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We address some key conditions under which many-body lattice models, intended mainly as
simulated condensed matter systems, can be investigated via immersed, fully controllable quantum
objects, namely quantum probes. First, we present a protocol that, for a certain class of many-body
systems, allows for full momentum resolved spectroscopy using one single probe. Furthermore, we
demonstrate how one can extract the two-point correlations using two entangled probes. We apply
our theoretical proposal to two well-known exactly solvable lattice models, a 1D Kitaev chain and
2D superfluid Bose-Hubbard model, and show its accuracy as well as its robustness against external
noise.

I. INTRODUCTION

Cold atoms [1–3] in optical lattices stand as an al-
most ideal experimental platform where several con-
densed matter models on lattice, such as the Hubbard
and Heisenberg Hamiltonians, can be simulated effi-
ciently [4–6]. These simulated systems allow to explore
the properties of quantum many-body models on lattice
in a protected environment, where lattice imperfections
are absent. In this context it is possible to implement
quantum probing strategies for many-body systems via a
set of controllable and measurable systems able to extract
valuable information. Such quantum probes are conceived
as an alternative to more invasive traditional techniques
and their possible use has recently received a great deal
of attention, as experiments within atomic or spin impu-
rities immersed in optically trapped atomic gases have
been performed [7–9].

A good body of literature is already available, showing
the advantages of such a novel approach when studying
optically trapped cold atoms [10–16]. Various schemes
have been proposed, to probe temperature [17], phononic
excitations [18], Luttinger physics [19] and genuine many-
body phenomena such as the orthogonality catastro-
phe [20–23]. Quantum probes [24–26] have also been
shown to detect critical phenomena [27] and signal phase
transitions in trapped ions [28, 29] and spin models
[30, 31]. Other works have employed the quantum prob-
ing paradigm to analyse the spectral properties of com-
plex quantum networks [32], reconstruct squeezed ther-
mal states from an optical parametric oscillator [33] and
estimate the bound to the minimal length of quantum
gravity theories by performing measurements on a har-
monic oscillator [34]. The range of interest and applica-
bility of quantum probes is therefore very wide, although
no general theory of quantum probing has yet been for-
mulated and many questions regarding this approach re-
main still unanswered.

Some aspects of such a theory are strictly model-

dependent; nevertheless, one may still wonder whether
some general and model-independent results can be de-
rived. This is the exact aim of this manuscript. We
address two key points of quantum probing from a more
general perspective. First, we discuss a minimal set of
assumptions needed to develop simple and yet general
enough quantum probing protocols; and, second, we anal-
yse what kind of information regarding a many-body sys-
tem is accessible via such protocols. While the first ques-
tion will naturally lead to identify some physical systems
that are potentially good candidates for quantum prob-
ing, the second focuses more on the trade-off between
the resources needed, such as, e.g., the number of probes
needed, and the type of information one can extract. In
what follows, by relying only on some fundamental quan-
tum features of the probe(s), such as the discreteness of
their energy spectrum, or the initial entanglement be-
tween two of them, we are going to provide efficient tools
to detect various properties of a large class of many-body
systems. We aim to investigate two scenarios. First, we
consider a single quantum probe, typically an impurity of
some sort, embedded in a lattice many-body system, and
demonstrate that one can perform momentum resolved
spectroscopy of the many-body system. This is achieved
by tailoring the spectrum of the impurity and measuring
transitions probabilities between its energy levels, with
the probe sitting in different positions with respect to
the many-body system. The proposed method does not
give a solution to a previously unsolved task, but its nov-
elty relies on the different paradigm on which it is based.
Contrarily to standard techniques, indeed, our approach
is a good candidate to perform full momentum resolved
spectroscopy in a potentially less invasive way, avoiding
direct measurements performed on the many-body sys-
tem. We then move to a two-probe scenario, to show
that the use of entangled probes allows us to monitor
the spreading of correlations throughout the system by
measuring one and two-probe transition rates. So far, en-
tangled probes or entangled states in general have been
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mainly employed in the field of quantum metrology as a
resource to improve the accuracy of parameter estima-
tion [35–38]. In this work, instead, we directly relate the
transition rates of entangled probes to two-point (spatial)
correlations characterizing the many-body system.

As we aim at probing the many-body system in the
least invasive way, we assume weakly coupled probes, so
that transition probabilities between their energy levels
can be expressed in terms of a thermally weighted Fermi
Golden Rule.

II. QUANTUM PROBING PROTOCOLS

A. Momentum-resolved spectroscopy

We start off by setting the general Hamiltonian of a
many-body system interacting with an impurity probe
(h̄ = 1)

Ĥ = ĤMB + ĤP + gĤint, (1)

in which ĤP =
∑
n̄ εn |n̄〉 〈n̄| and ĤMB are the free

Hamiltonians for the impurity and for the many-body
system, respectively. Ĥint is the interaction Hamiltonian,
which is assumed to weakly perturb the many-body sys-
tem while inducing transitions between the probe energy
levels:

Ĥint =
∑
εm̄>εn̄

|m̄〉 〈n̄|⊗ Φ̂[m̄, n̄]+
∑
εm̄<εn̄

|m̄〉 〈n̄|⊗ Φ̂†[m̄, n̄],

(2)
where Φ̂[m̄, n̄] ∝

∑
k γ

k
m̄,n̄b̂k (Φ̂†) describes the single

particle absorption (emission) occurring into the modes
of the many-body system with amplitudes γkm̄,n̄, together
with the transition |n̄〉 → |m̄〉 for the probe. Such an in-
teraction term is fairly general, and can be related to var-
ious models employed so far to study the non-Markovian
dynamics of open systems of non interacting particles lin-
early coupled to thermal environments [39].

