
1 

 

Classification and processing of 24-hour wrist accelerometer data 1 

Date of submission of the second revision: Apr 23, 2018  2 



2 

 

Abstract 3 

Background An important step in accelerometer data analysis is the classification of 4 

continuous, 24-hour, data into sleep, wake, and non-wear time. We compared classification 5 

times and physical activity metrics across different data processing and classification 6 

methods. 7 

Methods Participants (n=576) from the Finnish Retirement and Aging Study (FIREA) wore 8 

an accelerometer on their non-dominant wrist for 7 days and nights and filled in daily logs 9 

with sleep and waking times. Accelerometer data were first classified as sleep or wake time 10 

by log, and Tudor-Locke, Tracy, and ActiGraph algorithms. Then, wake periods were 11 

classified as wear or non-wear by log, Choi algorithm and wear sensor. We compared time 12 

classification (sleep, wake, and wake wear time) as well as physical activity measures (total 13 

activity volume and sedentary time) across these classification methods.  14 

Results Mean (SD) nightly sleep time was 467 (49) minutes by log and 419 (88), 522 (86) 15 

and 453 (74) minutes by Tudor-Locke, Tracy and ActiGraph algorithms, respectively. Wake 16 

wear time did not differ substantially when comparing Choi algorithm and the log. The wear 17 

sensor did not work properly in about 29% of the participants. Daily sedentary time varied by 18 

8−81 minutes after excluding sleep by different methods and by 1−18 min after excluding 19 

non-wear time by different methods. Total activity volume did not substantially differ across 20 

the methods.  21 

Conclusion The differences in wear and sedentary time were larger than differences in total 22 

activity volume. Methods for defining sleep periods had larger impact on outcomes than 23 

methods for defining wear time.  24 

 25 
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INTRODUCTION 27 

 28 

Wearing the accelerometer on the (non-dominant) wrist is gaining popularity as an alternative 29 

to hip placement (Doherty et al., 2017; Schrack et al., 2016; Troiano et al., 2014). Wrist-worn 30 

accelerometers have been shown to be valid in estimating physical activity energy 31 

expenditure in free-living situations (Ellis et al., 2016; Staudenmayer et al., 2015; White et 32 

al., 2016) and they have four important advantages over the hip-worn accelerometers: 33 

increased participant compliance, increased comfort for 24-hour wear, enabling measurement 34 

of sleep duration and quality, and better detection of light activity related to daily tasks, 35 

which may be primarily upper body movements (Quante et al., 2015; Schrack et al., 2016; 36 

Troiano et al., 2014). However, wearing the device 24 hours/day creates new challenges to 37 

accelerometer data processing (McVeigh et al., 2016; Meredith-Jones et al., 2016; Tracy et 38 

al., 2014; van der Berg et al., 2016). Before being able to analyze either sleep or physical 39 

activity, one needs to separate non-wear, wake and sleep time (Kosmadopoulos et al., 2016; 40 

McVeigh et al., 2016). In particular, sedentary behavior, sleep and non-wear time are difficult 41 

to distinguish from each other based on the accelerometer readings alone, because they are all 42 

comprised of low intensity or no movement, resulting in the accelerometer registering 43 

predominantly zero counts (Kosmadopoulos et al., 2016; Quante et al., 2015).  44 

 45 

Generally, sleep needs to be defined before wear time, and this can be done either by using 46 

participant logs or using sleep algorithms, such as those developed by Tudor-Locke (Tudor-47 

Locke et al., 2014), Tracy (Tracy et al., 2014) and Van Hees (van Hees et al., 2015).  48 

Different methods have been used to separate wear time from non-wear time including 49 

algorithms, participant logs and wear sensors, all of which have their own strengths and 50 

weaknesses. Commonly used non-wear algorithms, such as Troiano (Troiano et al., 2008) and 51 
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Choi (Choi, Liu et al., 2011; Choi et al., 2012), define non-wear time based on the number of 52 

consecutive zero counts. Although participant logs are commonly used, they increase 53 

participant burden, often have missing values and are subject to biases due to recall and social 54 

desirability (Keadle et al., 2014; Quante et al., 2015; Shiroma et al., 2015). In addition, some 55 

accelerometers have wear sensors, which detect wear times based on capacitive coupling or 56 

skin temperature, but their utility remains largely unexplored to date (Intille et al., 2012; 57 

Zhou et al., 2015). As the non-wear algorithms cannot detect non-wear periods that are 58 

shorter than the minimum number of consecutive zero-counts (Winkler et al., 2012), wear 59 

sensors might improve wear estimations by detecting also the short non-wear periods. 60 

However, to our knowledge, the utility of the ActiGraph wear sensor in separating wear and 61 

non-wear time has not yet been reported.  62 

 63 

Previous studies have assessed the effect of different non-wear algorithms on ActiGraph 64 

accelerometers’ wear time and sedentary time, but mainly from accelerometers worn on the 65 

hip during wake time only (Evenson & Terry, 2009; Keadle et al., 2014; Masse et al., 2005; 66 

Peeters et al., 2013; Winkler et al., 2012). In addition, some studies have assessed impact of 67 

sleep algorithms on sleep and sedentary time in adults wearing the accelerometer on hip 68 

(McVeigh et al., 2016; Meredith-Jones et al., 2016) or alternating between hip and wrist 69 

placement (Jaeschke et al., 2017; Rosenberger et al., 2016; Zinkhan et al., 2014). However, 70 

no previous studies have examined the effects of sleep and non-wear algorithms on the 71 

classification of sleep, non-wear and sedentary time based on wrist measurement (Migueles 72 

et al., 2017; Schrack et al., 2016).  73 

 74 

To address these gaps in the literature, we used accelerometers worn on wrist for 24 75 

hours/day to compare classification times and physical activity metrics across different data 76 
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processing and classification methods. There were two primary aims of this study. Aim 1) To 77 

compare estimates of sleep time from participant logs against three published algorithms 78 

