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Alternative to the Kohn-Sham equations: The Pauli potential differential equation
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A recently developed theoretical framework of performing self-consistent orbital-free (OF) density functional
theory (DFT) calculations at Kohn-Sham DFT level accuracy is tested in practice. The framework is valid for
spherically symmetric systems. Numerical results for the Beryllium atom are presented and compared to accurate
Kohn-Sham data. These calculations make use of a differential equation that we have developed for the so called
Pauli potential, a key quantity in OF-DFT. The Pauli potential differential equation and the OF Euler equation
form a system of two coupled differential equations, which have to be solved simultaneously within the DFT
self-consistent loop.
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I. INTRODUCTION

Conventionally density functional theory (DFT) calcula-
tions involve a group of Kohn-Sham (KS) single-particle
equations. Solving these equations becomes prohibitively
cumbersome as the number of electrons in the system grows
past a few hundred. This difficulty is related to the fact
that the computational time scales cubically as a function
of the electron number. Such a bottleneck is circumvented
in orbital-free (OF) DFT, which consequently scales linearly
with the volume. OF-DFT can hence treat very large systems
comprised of as many as millions of electrons. In OF-DFT one
traditionally only needs to solve a single Euler equation for the
square root of the electron density. In addition to the KS poten-
tial, the Euler equation contains an extra potential, the so-called
Pauli potential [1–6], which emerges from the fermionic anti-
symmetry requirement of the many-electron wave function.

Despite the great promise of the OF-DFT, it has yet
to become a mainstream research tool due to the lack of
satisfactorily accurate approximations for the kinetic energy
functional (or the Pauli potential). This situation is nonetheless
expected to improve in the future, as better approaches are
being developed [7,8]. Some systems, such as warm dense
aluminum [9], can already be modeled to a high degree of
accuracy using existing OF-DFT implementations.

A fundamentally different approach, valid for spherically
symmetric systems, was recently developed by Nagy [10–12]
to address the difficulties with the current kinetic energy
functionals mentioned above. This new framework allows
one, in principle, to perform OF calculations with an accuracy
tantamount to that of KS-DFT. We accomplish this by avoiding
the need to approximate the kinetic energy functional, by
introducing an additional differential equation for the Pauli
potential. This Pauli potential differential equation (PPDE)
can be solved to provide the exact Pauli potential (in the
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KS sense). The system is now described by two coupled
differential equations, one of which is the Euler equation
and the other the differential equation for the Pauli potential.
Being coupled, they have to be solved simultaneously. As
the Pauli potential is not approximated in our method, the
individual energy components and, especially, the obtained
shell structure practically coincide with those of KS-DFT.
We formulate the problem in terms of the so-called ensemble
densities, which are needed to obtain the Pauli potential of the
true DFT ground-state density. Using the formulation for the
ensemble densities the OF electronic structure of a spherically
symmetric system can be solved self-consistently.

In this paper, the method of combining the Euler equation
with the differential equation for the Pauli potential is tested
in practice. So far, one simple spherically symmetric test
system, the beryllium atom, has been solved successfully. The
existence of p, d, and f orbitals in heavier atoms has been
found to cause numerical problems. Partly these problems are
connected to the difficulty of describing the asymptotic behav-
ior of the Pauli potential both near the nucleus and in the tail
part of the density, where only the two outermost KS orbitals
are left. A cusp relation for the Pauli potential was recently
reported by us [6], but the asymptotic behavior of the Pauli
potential tail, which is a function of the spatial overlap of the
two outermost KS orbitals, is not known. Efforts to overcome
the above problems and stabilize the methodology for larger
systems are considered and discussed in future publications.

II. THEORY AND METHODS

The variational principle ensures that the ground-state total
energy of a system can be found by minimizing the total energy
functional E[n] of the system. This procedure leads to the
Euler equation,

δTs

δn
+ vKS = μ, (1)

where Ts is the noninteracting KS kinetic energy, vKS is the KS
potential, and μ is the chemical potential. The KS potential
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itself is the sum of three contributions,

vKS = vext + vH + vxc, (2)

where the subscripts on the right-hand side are the external
potential, Hartree potential, and exchange-correlation poten-
tial, respectively. For isolated atoms the external potential is
simply −Z/r , where Z is the atomic number. Ts is customarily
divided into two contributions,

Ts = TW + Tp, (3)

where TW is the von Weizsäcker kinetic energy functional

TW = 1

8

∫ |∇n|2
n

d r (4)

and Tp is an always non-negative remainder, known as the
Pauli kinetic energy. To facilitate numerical calculations, Eq.
(1) is often rewritten (using atomic units of Hartree and bohr)
as [− 1

2∇2 + vp + vKS
]
n1/2 = μn1/2, (5)

which is a single KS-like equation for the square root of the
total density of the system. Here vp is the Pauli potential,
which is, by definition, a functional derivative of the Pauli
kinetic energy:

vp = δTp

δn
, vp � 0. (6)

The representation of Eq. (5) is useful when implementing OF
schemes in existing KS codes [13,14].