A key point, here, is the complete knowledge of the
eigensystem of ĤP , which we label {εn̄, ψn̄(x)}, as well
as the ability to tune it via some external control param-
eters. To move forward in the derivation, we i) select two
eigenstates of the probe, namely |ḡ〉 and |ē〉, whose tran-
sition frequency ν is tunable, ii) assume weak coupling
between the impurity and the many body system, iii) as-
sume the total system at the initial time to be of the form
ρ(0) = |ḡ〉 〈ḡ|⊗e−βĤMB/ZMB , where the many-body sys-
tem is in thermal equilibrium, with inverse temperature
β.

1. Fermi Golden Rule

Within the above assumptions the total time-
dependent transition probability from |ḡ〉 to |ē〉 can be

written (See Appendix A for the explicit derivation)

Γḡ→ē(t) = g2

∫ t

0

dt1

∫ t

0

dt2〈Φ̂†[ḡ, ē](t1)Φ̂[ē, ḡ](t2)〉

e−iν(t1−t2) +O(g4).

(3)

For the sake of concreteness we make two further as-
sumptions usually satisfied in experiments with cold
atoms.We focus our attention on iv) systems character-
ized by a (known) lattice structure. Formally, this al-
lows us to characterize our system in terms of Bloch
functions wk(x), with corresponding frequency ωk and
ladder operators b̂k. We also make the standard as-
sumption of confining the dynamics to the lowest Bloch
band. Any Bloch function, in turn, can be expanded
in terms of site-localised Wannier functions as wk(x) =∑

r γke
ikrWr(x). We also the assume the amplitudes

γkm̄,n̄ to be proportional to the overlapping integrals,
γkm̄,n̄ =

∫
dx ψ∗ē(x)ψḡ(x)wk(x), where ψē/ḡ(x) are the

probe wavefunctions.
Finally, v) we assume the probe to be local, so that

the interaction is localised on one lattice site, say 0 =
(0, 0, 0), and the only relevant overlapping integral is
that one involving the corresponding Wannier function,
W0(x).

The time-rescaled transition rate then reads

Γ̃ḡ→ē(t) ≡ Γḡ→ē(t)/g
2t2

=
∑
k

|J0γk|2 sinc2

[
(ν − ωk)t

2

]
nk,

(4)

in which J0 =
∫

dx ψ∗ē(x)ψḡ(x)W0(x) and nk is the aver-
age number of thermal excitations at ωk. When measur-
ing the transition rate Eq. (3) as a function of the probe
frequency, one will observe resonance peaks revealing the
(single-particle) excitation spectrum of the many-body
system. The amplitudes of such peaks read, according to
Eq. (4), A2

k = dk|J0γk|2nk, where dk is the k-th mode
degeneracy.

The position of the peaks gives a direct measure of the
excitation frequencies of the system; but, in order to fully
reconstruct the dispersion relation of the many-body sys-
tem, the correct k has to be associated to each ωk. We
have found that this can be achieved by repeating the
protocol while changing the position of the probe and
comparing the corresponding transition rates. In partic-
ular, we show below through some specific examples that
the number of different measurements that we need to
perform is related to the dimensionality of the system to
be probed; therefore we label the different measurement
sets with the index i = 1, . . . d. The ratio between the
amplitudes of the resonant peaks obtained from these ex-
tra measurements and those of the first one is found to
satisfy the relation

A2
k
i

A2
k

=

∣∣∣∣ JiJ0
∣∣∣∣2 ∑

k|ν=ωk

Gi(k), i = 1, ..., d (5)
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where Ji =
∫

dx ψ∗ē(x−ai)ψḡ(x−ai)W0(x) andGi(k) are
functions of the momentum that can be deduced from ge-
ometric considerations (see Appendix A). In order to ob-
serve the resonant peaks the time of measurement should
be larger then the typical time scale associated to the
low-energy portion of the spectrum and, on the other
hand, short enough to guarantee the validity of the per-
turbative approach. An optimal choice of this time lies

in the range
[
max

[
4π

~vk·~VR

]
, 1/g

]
, in which ~vk and ~VR are

the group velocity and the volume of the first Brillouin
zone. For instance, in the simple case of phonons in a
1-D lattice, the lower bound is 4πNsa/cs, with cs being
the speed of sound.

Once the ratio Ji/J0 is measured, Eqs. (5) should be in-
verted to associate each momentum k to the correspond-
ing frequency ωk. This procedure will be exemplified in
the following section, where we apply the protocol to two
different physical models, and show its properties and

study its robustness against noise.