(ActiGraph, 2017; Tracy et al., 2016; Tudor-Locke et al., 2014). Aim 2) To compare 79 

estimates of wake wear time and number of participants with ≥ 4 valid days using three 80 

methods: Choi non-wear algorithm (Choi et al., 2012), ActiGraph wear sensor or log-81 

indicated wear time. Wake wear time estimates are dependent on first identifying and 82 

excluding sleep times, and then sequentially excluding non-wear time. Therefore, the three 83 

non-wear time detection methods tested in this study were applied to each of the four ‘wake 84 

time data sets’ generated by the algorithms tested in aim one, resulting in 18 pairwise sleep 85 

time and 12 pairwise non-wear time comparisons. Aim 3) was to compare common 86 

accelerometer metrics, including mean daily vector magnitude (VM) counts/60 seconds, as a 87 

measure of total activity volume, and mean sedentary time, when the different combinations 88 

of sleep and non-wear detection methods were applied to 24-hour accelerometer data. 89 

 90 

METHODS 91 

 92 

Participants 93 

Finnish Retirement and Aging Study (FIREA) is an ongoing longitudinal cohort study of 94 

older adults in Finland established in 2013. The aim of the FIREA study is to determine how 95 

health behaviors and clinical risk factors change during the transition from working to 96 

statutory retirement among aging workers. The eligible population for the FIREA study 97 

cohort included all public-sector employees whose individual retirement date is between 98 

2014 and 2019 and who were working in year 2012 in one of the 27 municipalities in 99 

Southwest Finland or in the 9 selected cities or 5 hospital districts around Finland. We first 100 

contacted participants 18 months prior to their estimated retirement date by sending a 101 
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questionnaire. To those who responded to the questionnaire, we mailed an invitation to 102 

participate in the accelerometer sub-study. We mailed the accelerometers to all those 103 

participants who returned the signed informed consent and who were still working. The 104 

FIREA study was conducted in accordance with the Helsinki declaration, and was approved 105 

by the Ethics Committee of Hospital District of Southwest Finland.  106 

 107 

For the current study, we included baseline data from the first 604 participants of the 108 

accelerometer sub-study who wore the accelerometer between September 20, 2014 and 109 

February 18, 2017. We excluded those who returned the accelerometer unused (n = 20) and 110 

those who had less than 2 days and 2 nights of recording with log entries on bed time and 111 

time of waking up (n = 8). This resulted in 576 participants (95% of the original sample) in 112 

the analytic sample, of whom 22 (4%) had night shifts during the measurement period.  113 

 114 

Measurements 115 

Protocol We mailed a triaxial ActiGraph wActiSleep-BT accelerometer (ActiGraph, 116 

Pensacola, Florida, US) to the participants and asked them to wear the device on their non-117 

dominant wrist starting from the Saturday following receiving the device and continuing until 118 

the morning of next Saturday, i.e. 7 days and nights. Participants were instructed to wear the 119 

device at all times, including during water-based activities such as swimming, but to remove 120 

it for sauna. Participants were provided a daily log, where they were asked to record the date, 121 

bedtime and waking time in a log for each day that they wore the device. In some cases, 122 

participants also recorded the time they put the device on the first time, and time when they 123 

finished the measurement, but these were not requested in the log. After the one-week 124 

measurement, participants mailed the devices and logs back to the research office in a pre-125 

paid envelope. 126 
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 127 

Identification of sleep and waking periods. Figure 1 shows the methods used for detecting 128 

sleep, wake and non-wear times as well as outcomes produced with different methods. We 129 

used four methods to separate wake and sleep periods: participant logs, algorithms developed 130 

by Tudor-Locke and colleagues (Tudor-Locke et al., 2014), and Tracy and colleagues (Tracy 131 

et al., 2014) and an algorithm available in ActiGraph’s ActiLife software (ActiGraph, 2017).  132 

 133 

First, using the participant logs, we defined waking period as times between waking and bed 134 

times during the same day (or the following day, if the time was past midnight) and sleep 135 

period as times between bed time and waking time on the following day (or the same day if 136 

the bed time was past midnight). If data on individual date (but not time) were missing, the 137 

research assistants imputed the date when entering the log data in database. If data on wake 138 

or bed time was missing, the sleep and waking period data was also marked as missing 139 

starting from previous recorded time until the following recorded time. 140 

 141 

The second sleep detection method was the Tudor-Locke algorithm (Tudor-Locke et al., 142 

2014) which first uses Sadeh algorithm to define sleep and wake epochs (Sadeh et al., 1994) 143 

and then detects the in-bed and waking times based on the wake epochs. Tudor-Locke 144 

algorithm defines the in-bed time as the first five consecutive epochs of sleep, and waking 145 

time as the first 10 consecutive wake epochs following a sleep period. We ran the Tudor-146 

Locke algorithm in ActiLife software, where it is available as an automatic sleep period 147 

detection option, but it is slightly modified from the original Tudor-Locke algorithm. The 148 

ActiLife implementation allows the user to select either Sadeh (Sadeh et al., 1994) or Cole-149 

Kripke (Cole et al., 1992) algorithms to identify sleep and wake epochs (ActiGraph, 2017). In 150 



8 

 

the current study we chose to use the Cole-Kripke algorithm because it was originally 151 

validated in adult population using wrist-worn accelerometers (Cole et al., 1992). 152 

 153 

The third method, bedrest algorithm by Tracy and colleagues was developed with Actigraph 154 

