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Atopic asthma after rhinovirus-induced wheezing is associated
with DNA methylation change in the SMAD3 gene promoter
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Abstract

Children with rhinovirus-induced severe early wheezing have an increased risk of

developing asthma later in life. The exact molecular mechanisms for this association

are still mostly unknown. To identify potential changes in the transcriptional and

epigenetic regulation in rhinovirus-associated atopic or nonatopic asthma, we ana-

lyzed a cohort of 5-year-old children (n = 45) according to the virus etiology of the

first severe wheezing episode at the mean age of 13 months and to 5-year asthma

outcome. The development of atopic asthma in children with early rhinovirus-

induced wheezing was associated with DNA methylation changes at several geno-

mic sites in chromosomal regions previously linked to asthma. The strongest

changes in atopic asthma were detected in the promoter region of SMAD3 gene at

chr 15q22.33 and introns of DDO/METTL24 genes at 6q21. These changes were

validated to be present also at the average age of 8 years.
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1 | INTRODUCTION

Rhinovirus has been detected in 20%-40% of children with moder-

ate-to-severe wheezing episodes during the first 2 years of life.1-3

This etiology is of particular interest due to strong association with

recurrent wheezing, prolonged need of asthma controller medication,

doctor-diagnosed asthma up to 13 years of age4-10, and atopic

asthma at school age.11 The suggested explanations for this associa-

tion are low interferon responses (ie, impaired viral defense), early

airway inflammation (ie, broken epithelial barrier; T helper2-polarizedOsmala, Malonzo, L€ahdesm€aki, Lahesmaa and Jartti equally contributed to this study.
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immune responses) and genetic variations.12-16 Despite progress in

rhinovirus research, the exact molecular mechanisms for this associa-

tion are still mostly unknown.17 Furthermore, early predictive

biomarkers are needed for the identification of the rhinovirus-

infected children with an increased risk for developing asthma and

enabling design of effective intervention strategies to prevent

asthma.11,18 For these reasons, we examined epigenomic and tran-

scriptomic changes in 5-year-old children associated with the virus

etiology of their first wheezing episode and later asthma status.

2 | METHODS

The detailed study protocols are described in the Data S1.

2.1 | Clinical study protocol

The study protocol was approved by the Ethics Committee of the

Turku University Hospital and for the first 12 months was registered

at ClinicalTrials.gov (NCT00731575). At study entry, standard proce-

dures were carried out as previously described.19 The inclusion crite-

ria were age 3-23 months, delivery at ≥36 gestational weeks, first

wheezing episode and a written informed consent from a guardian.

Selected children were recruited to regular follow-up visits. Children

were diagnosed to have current asthma at the 4-year follow-up visit

if they met one or more of the subsequent criteria during the pre-

ceding 12 months: doctor-diagnosed asthma, regular use of doctor-

prescribed corticosteroid asthma therapy, use of oral corticosteroids

for asthma exacerbations, acute asthma attack relieved by repeated

use of bronchodilator.20 Current atopic asthma was defined as

asthma with laboratory-verified sensitization (IgE antibodies

>0.35 kU/L) at the 4-year follow-up visit. Nonatopic asthma was

defined as asthma without these. The statistical analysis is described

in Data S1.

2.2 | Epigenome and transcriptome analysis

Total RNA (Tempus Spin RNA Isolation kit) and DNA (Qiagen’s

QIAamp DNA Blood Maxi kit) were isolated from whole blood. The

messenger RNA-seq samples were prepared with Illumina TruSeq

RNA Sample Preparation kit v2. The reduced representation bisulfite

sequencing (RRBS) libraries were prepared with a protocol adapted

from Boyle et al.21,22 For genomic localization of promoters and

enhancers H3K4me1, H3K4me3 and H3K27Ac ChIP-seq was carried

out from peripheral blood mononuclear cells isolated from 2 refer-

ence individuals. Briefly, the chromatin was prepared (truChIP Low

Cell Chromatin Kit, Covaris) and ChIP reactions (Auto Histone ChIP-

seq kit) were carried out with Diagenode IP-Star SX 8G robot. The

libraries were sequenced with Illumina HiSeq2000 platform. The raw

data were quality controlled with FastQC23 and other tools

described in the Data S1. The RNA-seq data were analyzed with

RNA Express v1.0.0 in Illumina BaseSpace cloud.24-26 The RRBS data

were filtered with Trim Galore! v0.3.3,27 and reads were aligned to

human genome hg19 with bismark v0.12.528 and bowtie2 v2.2.3.29

The methylation calls were extracted with Bismark. Outliers (eg,

RnBeads MDS and PCA30) were excluded from the analysis. Differ-

entially methylated regions were identified with RADMeth.31,32 The

ChIP-seq data were analyzed in Illumina BaseSpace Cloud with ChIP-

Seq BaseSpace Labs tool. In addition, ENCODE ChIP-seq data on

H3K4me1, H3K4me3, H3K27me3, and H3K9me3 from PBMCs were

utilized in the analysis to examine colocalization of DNA methylation

changes with histone marks.33-35

2.3 | Targeted pyrosequencing

The oligos were designed with Pyromark Software Assay Design 2.0.