2. Master equation and thermodynamic limit

The protocol, as outlined above, appears not to be
practically feasible if the the many-body system under
scrutiny is too large. Indeed, in this case, the reso-
nance peaks would become increasingly closer, making
the probe tunability rather challenging if not impossible.
However, in the thermodynamic limit and for a gapless
energy spectrum, Eq. (4) still does give the correct tran-
sition rates provided that the sum is replaced by an inte-
gral, in the continuum limit

∑
k ωk →

∫
dk. In this case,

using standard open quantum system approaches within
the Born-Markov approximation, one can derive a master
equation describing the dynamics of the probe. Assum-
ing the probe is resonant with some excitation energy of
the system, ν = ω(k), we have

dρP
dt

= g2|J0γ(k)|2
[

[1 + sn(ν)]

(
σ−ρPσ

+ − 1

2

{
σ+σ−, ρP

})
+ n(ν)

(
σ+ρPσ

− − 1

2

{
σ−σ+, ρP

})]
, (6)

in which we have neglected the Lamb and Stark contri-
butions, s = ±1 distinguishes between bosonic/fermionic
baths and σ̂± are the two-level system ladder operators.
When the probe is initialised to ρP (0) = |ḡ〉 〈ḡ|, simple
solutions are found for both bosonic and fermionic envi-
ronments respectively

ρēē(t) =
n(ν)

2n(ν) + 1
(1− e−γBt), (7)

ρēē(t) = n(ν)(1− e−γF t), (8)

in which γB = g2d(k)|J0γ(k)|2(2n(ν) + 1) and γF =
g2d(k)|J0γ(k)|2. The information about the momentum
is encoded into these decay rates, and the ratio needed
in Eq. (5) can be obtained by means of an extra set of
measurements, as outlined in the previous paragraph.

3. Bloch functions spectroscopy

We conclude this section by showing that the scheme
discussed so far also allows, at least in principle, for the
reconstruction of the Bloch functions, provided that the
probe can be placed at a varying distance s from its initial
position. Indeed, for a displacement s of the probe, the
amplitude |Ak| of the resonant peak reads

|Ak|
(dknk)

1
2

=

∣∣∣∣∣
∫

dx ψ∗ē(x−s)ψḡ(x−s)wk(x)

∣∣∣∣∣ = |ψ∗wk|(s)

(9)

where ψ(x − s) ≡ ψ∗ē(x − s)ψḡ(x − s), and ∗ denotes
the convolution integral. If both ψ and wk are real
functions, then the Fourier transform of Eq. (9) gives
Ak(p) = ψ(p)wk(p). Since the eigenstates of the probe
are known, it is possible to extract wk(p) from the mea-
surements. By transforming back to real space, the Bloch
function wk(x) can be finally obtained. Notice that, due
to the symmetry of the lattice, Ak(s) needs to be sampled
in a fraction of the 1st Brillouin zone only.

B. Probing of Quantum Correlations

In the previous section we showed that a single quan-
tum impurity with a discrete and tunable energy spec-
trum allows for a complete reconstruction of the disper-
sion relation of a certain class of many-body systems.
Having more than a single controllable probe at our dis-
posal, and assuming that entangled states can be pre-
pared, correlation properties of the many-body system
can be extracted.

In what follows, we show how the spreading of two-
point correlations in the many-body system can be
mapped onto a simple function of the impurity transition
rates in a two-entangled-probe setting. Let us assume
that two identical impurities, say A and B, are placed on
xA and xB respectively. The total system+probe Hamil-
tonian reads

Ĥ = ĤE + ĤPA
+ ĤPB

+ gĤint, (10)

with an interaction Hamiltonian analogous to the one
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used above,

Ĥint =
∑
n̄,m̄

|n̄〉A 〈m̄|A ⊗ Φ̂[m̄A,n̄A]
xA

+
∑
n̄,m̄

|n̄〉B 〈m̄|B ⊗ Φ̂[m̄B ,n̄B ]
xB

,
(11)

in which Φ̂
[m̄,n̄]
xA|B are now the many-body observables

whose correlation function we are interested in. We
consider two-level impurities prepared in the Bell state
|Ψ0〉 = 1√

2
(|ḡA, ēB〉 + |ēA, ḡB〉). The combined initial

state of the impurities and of the many-body system
is therefore ρ(0) = |Ψ0〉 〈Ψ0| ⊗ e−βĤMB/ZMB . As we
demonstrate in detail in Appendix B, the spreading of
correlations in the many-body system following the em-
bedding of the impurities are captured by the following
combination of one- and two-impurity transition rates,
that we compute as in Eq. (3):

Γ = Γ
(2)
|Ψ0〉→|ēA,ēB〉 −

∑
P=A,B

1

2
Γ

(1)
|ḡP 〉→|ēP 〉

=
g2

2

∫ t

0

dt1

∫ t

0

dt2
∑

i,l=A,B
i 6=l

〈Φ̂[ēi,ḡi]
xi

(t1)Φ̂[ḡl,ēl]
xl

(t2)〉

eiν(t1−t2).