GT1M accelerometers worn on the dominant wrist and validated in youth (Tracy et al., 155 

2016). We used the algorithm modified for adult participants: first, the algorithm marks 45-156 

min time blocks with mean axis 1 counts lower than 400 counts/min as sleep time. After this, 157 

the algorithms finds a transition time before the first 45-min sleep time block where counts 158 

below 300/min mark the first sleep minute and a transition time after the last sleep time block 159 

where counts above 800 mark the first waking minute (D. J. Tracy, personal communication, 160 

January 26, 2017).  161 

 162 

The fourth method for detecting sleep periods was the ActiGraph algorithm available in 163 

ActiLife software which builds on Troiano’s wear time validation algorithm and defines non-164 

wear times less than 24 hours and with minimum of 5 minutes of non-zero counts as sleep 165 

time (ActiGraph, 2017). 166 

 167 

Identification of wake non-wear time. We used three methods to differentiate between 168 

wake wear and non-wear time: participant logs, Choi algorithm and wear sensor. First, using 169 

participant logs, we defined the whole time between start of the measurement (first date and 170 

time marked in the log, usually the wake time on the first morning) and end of the 171 

measurement (last date and time marked in the log, usually the last sleep time on the 7th day 172 

of measurement) as wear time. Thus, we did not remove any non-wear time between start and 173 

end time of measurement using the participant log. Second, we used the Choi algorithm 174 

which defines non-wear time as 90 consecutive minutes of vector magnitude zero counts, 175 



9 

 

allowing for 2 minutes of non-zero counts, providing that there were 30 minutes of zero 176 

counts before or after the non-zero counts (Choi et al., 2011; Choi et al., 2012). The Choi 177 

algorithm has later been validated for 24-hour measurement by wrist-worn triaxial 178 

accelerometers (Choi et al., 2012). Third, we utilized the wear sensor in wActiSleep-BT that 179 

provides minute-by-minute information on wear time based on capacitive coupling 180 

(ActiGraph, 2016; Quante et al., 2015). We assessed the functioning of the sensor by visual 181 

inspection method, which is described in detail in Online Appendix 1. Visual inspection has 182 

previously been used as a reference method for separating wake wear time from sleep periods 183 

(McVeigh et al., 2016), and it has shown to be valid for identifying wear and non-wear days 184 

(Shiroma et al., 2015).  185 

 186 

Statistical analysis  187 

All the continuous variables were normally distributed; thus, linear mixed models were used. 188 

The results are shown as means and their Bonferroni corrected 95% confidence intervals. All 189 

models included participant and time as random effects, and the estimation method as a fixed 190 

effect. We only included nights when participants had recorded both the time when they went 191 

to bed and the time when they woke up. For sleep time (Aim 1), the comparisons were done 192 

between the sleep time estimation methods. For wake wear time (Aim 2), and physical 193 

activity measures (Aim 3), the comparisons were done between different methods to exclude 194 

sleep time (log, and Tudor-Locke, Tracy and ActiGraph algorithm) and non-wear time (Choi 195 

algorithm, log and sensor). For Aim 3, only valid days and only participants with valid data 196 

from ≥4 days were included. Sedentary time was defined as VM counts ≤1853/60sec (Koster 197 

et al., 2016). 198 

 199 
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To visualize the magnitude of the pairwise differences of the estimates obtained after 200 

applying the most often employed methods, we used Bland-Altman analysis for paired 201 

measurements of a varying true value (Bland & Altman, 2007). The results are shown as 202 

mean differences and 95% limits of agreement (LOA). For Aim 1, we compared the three 203 

sleep detection algorithms to logs, as participant logs are commonly used to define sleep in 204 

24-h accelerometer measurements. For Aim 2, we compared wake wear time and for Aim 3 205 

sedentary time a) after excluding sleep time by the algorithms to those obtained after 206 

excluding sleep time by the diary and b) after excluding non-wear time by participant log or 207 

wear sensor to those obtained after excluding non-wear time by Choi algorithm. We chose 208 

the Choi algorithm because it is the most commonly used method to identify non-wear time.  209 

 210 

 The accelerometer counts and wear sensor data were processed in ActiLife v6.13.3 software 211 

(ActiGraph, Pensacola, Florida, US) into 1 minute epochs and exported into .csv file. Sleep 212 

periods according to Tudor-Locke and ActiGraph algorithms and wear sensor information 213 

were also processed in ActiLife software. Sleep periods according to the Tracy algorithm and 214 

non-wear time according to the Choi algorithm were calculated in R program using packages 215 

“PhysActBedRest” (Tracy et al., 2016) and “PhysicalActivity” (Choi, Zhouwen et al., 2011), 216 

respectively. All other analyses were performed using SAS 9.4 statistical software (SAS 217 

Institute Inc, Cary, NC, USA). 218 

 219 

RESULTS 220 

 221 

Mean age of the participants was 62.6 years (standard deviation, SD 1.1), 97 (17%) of them 222 

were men. The 576 participants contributed to 3303 nights and 3908 days of data. Of the 223 

participants, 534 (91%) and 555 (96%) and had minimum of 6 nights and days, respectively, 224 
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with log times available. Figure 2 shows an example of wear and wake time defined by 225 

different methods. 226 

 227 

Effect of sleep algorithms on length of sleep periods (Aim 1). Mean (SD) nightly sleep 228 

period was 467 (49) min by participant log and 419 (88), 522 (86) and 453 (74) min by 229 

Tudor-Locke, Tracy and ActiGraph algorithms, respectively. Compared to the log, estimates 230 

of sleep by Tudor-Locke algorithm were 47 min lower and by Tracy algorithm 51 min higher, 231 

whereas estimates derived from ActiGraph algorithm were on average only 12 min lower 232 