Samples were prepared, and pyrosequencing was carried out with

Qiagen’s Pyromark Q24 according to the manufacturer’s instructions.

The data were analyzed with Pyromark Advanced Software.

Unpaired t test was used to calculate the statistical differences

between study groups. See the Data S1 for more details.

3 | RESULTS

3.1 | Patient characteristics

Originally, 124 first-time wheezing children were enrolled of whom

77 (62%) children participated in the 4-year follow-up visit

(Table S1). Of these, 48 most representative children were selected

for the transcriptome and epigenome studies according to the virus

etiology of their first severe wheezing episode, and their 5-year

asthma outcome as follows: rhinovirus + asthma + (n = 16), rhi-

novirus + asthma � (n = 16), and rhinovirus � asthma � (n = 16).

Three study subjects from the latter group were excluded after qual-

ity analysis. Further details of patient characteristics are shown in

Tables S2 and S3.

3.2 | DNA methylome and transcriptome changes
in rhinovirus-associated wheezing and asthma

Comparison of the children with rhinovirus + atopic

asthma + (n = 11) vs rhinovirus + asthma � (n = 16) revealed

methylation changes (median change �20% and FDR ≤0.05) in 17

genomic regions associated with atopic asthma (Table 1). The stron-

gest changes were observed in the region chr6:110720838-

110720871 located in the introns of genes D-aspartate oxidase

(DDO) and methyltransferase like 24 (METTL24), and region

chr15:67356671-67356696 located 1511 bp upstream of the tran-

scription start site of SMAD family member 3 (SMAD3) gene, close

to active promoter mark (H3K4me3). Similarly, comparison of the

children with rhinovirus + nonatopic asthma + (n = 5) vs rhi-

novirus + asthma � (n = 10) revealed differences in 13 genomic

regions (Table 1). The strongest change associated with nonatopic

asthma was observed in the site chr9:139860386-139860387 over-

lapping enhancer mark H3K4me1, 9.12 kb upstream of the gene

prostaglandin D2 synthase (PTGDS).
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Interestingly, no differences in gene expression (fold change cut

off �1.4, FDR ≤0.05) were observed to be associated with either

atopic or nonatopic asthma at the time of sampling, although for

example SMAD3 gene was detected to be expressed in the blood of

the study subjects.

3.3 | Targeted validation and stability of the DNA
methylation changes

The CpG methylation changes associated with atopic asthma at the

DDO/METTL24 intron (chr6:110720839-110720905) and SMAD3

promoter (chr15:67356631-67356721) with RRBS (Table 1) were

confirmed with targeted pyrosequencing of the samples collected at

the average age of 5 years (Figure 1A, Figure S1). Importantly, analy-

sis of the samples collected from the same children at the average

age of 8 years revealed that the methylation changes associated

with atopic asthma in these 2 regions were still present 3 years later

(P ≤ 5.08E-04; Figure 1B).

4 | DISCUSSION

We detected epigenetic changes in several genomic regions in

children who had suffered early rhinovirus-induced wheezing, and

which associated with later onset of asthma. Interestingly, among

the strongest changes associated with atopic asthma was DNA

TABLE 1 The differentially methylated genomic regions associated with rhinovirus-induced wheezing and asthma (median methylation
difference ≥20, FDR ≤0.05)

Genomic location (hg19) No. of sites Median meDiff (%) Genomic element Chromatin marks (�1 kb) Closest gene (Symbol)