(12)

By tracking the time-evolution of Γ, two-point correla-
tions can be monitored. Given its model-independence,
this protocol can be also applied to many-body sys-
tems with long-range interactions, which break the Lieb-
Robinson bound [40, 41].

III. APPLICATIONS

In this section we apply the one- and two-probe proto-
cols described above to two examples. First we consider
probing a 1D long-range fermionic hopping model that
has recently attracted an increasing interest as its exact
solvability makes it a good candidate to explain quali-
tatively the physical behaviour behind the propagation
of correlations in systems with long range interactions
[42]; then we discuss the probing of a 2D Bose Hub-
bard model in the superfluid phase. In particular, in
the second example, the experimental implementation of
the momentum-resolved spectroscopy protocol in a cold
atom platform is discussed in some details, and compared
to other available methods.

A. 1D Kitaev chain

Recently, long-range hopping models have been receiv-
ing a renewed attention due to their experimental re-
alisability, demonstrated in solid state systems. As an

example the so-called helical Shiba chains made of mag-
netic impurities on an s-wave superconductor have been
implemented [43, 44]. On the other hand these models
share some features with long range Ising models, exper-
imentally realizables with trapped ions and cold atoms
[45, 46], where also long range tunnelling has been ob-
served [47].

Here, we consider a 1D lattice model for spinless
fermionic excitations to prove both the usefulness and
the robustness of our protocols. The many-body Hamil-
tonian has the form of a generalized Kitaev ring with
long-range hopping [42, 48, 49]

Ĥ =

Ns∑
l 6=j=1

Jlj ĉ
†
l ĉj + ∆

∑
j=1

ĉ†j ĉ
†
j+1 + H.c., (13)

in which ∆ and Jlj = J |π/(Ns sin[π(l − j)/Ns])|α are
the pairing and long range tunnelling coefficients, respec-
tively. We choose a two-level probe, ĤP = νŜz, for which
we assume the following interactions for the first and sec-
ond step of the momentum resolved spectroscopy,

ĤI
int = gσ̂+

∑
k

cos(θk/2)ˆ̃ck + H.c., (14)

ĤII
int = gσ̂+

∑
k

[1 + cos(k)] cos(θk/2)ˆ̃ck + H.c.. (15)

These Hamiltonians are precisely of the form given in
the general formulation above, with Φ̂[ē, ḡ] = Φ̂[1, 0] =∑
k cos(θk/2)ˆ̃ck. Furthermore, ĤI

int and ĤII
int corre-

spond to the two measurement configurations required
to achieve momentum resolved spectroscopy in 1D, as
illustrated in Fig. 1. The energy and momentum re-
solved spectrum extracted from the transition rates are
displayed in Fig. 1, where we also assumed a non-perfect
control of the coupling constants, thus introducing some
systematic error (see caption). These plots demonstrate
the accuracy and robustness of the protocol for the mo-
mentum resolved spectroscopy, showing that it is possible
to reconstruct a non-monotonic (but non-degenerate) en-
ergy spectrum.

As for the probing of correlations, we consider two
probes placed on sites l and j, and assume now an ex-
plicit position-dependent interaction. We make the re-
placement

∑
k cos(θk/2)ˆ̃ck → ĉl, in order to get a clearly

position-dependent observable. Nonetheless, the previ-
ous interaction can be obtained from this new one if a
rotating wave approximation is applicable.

The Γ function then reads

Γ =
g2

2

∫ t

0

dt1

∫ t

0

dt2〈ĉ†l (t1)ĉj(t2)+ĉ†j(t1)ĉl(t2)〉eiν(t1−t2).

(16)
The time-evolved correlations, as extracted from Γ, are
also displayed in Fig. 1.
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Figure 1. (a) Sketch of a probe overlapping with either one or two lattice sites of a 1-D chain. Measurements in both of
the positions are required to perform momentum resolved spectroscopy. (b) Transition probabilities corresponding to the two
probe positions, displayed in black and purple, respectively. (c) Reconstructed spectrum. The purple dots are the frequencies
extracted from the transition probabilities data, while the black ones are the exact values. Here the source of error is given by
the finite sampling in the probe frequency ν. An additional random 2% error has been added to the ratios of the peaks, and
g′/g has been estimated by summing over them. The agreement is very good, although two points are missing in the dispersion
relation. The corresponding frequency is clearly visible in the transition probability, but the errors hinders the estimation of
the proper momentum. (d) Quantum correlation function with a clear light-cone structure emerging while it spreads across
the lattice. All the plots are drawn for J/∆ = 5, α = 0.3, and Ns = 51. Everywhere, ∆ is the energy and inverse time unit.