Equation (5) serves as the starting point for our numerical
implementation. In conventional OF-DFT approaches Eq. (5)
or direct minimization of the total energy functional together
with some kind of approximation for the kinetic energy, or the
Pauli potential, would provide all the necessary framework for
practical OF calculations.

As stated before, sufficiently accurate OF kinetic energy
approximations have remained elusive despite many decades
of research. This reality has motivated us to explore an
avenue where the Pauli potential is not approximated but
obtained exactly for spherically symmetric systems without
the need to solve the KS system explicitly. In order to
obtain the Pauli potential exactly we present a differential
equation for it below. The derivation of the PPDE relies on
the so-called ensemble densities formalism, which is briefly
described in the following. For a comprehensive account of
the ensemble densities formalism, the reader is referred to
Refs. [10–12].

Due to spherical symmetry, it is convenient to define the
radial electron density,

ρ = 4πr2n. (7)

Using the radial density and exploiting the properties of the
spherical coordinate system, Eq. (5) can be written in the
following form:

− 1
2ϕ′′ + (vKS + vp)ϕ = μϕ, ϕ2 = ρ. (8)

The notation f ′ is used for the radial derivative, viz., f ′ =
∂f/∂r . In the ensemble densities formalism the ground-state

density ρ is replaced by a more general quantity of the form

ρ(β,γ,r) =
∑

i

λiwi(β,γ )ρi(r), (9)

where, in practice, the sum is chosen to have as many
components as the system has occupied KS orbitals. wi , λi , and
ρi are the weighting factor, occupation number, and electron
density of the ensemble member i, respectively. This ensemble
density is therefore a linear combination of the occupied
orbitals, each weighted by a factor wi . These weight factors
introduce two new dimensions into the problem and for them
we choose the definition

wi(β,γ ) = eβεi−γ li (li+1), (10)

with εi being the KS energy eigenvalue of orbital i. We also
choose each ρi(r) to be the radial KS density of orbital i.
In that case, when all wi ≡ 1, ρ(β,γ,r) in Eq. (9) reduces
to the conventional KS radial density. Accordingly, the true
ground state is accessed when both β and γ are set to 0.
The significance of the β and γ dimensions is to provide the
needed derivatives ∂ρ/∂β and ∂ρ/∂γ , which will appear in
the expression of the PPDE. With the help of the so-called
ensemble differential virial theorem from Ref. [11] and some
algebra, we arrive at the PPDE:

1

2
ρv′

p + ρ ′vp = μρ ′ − ∂ρ ′

∂β
− 1

2r2

∂ρ ′

∂γ
+ 1

2r3

∂ρ

∂γ
. (11)

The Pauli potential of spherically symmetric systems can thus
be computed, without resorting to approximations, using the
PPDE, provided that the β and γ derivatives of the density can
be handled with sufficient accuracy. Using Eqs. (9) and (10)
it can be seen that the derivatives ∂ρ/∂β and ∂ρ/∂γ have the
definitions

∂ρ

∂β
=

∑
i

λiwi(β,γ )εiρi(r) (12)

and

∂ρ

∂γ
= −

∑
i

λiwi(β,γ )li(li + 1)ρi(r), (13)

where li is the azimuthal quantum number of orbital i.
The Pauli potential, as solved from Eq. (11), clearly depends

on the density. On the other hand, the density depends on the
Pauli potential, as it is solved from Eq. (8). Equations (8)
and (11) therefore form a system of two coupled differential
equations, which have to be integrated simultaneously.