Differentially methylated genomic regions associated with atopic asthma

chr15:67356671-67356696 2 41.68 Intergenic H3K4me1, -me3 SMAD3

chr10:116273998-116274013 2 33.70 Intronic H3K4me1 ABLIM1

chr2:158287048-158287070 2 29.13 Intronic H3K4me1a CYTIP

chr7:73456938-73456960 4 28.34 Exon-intron – ELN

chr13:110384309-110384326 4 28.07 Intergenic H3K4me3a LINC00676, IRS2

chr7:35302562-35302563 1 27.40 Intergenic H3K27me3a TBX20

chr2:31806387-31806402 2 25.17 Intergenic H3K27me3 SRD5A2

chr16:89674059-89674095 3 23.19 Intergenic – DPEP1

chr17:80542056-80542086 3 21.92 Exon-intron – FOXK2

chr19:9711129-9711155 2 21.65 Intergenic – ZNF561

chr7:66211672-66211673 1 21.28 Intronic H3K4me1a RABGEF1

chr7:1005102-1005133 5 21.24 Exon, intron H3K4me1a COX19, ADAP1

chr14:106437030-106437045 2 �20.36 Exon-intron – abParts, ADAM6

chr11:123388388-123388389 1 �20.64 Intergenic – GRAMD1B

chr1:143279717-143279732 2 �20.98 Intronic – CR936796

chr6:29831764-29831935 4 �24.13 Intronic – HLA-G, HLA-H

chr6:110720838-110720871 3 �48.19 Intronic H3K4me3 DDO, METTL24

Differentially methylated genomic regions associated with nonatopic asthma

chr9:139860386-139860387 1 45.95 Intergenic H3K4me1a PTGDS

chr6:144329349-144329433 4 35.90 Intron, exon H3K4me1, -me3a PLAGL1

chr1:3292550-3292562 2 34.38 Intron – PRDM16

chr19:2546695-2546719 6 32.88 Intron – GNG7

chr7:138726331-138726332 1 26.95 Intergenic – ZC3HAV1

chr7:48241582-48241586 2 24.72 Intron – ABCA13

chr6:169977857-169977884 3 24.09 Intron – WDR27

chr11:67051767-67051780 2 23.21 Exon H3K4me1a, -me3a ADRBK1

chr18:77906226-77906417 4 22.51 Intron H3K4me1a, -me3a PARD6G-AS1

chr6:20320057-20320136 4 20.95 Intergenic H3K4me1, -me3a E2F3

chr9:45439874-45439891 3 �23.22 Intergenic H3K4me1, -me3 LOC102723709

chr4:3572886-3572887 1 �33.30 Intergenic – LINC00955

chr4:49150172-49150193 4 �34.46 Intergenic H3K4me1, -me3, H3K27me3 CWH43

aDifferentially methylated region overlaps with the histone mark.
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methylation alteration in the promoter of SMAD3 gene in a well-

known asthma locus at chr 15q22.33.36 SMAD3 protein has an

important function in the regulation of immune responses and

together with the other components of the transforming growth

factor beta (TGFb) signaling regulate fibrosis in airways.37 While

our study was in progress, DeVries et al38 reported that hyperme-

thylation of SMAD3 promoter is associated with asthma of children

of asthmatic mothers further confirming importance of this epige-

netic change in the molecular pathology of asthma. In addition, we

detected changes in DDO/METTL24 genes at 6q21 and in HLA

locus at chr 6p21.1-22.3 previously associated with asthma.39

HLA-G gene, 33 kb upstream from the differentially methylated

region, is an asthma susceptibility gene,40 and its expression is

induced by allergens.41 Several other differentially methylated sites

were also in the proximity of genes, such as ELN42 or CYTIP,43,44

previously linked to lung or immune cell functions, or viral

infections, therefore having potential functional significance in the

atopic asthma.

Among the strongest changes associated with nonatopic asthma

was DNA methylation change linked to PTGDS gene. PTGDS

F IGURE 1 Validation and stability of
the DNA methylation changes associated
with atopic asthma. The strongest DNA
methylation changes associated with atopic
asthma (rhinovirus + atopic asthma + vs
rhinovirus + atopic asthma �) were
validated with targeted pyrosequencing (A)
at the average age of 5 y and (B) at the
average age of 8 y in samples collected
from the same children. In addition, to
outlier box plots, the distribution of DNA
methylation levels of individual CpG sites
within the indicated region for each
individual is shown in the figure. In
addition, median methylation differences
and t test P-values are shown in the figure
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catalyzes synthesis of prostaglandin D2, which mediates develop-

ment and symptoms of asthma by recruiting Th2 cells and inducing

contraction of airways smooth muscle cells.45,46 Prostaglandin D2

enhances proinflammatory actions of macrophages and subsequent

neutrophil activation.47 Therefore, altered regulation of PTGDS may

be important in the development of nonatopic asthma.

In conclusion, our results demonstrate that epigenetic changes

associated with rhinovirus-induced early wheezing and asthma can

be detected in peripheral blood. The strongest changes associated

with atopic asthma were localized in the genomic regions previously

associated with asthma15,16,36 and importantly for SMAD3 promoter

and in DDO/METTL24 gene were detected at the age of both 5 and

8 years. Although we did not detect significant changes in the tran-

scriptomes at the time of measurement, it is possible that the regula-

tion of the affected genes is altered, for example in response to

antigen challenge. Alternatively, the DNA methylation changes

detected in blood reflect functional changes present in other tissues,

such as airways.
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