) \prec \frac{1}{3}(\sqrt{1+c z})^{3}+\frac{c z}{2 \sqrt{1+c z}} \quad(z \in \Delta) \tag{2.9}
\end{equation*}
$$

then

$$
p(z) \prec \sqrt{1+c z} \quad(z \in \Delta)
$$

and the function $\sqrt{1+c z}$ is the best dominant of (2.9).
Proof Consider

$$
q_{c}(z)=\sqrt{1+c z}, \quad \theta(\omega)=\frac{1}{3} \omega^{3}, \quad \phi(\omega)=1
$$

We know that q_{c} is analytic and univalent in Δ. Also $q_{c}(0)=p(0)=1$. Moreover, both functions $\theta(\omega)$ and $\phi(\omega)$ are analytic in the ω-plane with $\phi(\omega) \neq 0$. The function

$$
Q(z)=z q_{c}^{\prime}(z) \phi(q(z))=\frac{c z}{2 \sqrt{1+c z}}=z q_{c}^{\prime}(z)
$$

is a starlike function, because q_{c} is convex. If we put

$$
\begin{equation*}
h(z)=\theta\left(q_{c}(z)\right)+Q(z)=\frac{1}{3} q_{c}^{3}(z)+z q_{c}^{\prime}(z) \tag{2.10}
\end{equation*}
$$

then we have

$$
\operatorname{Re}\left\{\frac{z h^{\prime}(z)}{Q(z)}\right\}=\operatorname{Re}\left\{1+c z+\left(1+\frac{z q_{c}^{\prime \prime}(z)}{q_{c}^{\prime}(z)}\right)\right\}>1-c \geq 0
$$

for all $z \in \Delta$. Therefore, the function h given by (2.10) is close-to-convex and univalent in Δ. Thus, by the Lemma 2.1 and (2.9), we find that $p(z) \prec q_{c}(z)$ and $q_{c}(z)$ is the best dominant of (2.9) so the desired conclusion follows.
If we put $p(z)=z f^{\prime}(z) / f(z)$, then we have the following result:
Corollary 2.8 Let $c \in(0,1]$. If a function f satisfies the subordination

$$
\frac{1}{3}\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{3}+\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\left(\frac{z f^{\prime}(z)}{f(z)}\right) \prec \frac{1}{3}(\sqrt{1+c z})^{3}+\frac{c z}{2 \sqrt{1+c z}}
$$

then $f \in \mathcal{S}^{*}\left(q_{c}\right)$ where $z \in \Delta$.
Finally we prove the following:
Theorem 2.3 Let $k \geq 1$ and $0<c \leq 1$. If $p \in \mathcal{H}(\Delta)$ with $p(0)=1$ and it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{p(z)\left(p(z)+z p^{\prime}(z)\right)\right\}>1+c(1+k / 2) \quad(z \in \Delta) \tag{2.11}
\end{equation*}
$$

then

$$
p(z) \prec \sqrt{1+c z} \quad(z \in \Delta) .
$$

Proof Suppose that $p(z) \nprec q_{c}(z)=\sqrt{1+c z}$. Then there exist points $z_{0},\left|z_{0}\right|<1$ and $\omega_{0},\left|\omega_{0}\right|=1, \omega_{0} \neq 1$ satisfying the following conditions

$$
p\left(z_{0}\right)=q_{c}\left(\omega_{0}\right), \quad p\left(|z|<\left|z_{0}\right|\right) \subset q_{c}(\Delta) \quad \text { and } \quad\left|\omega_{0}\right|=1
$$

From Lemma 2.2, we find that there exists a number $k \geq 1$ such that

$$
\begin{equation*}
\left\{p\left(z_{0}\right)\left(p\left(z_{0}\right)+z p^{\prime}\left(z_{0}\right)\right)\right\}=\left\{q_{c}\left(\omega_{0}\right)\left(q_{c}\left(\omega_{0}\right)+k \omega_{0} q_{c}^{\prime}\left(\omega_{0}\right)\right)\right\}=1+c(1+k / 2) \omega_{0} \tag{2.12}
\end{equation*}
$$