B. Bose-Hubbard: Superfluid 2D

1. Bosonic environment and mean field theory

Before moving to the second application of our proto-
col, we first show, in general terms, how the momentum
resolved protocol can be applied in the experimentally
relevant case of an interacting gas of cold Bosons. The
starting point is to consider that also the probe will inter-
act with the Bose gas via a density-density interaction,
which can be described with the usual assumption of a
contact potential. Denoting by Φ̂(x) the many-body field
operator, we can write

Ĥint =
∑
n̄,m̄

∫
dx ψ∗m̄(x)ψn̄(x) |m̄〉 〈n̄|⊗Φ̂†(x)Φ̂(x). (17)

Loosely speaking, with such a probe-system interaction,
the probe transition probability will show a resonance ev-
ery time the energy difference between its levels matches
the energy difference between the modes of the many
body system (provided the transition is allowed, thanks
to a non-vanishing overlapping integral).

By adopting a mean-field description for the lattice
many-body system, the field operator can be written as
Φ̂(x) = Φ0(x) + δ̂Φ(x), with δ̂Φ(x) describing linear
fluctuations around the mean-field value Φ0(x). Given
the lattice structure of the many-body system, we can
expand δΦ(x) =

∑
k wk(x)b̂k, in which wk(x) are lat-

tice Bloch functions. Neglecting contributions that are
quadratic in the fluctuations, the interaction Hamilto-
nian reads

Ĥint =
∑
n̄,m̄

∫
dx ψ∗m̄(x)ψn̄(x) |m̄〉 〈n̄| ⊗{

Φ2
0 + Φ0

∑
k

[
wk(x)∗b̂†k + wk(x)b̂k

]}
.

(18)

Using the same preparation and measurement procedures
discussed in general terms in Sec. II, the rescaled transi-
tion rate analogous to that in Eq. (4) reads

Γḡ→ē(ν, t) = g2
{

Γ0(ν, t)+
∑
k

Γ−k (ν, t)+Γ+
k (ν, t)

}
, (19)
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where

Γ0(ν, t) = |γ0|2Φ4
0 sinc(νt), (20)

Γ−k (ν, t) = Φ2
0|J0γk|2 sinc2

[
(ν + ωk)t

2

]
(1 + n(ωk)),

(21)

Γ+
k (ν, t) = Φ2

0|J0γk|2 sinc2

[
(ν − ωk)t

2

]
n(ωk). (22)

with γ0 =
∫

dx ψ∗ē(x)ψḡ(x). For large enough measuring
times, resonant peaks appear in the ν-dependent transi-
tion rates, whose amplitudes read A2

k = dk|J0γk|2nk, if
ν > 0.

By repeating the measurement with the probe in dif-
ferent positions, as described in Sec. II, the analogous
of Eq. (5) can be obtained, from which the momentum
resolved spectrum can be finally extracted, as discussed
in detail below for the case of a 2D Bose-Hubbard model.

2. 2D Superfluid

Let us now present the second application of our proto-
col. To this end, we consider a gas of cold bosonic atoms
in the lowest energy band of a 2D optical potential. This
system is very well described by the Bose-Hubbard model

[50–53]:

Ĥ = −J
∑
〈l,j〉

ĉ†l ĉj +
U

2

∑
j

n̂j(n̂j − 1)− µ
∑
j

n̂j . (23)

In the limit J � U , the system is in the superfluid
phase, with a low-energy spectrum due to phononic ex-
citations above a uniform Bose-Einstein condensate [54].
These excitations have been successfully resolved in en-
ergy using techniques such as magnetic gradients [55]
and lattice depth modulation [56]. Furthermore, a full
momentum-resolved spectroscopy has been performed
using two-photon Bragg spectroscopy in [57, 58]. Al-
though quite successful, such methods strongly interfere
with the dynamics of the gas and are therefore very inva-
sive. We apply our quantum probe protocols in this case,
by assuming the probe immersed in the lattice to be an
atomic quantum dot trapped in a 3D harmonic poten-
tial, with energy states ψn̄(x) = ψ

(νx)
nx (x)ψ

(νy)
ny (y)ψ

(ν)
nz (z).

As shown in Ref. [13], the density-density interaction
typical of cold atoms, when applied to the case of a su-
perfluid/BEC in the mean-field approach, gives rise to a
linear coupling of the impurity to density fluctuations in
the many-body system.

To start the reconstruction procedure, we evaluate the
transition probability between impurity states along the
direction orthogonal to the lattice, say, e.g., the z axis,
Γ̃0̄→(0,0,nz) as a function of the probe trapping frequency
in that direction, νz. As a matter of fact, Γ̃0̄→(0,0,nz)

depends on νz as well as on the overlap between the lat-
tice Wannier states and the unperturbed eigenfunctions
of the impurity. For the first measurement, we find that
the transition rate is given by exactly the same expression
reported in Eq. (4), but with the prefactor now given by

J0γk =

∫
dxψ2

nx=0(x)W 2
0 (x)

∫
dy ψ2

ny=0(y)W 2
0 (y)(−1)nz

√
m
γ

1/2
nz γ

1/2
0

π

√
νzβk, (24)

As depicted in Fig. 2, and as discussed briefly in gen-
eral terms above, the reconstruction of the single particle
excitation spectrum for a 2D lattice system requires two
further measurements, with the probe placed in different
positions. Thus, the overall protocol develops in three
subsequent steps with the probe placed as in in Fig. 2
(a). I) , II) and III), during which the rates ΓI,ΓII and
ΓIII are extracted.