(Figure 3 and Table 1). Based on the Bland-Altman plots, the differences between methods 233 

were slightly larger as the mean in-bed time increased. Figure 3 also shows that there were 234 

nights when Tudor-Locke algorithm or ActiGraph algorithm did not detect any sleep.  235 

 236 

Effect of different sleep and non-wear detection methods on length of wake wear time 237 

and number of included participants (Aim 2). Mean wake time and wake wear time 238 

obtained by the different methods, and the number of participants with minimum of 4 valid 239 

days are shown in Appendix Table S1 and graphical representation of the results are shown in 240 

Appendix Figure S2. Differences in mean wake wear time, VM counts and sedentary time 241 

between sleep and non-wear detection methods are presented in Tables 2 and 3, respectively. 242 

Wake wear time differed widely, up to 98 min, when different methods were used for 243 

excluding sleep periods (Table 2 and Appendix Figure S3). For example, mean (SD) wake 244 

wear time was 949 (65), 991 (92), 903 (90) and 957 (83) min when defined by log, Tudor-245 

Locke algorithm, Tracy algorithm and ActiGraph algorithm, respectively, while excluding 246 

non-wear time by Choi algorithm in all the cases (Appendix Table S1).  247 

 248 
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Based on the visual inspection, the wear sensors indicated non-wear during apparent wear 249 

time. This can be seen from Appendix Figure S3, panel E, where the mean difference in wake 250 

wear time between the sensors and Choi algorithm is -85 min/day. Thus, in the following 251 

results we only include data from the functioning sensors (n=409). Mean daily differences in 252 

wake wear time derived from different methods to exclude non-wear time varied only up to 253 

24 min (Table 3 and Appendix Figure S3). For example, mean (SD) wake wear time was 949 254 

(65) min for Choi algorithm, 964 (49) min for log and 939 (66) min for wear sensor when 255 

sleep periods were excluded based on the logs (Appendix Table S1). 256 

 257 

Number of participants with minimum of 4 days of valid data differed only by maximum of 6 258 

participants (1% of the sample) after excluding sleep periods by different methods and non-259 

wear time by Choi algorithm or participant log (Appendix Table S1 and Appendix Figure 260 

S2). However, data from 167 participants (29%) were excluded because of non-functioning 261 

wear sensors. 262 

 263 

Effect of different sleep and non-wear detection methods on vector magnitude counts 264 

and sedentary time (Aim 3). Mean VM counts did not vary markedly between the methods 265 

when only those with minimum of 4 valid days were included in the analysis: excluding sleep 266 

by Tudor-Locke algorithm generally resulted in 2-3% smaller and Tracy 4-5% higher counts 267 

than when excluding sleep by log or ActiGraph algorithms (Table 1 and Appendix Table S2). 268 

On the contrary, sedentary time varied widely, especially between different methods used to 269 

exclude sleep time, shown by wide LOAs in Figure 4, panels A, B and C. Excluding sleep by 270 

different methods resulted in 8−81 min differences in daily sedentary time (Appendix Table 271 

S2) while using different methods to exclude non-wear time resulted only in 1−18 minute 272 

differences in sedentary time (Appendix Table S3).  273 
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 274 

DISCUSSION 275 

 276 

In this study, we compared 24-hour classification times and physical activity metrics derived 277 

with four different methods for defining sleep periods and three different methods for 278 

defining non-wear time. Our results highlight the large impact of sleep algorithms on 279 

estimated sleeping time and resulting sedentary time during waking hours. Compared to the 280 

participant log, defining sleep time by the algorithm available in the ActiLife software 281 

resulted in only 10–15 min differences in sleep, wake wear and sedentary time, and thus it 282 

could be a method of choice when participant logs are not available. The differences between 283 

participant log and Choi algorithm in detecting non-wear time were also small and both 284 

methods are suitable for excluding non-wear time. Major uncertainty in the functioning of 285 

wear sensor and the resulting exclusion of large part of data lead us not to recommend use of 286 

ActiGraph’s wear sensor for non-wear time detection. 287 

 288 

Sleep and waking periods (Aim 1). Although 24-hour measurement with ActiGraph 289 

accelerometers using wrist positioning is gaining popularity, the methods for sleep detection 290 

using only accelerometer data are not established. We found considerable differences in sleep 291 

times identified by different methods, which is in concordance with some previous studies 292 

comparing sleep estimations between different methods (Hjorth et al., 2012; McVeigh et al., 293 

2016; Meredith-Jones et al., 2016; Zinkhan et al., 2014). In previous studies Cole-Kripke 294 

algorithm, which we used as a basis for Tudor-Locke algorithm, resulted in half an hour more 295 

sleep in adults (Zinkhan et al., 2014) but >1 hour less sleep in children (Hjorth et al., 2012) 296 

when compared to self-reported sleep in 24-hour wrist measurement.  In our sample, Tudor-297 

Locke algorithm indicated about 47 min less sleep than the participant logs. Part of this might 298 
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be explained by the latency between going to bed and falling asleep, as the participants were 299 

asked to fill in the time when they went to bed, which does not necessarily correspond to the 300 

time when they fall asleep. In our study, the algorithm developed by Tracy et al. estimated 301 

longer sleep periods than the logs. The algorithm allows classifying short sleep periods as 302 

naps. Using this option would probably have improved the estimations, however, we decided 303 

to assess the original algorithm. The algorithm available in ActiLife software, on the other 304 

hand, resulted in sleep period lengths that were close to self-reported sleep lengths. To our 305 

knowledge, this is the first study to compare this algorithm to other sleep detection methods. 306 