As Be only has 1s and 2s orbitals with two electrons each
(λ1s = λ2s = 2), li is always 0. From Eq. (13) it can be seen
that in this case ∂ρ/∂γ vanishes, simplifying the equations
presented above. It should be noted that the existence of a
nontrivial γ dimension in systems more complicated than
Be by itself is not expected to cause problems. In fact, in
principle, the γ dimension should be easier to handle than the
β dimension, because the azimuthal quantum numbers li can
be taken as known a priori.
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For Be the coupled system now reads

−1

2
ϕ′′ + [vKS + vp]ϕ = μϕ, (14a)

v′
p = 2

ρ

[
(μ − vp)ρ ′ − ∂ρ ′

∂β

]
. (14b)

Note that vKS or μ never depends on either β or γ . Equation (14a) is further split into two first-order differential equations
by defining the variables P (β,r) = ϕ(β,r) and Q(β,r) = P ′(β,r). We, finally, arrive at a form which is amenable to numerical
integration:

P ′(β,r) = Q(β,r), (15a)

Q′(β,r) = 2[vKS(r) + vp(β,r) − μ]P (β,r), (15b)

v′
p(β,r) = 4

[μ − vp(β,r)]P (β,r)Q(β,r) − ∂P
∂β

(β,r)Q(β,r) − P (β,r) ∂Q

∂β
(β,r)

P 2(β,r)
. (15c)

Standard integration algorithms, such as the Runge-Kutta
and implicit Adams methods [15,16], can be used to solve Eqs.
(15). Due to their coupled nature, predictor-corrector iterations
are needed to converge P (β,r), Q(β,r), and vp(β,r) at each
radial point r . A logarithmic radial mesh [15] has been used
to improve the accuracy of the integration near the nucleus.
The starting point for the mesh was rmin = 10−7 Bohr, and
the end point, the practical infinity, was rmax = 50 Bohr. The
number of mesh points was Nr = 2001, which was found
to guarantee sufficient numerical accuracy. To describe the
exchange-correlation effects we have used the local-density
approximation [17] with Vosko-Wilk-Nusair parametrization
[18] for the correlation term. The initial guess for the density
was constructed of a linear combination of hydrogen-like
orbitals, and a simple linear mixing scheme was employed
to converge the density and the KS potential self-consistently.

The β dimension can be taken into account by performing
the calculations on a linear β mesh. Equations (15) are
simultaneously integrated for each β value. At each radial
point r , the β-dependent solutions are then compared to
determine the β derivatives needed in Eq. (15c). The simplest
approach to calculating the derivatives is by means of finite-
differenceschemes. However, we have found that even very
high-order finite-difference formulas (up to nine-point β-mesh
stencils were tested) tend to be too unstable, even for Be. In our
experience, this is mostly due to the ∂Q/∂β term in Eq. (15c),
which is a mixed second-order derivative. Also, choosing a
good step size for the finite-difference scheme is challenging.

Better results can be obtained by constructing the derivative
exactly by way of an analytical fit. This is achieved using
Eq. (9); for a two-point β mesh {β1,β2}, at each radial point r ,
the β-dependent densities enter the right-hand side of a 2 × 2
linear system:

λ1se
β1b1a1(r) + λ2se

β1b2a2(r) = ρ(β1,r), (16a)

λ1se
β2b1a1(r) + λ2se

β2b2a2(r) = ρ(β2,r). (16b)

The mesh points {β1,β2} were chosen to be {0.0,0.1}.
Equations (16) can be routinely solved to find a1(r) and a2(r)
at each r . This, however, requires the parameters b1 and b2

to be known. These parameters in fact define the initial β

dependence when the integration of Eqs. (15) is started. We
therefore adopt a shooting method [15,16] to solve for them.
Within the shooting method, inward and outward integrations
are performed and the two solutions meet at some radial point
r̃ . The correct b2 (and also μ; see the next paragraph) has
been found when ρ ′(βi,r̃) are continuous. b1 is determined by
exploiting the condition that vp(β,r) should have the correct
asymptotic decay to 0 far from the nucleus.

It should be noted that when the correct solution has
been found, a1(r) and a2(r) in fact coincide with the KS
orbital densities ρ1s(r) and ρ2s(r). Furthermore, in the correct
solution, the parameters b1 and b2 reduce to the KS orbital
energies, i.e., b1 → ε1s and b2 → ε2s = μ. Indeed, when
utilizing the analytical fit of Eqs. (16), the KS orbitals and
energies of the system are reproduced as a “by-product.”