In a realistic experimental realization the in-plane
trapping frequencies, νx and νy, can be modified in or-
der to achieve a suitable wave-function overlap with the
nearest neighboring sites, as necessary for the protocol.
The information obtained by using these three steps al-
lows for the reconstruction of the full dispersion relation
ω(k). Indeed, by taking the ratios of the second and third
transition rates with respect to the first one at each reso-

nant peak, one obtains two relations that can be inverted
to extract the two components of the momentum vector
k = (kx, ky) associated to the selected peak frequency.
In our case, we have (see Appendix A for the details){

Γ̃II

Γ̃I
= 2|J1

J0
|2
[
cos2(kxa2 ) + cos2(

kya
2 )
]
,

Γ̃III

Γ̃I
= 16|J2

J0
|2 cos2(kxa2 ) cos2(

kya
2 ).

(25)

These relations are easily numerically inverted, so that a
vector k is associated to each peak frequency ω found in
the transition rates, with the result reported in Fig. 2.

Finally, for measuring the correlation function, one
needs to use two entangled probes, located at sites l and
j. Following the line of the derivation given above, one
obtains the collective decay rate Γ analogous to that of
Eq. (12). For this system we show in detail in Appendix
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(a)

(b) (c)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.001

0.01

0.1

1

10

ΝHJL
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�

(d)

Figure 2. (a) Sketch of the probe-positions in the three stages of the protocol. (b) Semi-log plot of the low-energy transition
probabilities Γ̃(I,II,III), rescaled by | Ji

J0
|2, for the three cases shown in (a), drawn in black, yellow and purple, respectively for a

lattice of Ns = 121 sites. (c) Reconstructed dispersion relation (purple dots). (d) The correlation function defined in Eq. 26
for a square lattice of Ns = 1212 sites, displayed at three different times. In each plot, the value of the correlation function has
been scaled to its maximum, J has been taken as energy and inverse time units, with U = 0.1J .

B that the following expression holds:

Γ =
ḡ2

2

∫ t

0

dt1

∫ t

0

dt2〈n̂l(t1)n̂j(t2)+

+ n̂j(t1)n̂l(t2)〉eiν(t1−t2),

(26)

where ḡ is a new coupling constant containing the over-
lap integral. Due to the density-density interaction of
the impurity with the boson gas, thus, the function Γ
contains information about the density-density correla-
tion function, whose behaviour can be extracted from
the measured values of the transition rates, as reported
in Fig. 2.

Both the one- and two-probe protocols are in princi-
ple feasible for a 2D superfluid with current technology
[7, 59–61]. In particular, it has been proven that the con-
trol of the position of an impurity in an optical lattice can
be achieved in different ways. For example using species-
selective or spin-selective optical lattice, by changing the
polarization angle of the laser beams generating the lat-
tice it is possible to obtain two spin dependent potentials
that split in opposite direction [62]. Efficient control over
a single spin at a specific site of an optical lattice has been
achieved recently, with the further benefit of leaving the
atom in the vibrational ground state, that is the initial
state of our probe [9]. Detecting the locations of such im-
purities is nowadays in the grasp of the experimentalists



8

[63, 64] as well as measuring the populations of excited
vibrational states [65, 66].

IV. CONCLUSIONS

We have demonstrated how global properties of a
certain class of many-body systems can be extracted
by means of controllable quantum probes. Our ap-
proach is rather general, being only based on the as-
sumptions of full control of the probe position and of
its interaction with the many-body system. Within such
framework, we have demonstrated that it is possible
to obtain the single particle excitation spectrum of the
system and perform momentum-resolved spectroscopy
via energy-resolved measurements on a single quantum
probe. Moreover, the spatial profile of the unperturbed
Bloch functions can be reconstructed. By exploiting en-
tangled probes that locally alter the equilibrium configu-
ration of the many-body system, it is possible to monitor
the spreading of correlations across the latter.

Our description can be applied to diverse systems, and
we illustrated the probing procedures for 1) a 1D long
range fermionic model, and 2) an interacting boson gas
in a 2D lattice. In the second case, in particular, we have
exploited the advanced state of the art of the cold atoms
field to provide a more detailed and experimentally feasi-
ble description. Our proposal exemplifies the essence of
the quantum probing approach, wherein some of the typ-
ical complexity of a many-body system can be imprinted
onto the open dynamics of a smaller system, and thereby
locally extracted in a much less invasive way.

The authors would like to thank Dr. Elmar Haller and
Prof. Andrew Daley for useful discussions. This work
has been supported by the Horizon 2020 EU collaborative
project QuProCS (Grant Agreement 641277).