Both the Tudor-Locke and ActiGraph algorithms were originally developed for waist-worn 307 

devices, which might in part explain why they indicated longer sleep periods than participant 308 

logs: small movement during sleep might be classified as wake time because the counts from 309 

accelerometers worn on wrist are inherently higher than those worn on waist.  310 

 311 

Wake wear time and number of participants (Aim 2). After using different methods for 312 

excluding sleep periods, wake wear time varied widely but number of participants with ≥4 313 

days of data remained almost similar. Although we did not exclude any non-wear time based 314 

on the participant log, the differences in wake wear time between different methods for 315 

excluding non-wear time were not large. As the Choi algorithm and wear sensors only 316 

excluded 15–25 min/day non-wear time from the log-indicated measurement period, it seems 317 

that compliance for wearing the device among our participants was very good. The daily non-318 

wear of 15–25 min would be in concordance with short non-wear periods daily caused by 319 

removing the device for shower or sauna and it is also similar to daily non-wear time found in 320 

a previous study using 24-hour accelerometer measurements (Jaeschke et al., 2017).  321 

 322 
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To our knowledge, this is the first study to evaluate the functionality of ActiGraph wear 323 

sensor. Because almost 30% of the sensors were not functioning properly but indicated non-324 

wear during apparent wear time, we cannot recommend ActiGraph’s wear sensor as a reliable 325 

method for defining wear time. However, in cases where the sensor was functioning properly, 326 

it detected even short non-wear periods (data not shown), which resulted in few minutes less 327 

wear time than was detected by Choi algorithm. Therefore, it can be the method of choice for 328 

studies where the researchers can visually inspect the data and confirm that the sensors are 329 

working properly to avoid unreliable wear time estimations. 330 

 331 

Vector magnitude counts and sedentary time (Aim 3). Our results echoed a previous study 332 

that used 24-hour measurement with hip-worn accelerometers in finding that mean VM 333 

counts differ only slightly after excluding sleep and non-wear time by different algorithms or 334 

participant log (Meredith-Jones et al., 2016). In our study, sedentary time was greatly 335 

affected by the data processing decisions, especially the method for defining in-bed time. 336 

Depending on the method used for excluding sleep and non-wear time, the participants in our 337 

study spent 7.6–9.2 hours/day being sedentary, which is slightly less than 8.5–10.4 hours/day 338 

in older adults found in previous studies using objective methods (Harvey et al., 2015). In a 339 

previous study, estimations of sedentary time varied up to 50 min/day between sleep 340 

detection algorithms and logs in children (Meredith-Jones et al., 2016). Our results were 341 

fairly similar, with 8−81 min differences in sedentary time between sleep detection methods.  342 

 343 

The strengths of our study include large number of participants from both men and women, 344 

with diverse occupational backgrounds, and high compliance in both wearing the monitors 345 

and filling out the participant log. In addition, we had participants with wide variety of 346 

activity-rest patterns in our sample, including people with night shifts. As a weakness, we did 347 
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not have a criterion measure (“gold standard”), such as polysomnography, for detecting sleep 348 

and thus we were not able to define the validity of different methods for defining sleep time. 349 

Previous research shows that participant logs can either overestimate (Silva et al., 2007) or 350 

underestimate (Zinkhan et al., 2014) total sleep time compared to polysomnography. 351 

However, to facilitate comparisons between different studies that do not include participant 352 

logs or the logs are poorly filled in, we provided estimates of different sleep detection 353 

algorithms in comparison to participant logs. Participant logs are a more feasible method for 354 

assessing sleep time in large scale studies than polysomnography and thus widely used. 355 

Participant logs have also been used as a criterion method to which other sleep detection 356 

methods are compared (Barreira et al., 2015; van Hees et al., 2015; Zhou et al., 2015). As a 357 

limitation, our results might not be generalized to populations with markedly poorer 358 

compliance of wearing the device. 359 

 360 

In conclusion, we found that data processing decisions have large impact on estimations of 361 

sleep, waking wear, and sedentary time in accelerometer measurements with wrist placement 362 

and 24-hour measurement protocol. The impact on physical activity volume was smaller. 363 

Sleep detection methods had generally larger impact on outcomes than methods for detecting 364 

non-wear time, apart from wear sensor which gave unreliable estimates among about 30% of 365 

the participants. In studies with no log information, we recommend using ActiGraph 366 

algorithm for detecting sleep periods and Choi algorithm for detecting non-wear time.  367 



17 

 

List of abbreviations 368 

FIREA: Finnish Retirement and Aging Study; LOA: limits of agreement; SD: standard 369 

deviation; VM: vector magnitude 370 

 371 

Competing interests 372 

The authors declare no conflict of interest. 373 

 374 

Funding 375 

This work was supported by Juho Vainio Foundation, Finland (to SS); the Academy of 376 

Finland (Grants 286294 and 294154 to SS); and Finnish Ministry of Education and Culture 377 

(to SS). 378 

 379 

Acknowledgements  380 

We are grateful to all the participants of FIREA for taking part in this study. We thank Mrs 381 

Saana Myllyntausta, MA, for her help in the visual inspection. 382 

 383 

Authors’ contributions 384 

SS, AP, EJS and TBH conceptualized and designed this study. SS designed the data 385 

collection. AP analyzed the data and AP, EJS, JP, JV and SS contributed to the interpretation 386 

of the data. AP drafted the manuscript, with critical revisions from EJS, TBH, JP, JV and SS. 387 

All authors approved the final manuscript.  388 



18 

 

References 389 

ActiGraph. (2016). wGT3X-BT and wActiSleep-BT wear sensor. Retrieved from 390 

https://actigraph.desk.com/customer/en/portal/articles/2515554-wgt3x-bt-and-391 

wactisleep-bt-wear-sensor 392 

ActiGraph. (2017). What does the "detect sleep periods" button do and how does it work? 393 