III. SELF-CONSISTENT SOLUTION FOR BERYLLIUM

Using Eqs. (15), we have calculated the electronic structure
of the Be atom self-consistently. In terms of numerical
performance the conventional KS solution can be considerably
faster. This is due to the fact that in the case of Be, both
our method and the KS method have two equations to solve.
Consequently, as the two equations are coupled in our method,
our solution is numerically heavier than that of KS-DFT. Also,
our implementation is at the beginning of its development
and therefore not fully optimized. Our hope is that future
developments can prove our method to be numerically faster
than KS-DFT for large electron numbers N , because the
number of equations in our method will always remain at
two. Currently, the bulk of the numerical complexity in our
method arises from the use of the analytical fit of Eqs. (16)
and we aim to replace it with a more efficient approach in the
future. The system of linear equations part of the analytical
fit is a well-known problem and formally scales as N3. The
determination of the bj parameters in Eqs. (16) is, in principle,
described by a multidimensional boundary value problem, the
scaling of which is trickier to estimate. However, it should be
possible to treat the bj parameters as being independent, in
which case the bj part of the analytical fit scaling would be
linear times some overhead.
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FIG. 1. (Color online) Top: Converged radial electron density ρ

(solid line) and Pauli potential vp (dashed line) of the Be atom,
obtained using the Pauli potential differential equation (PPDE).
Kohn-Sham (KS) results are also presented for comparison (circles
and diamonds). Middle and bottom: Difference between the PPDE
and the KS-DFT for ρ (middle) and vp (bottom) using eight values
for the PPDE self-consistent loop error tolerance in the range
1.0 × 10−i , i = {1, . . . ,8}. Solid black curve, i = 1; dashed colored
curves, i = 2, . . . ,7; black circles, i = 8.

The top panel in Fig. 1 shows the PPDE and KS-DFT radial
densities ρ and Pauli potentials vp for the Be atom. Ideally, the
electron structure of a given system, as calculated from Eqs.
(15), should exactly agree with that calculated in the KS-DFT.
The differences between the two solutions on the scale of
the plot are indeed unnoticeable. In practice, however, some
numerical discrepancies can be expected due to the differing
numerical implementations of the two approaches. Also, other
sources of error, such as the number of points in the radial

TABLE I. Calculated energy components and orbital energies
of the Be atom for the Pauli potential differential equation (PPDE)
method. KS-DFT results from Refs. [19] and [20] are also listed for
comparison. Hartree energy units have been used.

Be (2s12s2)

PPDE KS-DFT

ETot −14.447 225 −14.447 209
EKin 14.309 439 14.309 424
ECoul 7.115 267 7.115 257
EE-Nuc −33.357 068 −33.357 034
Exc −2.514 863 −2.514 856

b1 ε1s

−3.856 409 −3.856 411
b2 ε2s

−0.205 779 −0.205 744

mesh and the strictness of the error tolerance of the main
self-consistent loop, may contribute.

For example, the effect that the aforementioned error
tolerance can have on the accuracy of the PPDE solution,
compared to the KS-DFT solution, is illustrated in the middle
and bottom panels in Fig. 1. Both panels have eight curves
calculated by varying the value of the error tolerance in the
range 1.0 × 10−i , i = {1, . . . ,8}. It can be seen that the PPDE
solution indeed converges to the KS-DFT solution provided
that the value of the error tolerance of the self-consistent
loop is chosen with care. Similar behavior is observed with
respect to other parameters governing the numerical accuracy.
It should be noted that in the bottom panel in Fig. 1, continuity
of vp or v′

p at r̃ has not been enforced, causing the curves to
spike around 2.5 bohr. Finally, the convergence behavior of
the self-consistent loop itself is very similar to KS-DFT; with
a mixing parameter of α = 1.0 (ρn+1 = αρnew + [1 − α]ρn),
both methods reach convergence in 18 iterations, with the
error tolerance being 1.0 × 10−10. Here, the error is measured
by computing the norm of the residual

∫ rmax

rmin
(ρn+1 − ρn)2 dr .

Table I lists our results for the Be atom. In the table,
ETot, EKin, ECoul, EE-Nuc, and Exc are the total energy,
electron kinetic energy, electron Hartree energy, electron-
nucleus Coulombic energy, and exchange-correlation energy,
respectively. It can be seen that the KS results in Refs. [19]
and [20] are reproduced within an accuracy of three to four
decimals, depending on the quantity in question.

IV. CONCLUSIONS

We have shown that it is possible to solve the KS electronic
structure of spherically symmetric systems without explicitly
solving the KS equations. This is made possible by solving a
differential equation for the Pauli potential instead. Together
this PPDE and the OF Euler equation form a system of
two coupled differential equations. Numerical results for
one simple model system, the beryllium atom, have been
presented. It is observed that our results coincide, within the
expected numerical accuracy, with those calculated using the
conventional KS approach. Our work should also be helpful
in learning how better approximations for the Pauli potential
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could be developed. Further generalization of the present OF
approach to more complicated systems is in progress.
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