Appendix A: Single Probe - Transition probability

In this Appendix, we sketch the perturbative approach
leading to the Fermi-Golden-Rule-like equation used to
describe the momentum resolved spectroscopy protocol.
In general terms, the probability for a ground to excited
state transition, due to the interaction with the many-
body environment can be written as

Γḡ→ē(t) = TrMB 〈ē| ρ(t) |ē〉 = TrMB 〈ē| Û(t)ρ(0)Û†(t) |ē〉 ,
(A1)

where Û(t) is the time evolution operator in the interac-
tion picture. With the assumption of weak coupling we
can resort to an expansion in powers of g, so that Û(t) =

1 + gÛ1(t) + g2Û2(t) + ... . Truncating up to the first
order in g the relevant term is Û1(t) = −i

∫ t
0

dt1Ĥint(t1),

so that the transition probability takes the form

Γḡ→ē(t) ' g2TrMB 〈ē| Û1(t)ρ(0)Û†1 (t) |ē〉+O(g4)

= g2

∫ t

0

dt1

∫ t

0

dt2

TrMB 〈ē| Ĥint(t1)ρ(0)Ĥint(t2) |ē〉+O(g4).

(A2)

In a weak coupling regime, this expression works very
well as its first correction would be of fourth order in g.
For the interaction Hamiltonian in Eq. (2) we get

Γḡ→ē(t) ' g2

∫ t

0

dt1

∫ t

0

dt2

TrMB

{
Φ̂[ē, ḡ](t1)ρβΦ̂†[ḡ, ē](t2)

}
e−iνt2eiνt1

= g2

∫ t

0

dt1

∫ t

0

dt2〈Φ̂†[ḡ, ē](t1)Φ̂[ē, ḡ](t2)〉

e−iν(t1−t2).

(A3)

In order to proceed further, we recall that Φ̂[m̄, n̄] ∝∑
k γ

k
m̄,n̄b̂k, with which it is easy to obtain

Γḡ→ē(t) = g2

∫ t

0

dt1

∫ t

0

dt2
∑
k,q

γkē,ḡγ
q∗
ē,ḡ〈b̂

†
kbq〉

ei(ωk−ν)t1e−i(ωq−ν)t2

= g2
∑
k

|γkē,ḡ|2nk|
∫ t

0

dt1e
i(ωk−ν)t1 |2

= g2t2
∑
k

|γkē,ḡ|2nk sinc2[
(ν − ωk)t

2
],

(A4)

as reported in Eq. 4. However, to perform full momen-
tum resolved spectroscopy we need to know the geome-
try of the system we intend to probe. This information
is crucial in order to define the positions required for the
different measurements required by the protocol and the
relations among them, which are embodied in the func-
tions Gi(k).

As an example, here we calculate the functions Gi(k)
for a simple square lattice in 2D. The k-dependent am-
plitudes are assumed to depend on an overlapping in-
tegral that involves the probe unperturbed eigenfunc-
tions and on the Bloch functions of the lattice sys-
tem γkm̄,n̄ =

∫
dx ψ∗ē(x)ψḡ(x)wk(x). The Bloch func-

tions can, in turn, be expanded in the Wannier basis
as wk(x) =

∑
r γke

ikrWr(x). In a 2D scenario, mea-
surements in three different positions are required. The
optimal basis is represented by the following positions
{a0 = (0, 0), a1 = (1/2, 0), a2 = (1/2, 1/2)}. In the first
measurement the impurity is exactly on top of a lattice
site and the locality of the interaction allows us to con-
sider as relevant only the overlapping integral that in-
volves a single Wannier state (the one centered on the
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site (0,0)). In the two other cases, the nearest neigh-
bours contribute equally to the overlapping integral, giv-
ing two further contributions for the second measurement
and four in the third one. These assumptions about the
localisation of the probe allow to replace the Bloch func-
tions in the three overlapping integrals in the following
way

wk(x) '


γkW(0,0)(x)

γk(W(0,0)(x) + eikxW(1,0)(x))

γk(W(0,0)(x) + eikyW(0,1)(x)+

+eikxW(1,0)(x) + eikW(1,1)(x))

(A5)

For a perfect and regular lattice, Wannier functions
centered on different sites have the same shape. The
amplitudes associated to each transition are, then,


|J0γk!2

|J1γk|22[1 + cos(kx)]

|J2γk|2[16 cos2(kxa2 ) cos2(
kya
2 )]

(A6)

where Ji =
∫

dx ψ∗ē(x − ai)ψḡ(x − ai)W(0,0)(x), with
i = 0, 1, 2. It is important to mention that each resonant
peak depends on all the transitions with equal energy;
in other words, it is a sum of the contributions from all
the possible transitions with the same energy. This ap-
proach takes into account only the degeneracy given by
the geometry. Thanks to these considerations, we find

∑
k|ν=ωk

Gi(k) =

{
2 cos2(kxa2 ) + 2 cos2(

kya
2 ) i = 1

16 cos2(kxa2 ) cos2(
kya
2 ) i = 2

.