Retrieved from https://actigraph.desk.com/customer/en/portal/articles/2515836-what-394 

does-the-%22detect-sleep-periods%22-button-do-and-how-does-it-work- 395 

Barreira, T. V., Schuna, J. M.,Jr, Mire, E. F., Katzmarzyk, P. T., Chaput, J. P., Leduc, G., & 396 

Tudor-Locke, C. (2015). Identifying children's nocturnal sleep using 24-h waist 397 

accelerometry. Medicine and Science in Sports and Exercise, 47(5), 937-943.  398 

Bland, J. M., & Altman, D. G. (2007). Agreement between methods of measurement with 399 

multiple observations per individual. Journal of Biopharmaceutical Statistics, 17(4), 400 

571-582.  401 

Choi, L., Liu, Z., Matthews, C. E., & Buchowski, M. S. (2011). Validation of accelerometer 402 

wear and nonwear time classification algorithm. Medicine & Science in Sports & 403 

Exercise, 43(2), 357-364.  404 

Choi, L., Zhouwen, L., Matthews, C. E. & Buchowski, M. S. (2011). PhysicalActivity: 405 

Process physical activity accelerometer data. Retrieved from https://CRAN.R-406 

project.org/package=PhysicalActivity 407 

Choi, L., Ward, S. C., Schnelle, J. F., & Buchowski, M. S. (2012). Assessment of 408 

wear/nonwear time classification algorithms for triaxial accelerometer. Medicine & 409 

Science in Sports & Exercise, 44(10), 2009-2016.  410 

https://actigraph.desk.com/customer/en/portal/articles/2515554-wgt3x-bt-and-wactisleep-bt-wear-sensor
https://actigraph.desk.com/customer/en/portal/articles/2515554-wgt3x-bt-and-wactisleep-bt-wear-sensor
https://actigraph.desk.com/customer/en/portal/articles/2515836-what-does-the-%22detect-sleep-periods%22-button-do-and-how-does-it-work-
https://actigraph.desk.com/customer/en/portal/articles/2515836-what-does-the-%22detect-sleep-periods%22-button-do-and-how-does-it-work-
https://cran.r-project.org/package=PhysicalActivity
https://cran.r-project.org/package=PhysicalActivity


19 

 

Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J., & Gillin, J. C. (1992). Automatic 411 

sleep/wake identification from wrist activity. Sleep, 15(5), 461-469.  412 

Doherty, A., Jackson, D., Hammerla, N., Plötz, T., Olivier, P., Granat, M. H., White, T., van 413 

Hees, V. T., Trenell, M. I., Owen, C. G., Preece, S. J., Gillions, R., Sheard, S., Peakman, 414 

T., Brage, S., & Wareham, N. J. (2017). Large scale population assessment of physical 415 

activity using wrist worn accelerometers: The UK biobank study. Plos One, 12(2), 416 

e0169649.  417 

Ellis, K., Kerr, J., Godbole, S., Staudenmayer, J., & Lanckriet, G. (2016). Hip and wrist 418 

accelerometer algorithms for free-living behavior classification. Medicine and Science in 419 

Sports and Exercise, 48(5), 933-940.  420 

Evenson, K. R., & Terry, J. W. (2009). Assessment of differing definitions of accelerometer 421 

nonwear time. Research Quarterly for Exercise and Sport, 80(2), 355-362.  422 

Harvey, J. A., Chastin, S. F., & Skelton, D. A. (2015). How sedentary are older people? A 423 

systematic review of the amount of sedentary behavior. Journal of Aging and Physical 424 

Activity, 23(3), 471-487.  425 

Hjorth, M. F., Chaput, J., Damsgaard, C. T., Dalskov, S., Michaelsen, K. F., Tetens, I., & 426 

Sjödin, A. (2012). Measure of sleep and physical activity by a single accelerometer: Can 427 

a waist-worn actigraph adequately measure sleep in children? Sleep and Biological 428 

Rhythms, 10(4), 328-335.  429 

Intille, S. S., Lester, J., Sallis, J. F., & Duncan, G. (2012). New horizons in sensor 430 

development. Medicine & Science in Sports & Exercise, 44(Suppl 1), S24-31.  431 



20 

 

Jaeschke, L., Luzak, A., Steinbrecher, A., Jeran, S., Ferland, M., Linkohr, B., Schulz, H., & 432 

Pischon, T. (2017). 24 H-accelerometry in epidemiological studies: Automated detection 433 

of non-wear time in comparison to diary information. Scientific Reports, 7(1), 2227-017-434 

01092-w.  435 

Keadle, S. K., Shiroma, E. J., Freedson, P. S., & Lee, I. (2014). Impact of accelerometer data 436 

processing decisions on the sample size, wear time and physical activity level of a large 437 

cohort study. BMC Public Health, 14(1), 1210.  438 

Kosmadopoulos, A., Darwent, D., & Roach, G. D. (2016). Is it on? an algorithm for 439 

discerning wrist-accelerometer non-wear times from sleep/wake activity. Chronobiology 440 

International, 33(6), 599-603.  441 

Koster, A., Shiroma, E. J., Caserotti, P., Matthews, C. E., Chen, K. Y., Glynn, N. W., & 442 

Harris, T. B. (2016). Comparison of sedentary estimates between activPAL and hip- and 443 

wrist-worn ActiGraph. Medicine and Science in Sports and Exercise, 48(8), 1514-1522.  444 

Masse, L. C., Fuemmeler, B. F., Anderson, C. B., Matthews, C. E., Trost, S. G., Catellier, D. 445 

J., & Treuth, M. (2005). Accelerometer data reduction: A comparison of four reduction 446 

algorithms on select outcome variables. Medicine & Science in Sports & Exercise, 447 