By setting $\omega_{0}=e^{i \delta}, \delta \in[-\pi, \pi]$ in (2.12), it can be easily seen that

$$
\operatorname{Re}\left\{1+c(1+k / 2) \omega_{0}\right\}=1+c(1+k / 2) \cos \delta \leq 1+c(1+k / 2)
$$

However, it contradicts our assumption (2.11) and consequently $p(z) \prec q_{c}(z)$ in Δ.
If we let $p(z)=z f^{\prime}(z) / f(z)$, then we have the following result:
Corollary 2.9 Let $0<c \leq 1$ and let $k \geq 1$. If f satisfies the following inequality

$$
\operatorname{Re}\left\{\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)\right\}>1+c(1+k / 2) \quad(z \in \Delta)
$$

then $f \in \mathcal{S}^{*}\left(q_{c}\right)$.

Acknowledgments

The authors would like to thank Professor S. Ponnusamy for providing information about the reference [13].

KARGAR and TROJNAR-SPELINA/Turk J Math

References

[1] Jack IS. Functions starlike and convex of order α. Journal of the London Mathematical Society 1971; 3: 469-474.
[2] Janowski W. Some extremal problems for certain families of analytic functions I. Annales Polonici Mathematici 1973; 28: 297-326.
[3] Kargar R, Ebadian A,Sokół J. On Booth lemniscate and starlike functions. Analysis and Mathematical Physics 2019; 9: 143. https://doi.org/10.1007/s13324-017-0187-3
[4] Kargar R, Ebadian A, Sokół J. Radius problems for some subclasses of analytic functions. Complex Analysis and Operator Theory 2017; 11: 1639-1649.
[5] Kumar S, Ravichandran V. A subclass of starlike functions associated with a rational function. Southeast Asian Bulletin of Mathematics 2016; 40: 199-212.
[6] Kuroki K, Owa S. Notes on new class for certain analytic functions. RIMS Kokyuroku Kyoto University 2011; 1772: 21-25.
[7] Mendiratta R, Nagpal S, Ravichandran V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. International Journal of Mathematics 2014; 25: 17 pp .
[8] Mendiratta R, Nagpal S, Ravichandran V. On a subclass of strongly starlike functions associated with exponential function. Bulletin of the Malaysian Mathematical Sciences Society 2015; 38: 365-386.
[9] Miller SS, Mocanu PT. Differential subordinations and univalent functions. Michigan Mathematical Journal 1981; 28: 151-171.
[10] Miller SS, Mocanu PT. Differential Subordination, Theory and Application. New York, NY, USA: Marcel Dekker, Inc., 2000.
[11] Miller SS, Mocanu PT. On some classes of first order differential subordinations. Michigan Mathematical Journal 1985; 32: 185-195.
[12] Obradović M, Ponuusamy S. Univalence and starlikeness of certain transforms defined by convolution of analytic functions. Journal of Mathematical Analysis and Applications 2007; 336: 758-767.
[13] Obradović M, Ponuusamy S. Univalence of the average of two analytic functions. In: 60 years of analytic functions in Lublin-in memory of our professors and friends Jan G. Krzyż, Zdzisław Lewandowski and Wojciech Szapiel; 2012. pp. 169-183.
[14] Raina RK, Sokół J. Some properties related to a certain class of starlike functions. Comptes Rendus Mathématique 2015; 353: 973-978.
[15] Ruscheweyh S. Convolutions in Geometric Function Theory. Montreal, Quebec: Les Presses de l'Université de Montréal, 1982.
[16] Sharma K, Jain NK, Ravichandran V. Starlike functions associated with a cardioid. Afrika Matematika 2016; 27: 923-939.
[17] Sokół J. A certain class of starlike functions. Computers \& Mathematics with Applications 2011; 62: 611-619.
[18] Sokół J, Stankiewicz J. Radius of convexity of some subclasses of strongly starlike functions. Folia Scienten Univiversity of Tech Resoviensis 1996; 19: 101-105.
[19] Sokół J. On some subclass of strongly starlike functions. Demonstratio Mathematica 1998; 21: 81-86.
[20] Sokół J. Radius problems in the class $\mathcal{S L}^{*}$. Applied Mathematics and Computation 2009; 214: 569-573.

[^0]: *Correspondence: lspelina@prz.edu.pl
 2000 AMS Mathematics Subject Classification: 30C45