(A7)
In 1D, just two different positions are required, and the
optimal choice is given by the probe on top of a lattice
site and between two adjacent sites. With this choice
it is easy to find under the same assumptions of a local
interaction ∑

k|ν=ωk

G(k) = 4 cos2(
ka

2
) (A8)

Appendix B: Two Probes - Transition probability

In this Appendix, we derive the combined rate given
in Eq. (12) that allows to probe spatial quantum correla-
tions. The starting point is to assume that the environ-
ment and the two probes interact locally on two different
sites

Ĥint =
∑
n̄,m̄

|n̄〉A 〈m̄|A⊗Φ̂[m̄A,n̄A]
xA

+
∑
n̄,m̄

|n̄〉B 〈m̄|B⊗Φ̂[m̄B ,n̄B ]
xB

,

(B1)
where Φ̂

[m,n]
xA and Φ̂

[m,n]
xB are the observables whose cor-

relations we want to study. We consider two entangled

probes |Ψ〉 = 1√
2
(|nA, sB〉 + |mA, rB〉), so that the total

state of the system reads

ρ̂tot = |Ψ〉 〈Ψ| ⊗ ρ̂

=
1

2
(|nA, sB〉 〈nA, sB |+ |nA, sB〉 〈mA, rB |

+ |mA, rB〉 〈nA, sB |+ |mA, rB〉 〈mA, rB |)⊗ ρ̂.

(B2)

We calculate the transition probability Γ(|mAsB〉) =
〈mA, sB | ρ̂tot(t) |mA, sB〉 resorting to an expansion of the
time evolution operator to the first order in g, as for the
single probe case. After a few straightforward steps, we
find

Γ(|mAsB〉) '
1

2

∫ t

0

dt1

∫ t

0

dt2

〈ei(νmA−νnA)t1Φ̂[mA,nA]
xA

(t1)ei(νnA−νmA)t2Φ̂[nA,mA]
xA

(t2)

+ ei(νsB−νrB)t1Φ̂[sB ,rB ]
xB

(t1)ei(νrB−νsB)t2Φ̂[rB ,sB ]
xB

(t2)

+ ei(νmA−νnA)t1Φ̂[mA,nA]
xA

(t1)ei(νrB−νsB)t2Φ̂[rB ,sB ]
xB

(t2)

+ ei(νsB−νrB)t1Φ̂[sB ,rB ]
xB

(t1)ei(νnA−νmA)t2Φ̂[nA,mA]
xA

(t2)〉
(B3)

Combining the result with the transition probabilities
obtained in separate single probe experiments (ρ̂tot =
|nA〉 〈nA| ρ̂ and ρ̂tot = |rB〉 〈rB | ⊗ ρ̂ ) we get Eq. (12)

Γ = Γ(|mAsB〉)−
1

2
Γ(|mA〉)−

1

2
Γ(|sB〉)

=
g2

2

∫ t

0

dt1

∫ t

0

dt2

〈Φ̂[mA,nA]
xA

(t1)Φ̂[rB ,sB ]
xB

(t2)ei(νmA−νnA)t1ei(νrB−νsB)t2

+ Φ̂[sB ,rB ]
xB

(t1)Φ̂[nA,mA]
xA

(t2)ei(νsB−νrB)t1ei(νnA−νmA)t2〉.
(B4)

If the two probes are identical, and choosing νmA−νnA =
νsB−νrB = ν in order to simplify the function Γ, we have

Γ =
g2

2

∫ t

0

dt1

∫ t

0

dt2〈Φ̂[mA,nA]
xA

(t1)Φ̂[rB ,sB ]
xB

(t2)+

+ Φ̂[sB ,rB ]
xB

(t1)Φ̂[nA,mA]
xA

(t2)〉eν(t1−t2).

(B5)

1. Density-density correlation function

In this section, we explicitly derive the expression of
Γ for the case in which the probes and the many-body
system interact via a density-density interaction, as that
introduced in the discussion of the probing of the super-
fluid,

g
∑
n̄,m̄

∫
dx ψ∗m̄(x)ψn̄(x) |m̄〉 〈n̄| ⊗ Φ̂†(x)Φ̂(x). (B6)
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Assuming a probe to be localized in the site j, the aux-
iliary operator is defined as

Φ̂[m,n]
xj

=

∫
dx ψ∗m̄(x− xj)ψn̄(x− xj)Φ̂

†(x)Φ̂(x). (B7)

Expanding the many-body field operator in terms of
Wannier functions,

Φ̂[m,n]
xj

=

∫
dx ψ∗m̄(x− xj)ψn̄(x− xj)W

∗
i (x)Wl(x)ĉ†i ĉl,

(B8)
we can take advantage of the localisation of the probe,
ensuring that the only relevant overlapping integral is
that involving the Wannier functions of the site under

the probe. Therefore we get

Φ̂[m,n]
xj

' γn̄m̄ĉ†j ĉj = γn̄m̄n̂j , (B9)

with γn̄m̄ =
∫

dx ψ∗m̄(x − xj)ψn̄(x − xj)|Wj(x)|2, and
with n̂j being the density operator for site j. By inserting
this result into the general form of Eq. (B5), we obtain
Eq. (26)

Γ =
ḡ2

2

∫ t

0

dt1

∫ t

0

dt2〈n̂l(t1)n̂j(t2)+n̂j(t1)n̂l(t2)〉eiν(t1−t2),

(B10)
where ḡ = gγn̄m̄.
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