37(Suppl 11), 544-554.  448 

McVeigh, J. A., Winkler, E. A. H., Healy, G. N., Slater, J., Eastwood, P. R., & Straker, L. M. 449 

(2016). Validity of an automated algorithm to identify waking and in-bed wear time in 450 

hip-worn accelerometer data collected with a 24 h wear protocol in young adults. 451 

Physiological Measurement, 37(10), 1636.  452 



21 

 

Meredith-Jones, K., Williams, S., Galland, B., Kennedy, G., & Taylor, R. (2016). 24 h 453 

accelerometry: Impact of sleep-screening methods on estimates of sedentary behaviour 454 

and physical activity while awake. Journal of Sports Sciences, 34(7), 679-685.  455 

Migueles, J. H., Cadenas-Sanchez, C., Ekelund, U., Delisle Nystrom, C., Mora-Gonzalez, J., 456 

Lof, M., Labayen, I., Ruiz, J. R., & Ortega, F. B. (2017). Accelerometer data collection 457 

and processing criteria to assess physical activity and other outcomes: A systematic 458 

review and practical considerations. Sports Medicine (Auckland, N.Z.), 47(9), 1821-459 

1845.  460 

Peeters, G., van Gellecum, Y., Ryde, G., Farías, N. A., & Brown, W. J. (2013). Is the pain of 461 

activity log-books worth the gain in precision when distinguishing wear and non-wear 462 

time for tri-axial accelerometers? Journal of Science and Medicine in Sport, 16(6), 515-463 

519.  464 

Quante, M., Kaplan, E. R., Rueschman, M., Cailler, M., Buxton, O. M., & Redline, S. (2015). 465 

Practical considerations in using accelerometers to assess physical activity, sedentary 466 

behavior, and sleep. Sleep Health, 1(4), 275-284.  467 

Rosenberger, M. E., Buman, M. P., Haskell, W. L., Mcconnell, M. V., & Carstensen, L. L. 468 

(2016). Twenty-four hours of sleep, sedentary behavior, and physical activity with nine 469 

wearable devices. Medicine & Science in Sports & Exercise, 48(3), 457-465.  470 

Sadeh, A., Sharkey, K. M., & Carskadon, M. A. (1994). Activity-based sleep-wake 471 

identification: An empirical test of methodological issues. Sleep, 17(3), 201-207.  472 

Schrack, J. A., Cooper, R., Koster, A., Shiroma, E. J., Murabito, J. M., Rejeski, W. J., 473 

Ferrucci, L., & Harris, T. B. (2016). Assessing daily physical activity in older adults: 474 



22 

 

Unraveling the complexity of monitors, measures, and methods. The Journals of 475 

Gerontology Series A: Biological Sciences and Medical Sciences, 71(8), 1039-1048.  476 

Shiroma, E. J., Kamada, M., Smith, C., Harris, T. B., & Lee, I. (2015). Visual inspection for 477 

determining days when accelerometer is worn: Is this valid? Medicine and Science in 478 

Sports and Exercise, 47(12), 2558-2562.  479 

Silva, G. E., Goodwin, J. L., Sherrill, D. L., Arnold, J. L., Bootzin, R. R., Smith, T., 480 

Walsleben, J. A., Baldwin, C. M., & Quan, S. F. (2007). Relationship between reported 481 

and measured sleep times: The sleep heart health study (SHHS). Journal of Clinical 482 

Sleep Medicine : JCSM : Official Publication of the American Academy of Sleep 483 

Medicine, 3(6), 622-630.  484 

Staudenmayer, J., He, S., Hickey, A., Sasaki, J., & Freedson, P. (2015). Methods to estimate 485 

aspects of physical activity and sedentary behavior from high-frequency wrist 486 

accelerometer measurements. Journal of Applied Physiology, 119(4), 396-403.  487 

Tracy, D. J., Xu, Z., Choi, L., Acra, S., Chen, K. Y., & Buchowski, M. S. (2014). Separating 488 

bedtime rest from activity using waist or wrist-worn accelerometers in youth. Plos One, 489 

9(4), e92512.  490 

Tracy, D. J., Xy, Z., Acra, S., Chen, K. Y. & Buchowski, M. S. (2016). PhysActBedRest: 491 

Marks periods of 'bedrest' in actigraph accelerometer data. Retrieved from 492 

https://CRAN.R-project.org/package=PhysActBedRest 493 

Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). 494 

Physical activity in the united states measured by accelerometer. Medicine & Science in 495 

Sports & Exercise, 40(1), 181-188.  496 

https://cran.r-project.org/package=PhysActBedRest


23 

 

Troiano, R. P., McClain, J. J., Brychta, R. J., & Chen, K. Y. (2014). Evolution of 497 

accelerometer methods for physical activity research. British Journal of Sports Medicine, 498 

48(13), 1019-1023.  499 

Tudor-Locke, C., Barreira, T. V., Schuna, J. M., Mire, E. F., & Katzmarzyk, P. T. (2014). 500 

Fully automated waist-worn accelerometer algorithm for detecting children’s sleep-501 

period time separate from 24-h physical activity or sedentary behaviors. Applied 502 

Physiology, Nutrition, and Metabolism, 39(1), 53-57.  503 

van der Berg, J., Willems, P. J. B., van der Velde, J. H. P. M., Savelberg, H. H. C. M., 504 

Schaper, N. C., Schram, M. T., Sep, S. J. S., Dagnelie, P. C., Bosma, H., Stehouwer, C. 505 

D. A., & Koster, A. (2016). Identifying waking time in 24-h accelerometry data in adults 506 

using an automated algorithm. Journal of Sports Sciences, 34(19), 1867-1873.  507 

van Hees, V. T., Sabia, S., Anderson, K. N., Denton, S. J., Oliver, J., Catt, M., Abell, J. G., 508 

Kivimäki, M., Trenell, M. I., & Singh-Manoux, A. (2015). A novel, open access method 509 

to assess sleep duration using a wrist-worn accelerometer. Plos One, 10(11), e0142533.  510 

White, T., Westgate, K., Wareham, N. J., & Brage, S. (2016). Estimation of physical activity 511 

energy expenditure during free-living from wrist accelerometry in UK adults. Plos One, 512 

11(12), e0167472.  513 

Winkler, E. A. H., Gardiner, P. A., Clark, B. K., Matthews, C. E., Owen, N., & Healy, G. N. 514 

(2012). Identifying sedentary time using automated estimates of accelerometer wear 515 

time. British Journal of Sports Medicine, 46(6), 436-442.  516 



24 

 

Zhou, S., Hill, R. A., Morgan, K., Stratton, G., Gravenor, M. B., Bijlsma, G., & Brophy, S. 517 

(2015). Classification of accelerometer wear and non-wear events in seconds for 518 

monitoring free-living physical activity. BMJ Open, 5(5) 519 

Zinkhan, M., Berger, K., Hense, S., Nagel, M., Obst, A., Koch, B., Penzel, T., Fietze, I., 520 

Ahrens, W., Young, P., Happe, S., Kantelhardt, J. W., Kluttig, A., Schmidt-521 

Pokrzywniak, A., Pillmann, F., & Stang, A. (2014). Agreement of different methods for 522 

assessing sleep characteristics: A comparison of two actigraphs, wrist and hip placement, 523 

and self-report with polysomnography. Sleep Medicine, 15(9), 1107-1114.  524 

   525 



25 

 

Table 1 Differences in sleep time between the sleep detection methods 526 

Sleep detection methods being compared Mean difference (95% confidence 

interval) in sleep time, min1 

Log vs. Tudor-Locke algorithm 47 (41 to 52) 

Log vs. Tracy algorithm -51 (-57 to -67) 

Log vs. ActiGraph algorithm 12 (6 to 18) 

Tudor-Locke algorithm vs. Tracy algorithm -98 (-104 to -92) 

Tudor-Locke algorithm vs. ActiGraph algorithm -35 (-40 to -29) 

Tracy algorithm vs. ActiGraph algorithm 63 (58 to 69) 
1 The confidence intervals are Bonferroni corrected  527 
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Table 2 Differences in wake wear time, mean vector magnitude counts, and mean sedentary time between sleep detection methods 528 

 Non-wear detection method  

Sleep detection methods being 

compared 

Choi algorithm Log Wear sensor 

Mean difference 

(95% CI) 1 

Mean difference 

(95% CI) 1 

Mean difference 

(95% CI) 1 

Wake wear time, minutes    

Log vs. Tudor-Locke algorithm -46 (-52 to -40) -36 (-43 to -29) -50 (-57 to -42) 

Log vs. Tracy algorithm 43 (36 to 49) 62 (54 to 69) 38 (31 to 46) 

Log vs. ActiGraph algorithm -12 (-18 to -6) -7 (-14 to 0.2) -15 (-22 to -7) 

Tudor-Locke vs. Tracy algorithm 88 (82 to 94) 98 (90 to 105) 88 (81 to 95) 

Tudor-Locke vs. ActiGraph algorithm 34 (28 to 40) 29 (21 to 36) 35 (28 to 42) 

Tracy vs. ActiGraph algorithm -55 (-61 to -48) -69 (-76 to -62) -53 (-60 to -46) 

Mean vector magnitude counts/60s2    

Log vs. Tudor-Locke algorithm 63 (52 to 75) 43 (31 to 56) 74 (60 to 88) 

Log vs. Tracy algorithm -102 (-114 to -90) -128 (-141 to -116) -92 (-106 to -77) 

Log vs. ActiGraph algorithm 18 (6 to 30) 8 (-5 to 20) 25 (11 to 39) 

Tudor-Locke vs. Tracy algorithm -166 (-178 to -154) -172 (-185 to -159) -166 (-180 to -152) 

Tudor-Locke vs. ActiGraph algorithm -46 (-57 to -34) -36 (-49 to -23) -49 (-63 to -35) 

Tracy vs. ActiGraph algorithm 120 (108 to 132) 136 (123 to 149) 117 (103 to 131) 

Mean sedentary time, minutes2    

Log vs. Tudor-Locke algorithm -38 (-43 to -32) -30 (-35 to -24) -42 (-48 to -36) 

Log vs. Tracy algorithm 40 (-35 to 46) 50 (44 to 56) 36 (30 to 43) 

Log vs. ActiGraph algorithm -11 (-17 to -6) -8 (-14 to -2) -14 (-21 to -8) 

Tudor-Locke vs. Tracy algorithm 78 (73 to 83) 80 (75 to 86) 78 (72 to 85) 

Tudor-Locke vs. ActiGraph algorithm 26 (21 to 32) 22 (16 to 28) 28 (21 to 34) 

Tracy vs. ActiGraph algorithm -52 (-57 to -46) -58 (-64 to -52) -51 (-57 to -44) 
1 The confidence intervals are Bonferroni corrected 529 

2 Includes only participants with 4 valid days 530 
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Table 3 Differences in wake wear time, mean vector magnitude counts, and mean sedentary 531 

time between non-wear methods 532 

 Sleep detection method   

Non-wear 

detection methods 

being compared 

Log Tudor-Locke 

algorithm 

Tracy algorithm ActiGraph 

algorithm 

Mean difference 

(95% CI) 1 

Mean difference 

(95% CI) 1 

Mean difference 

(95% CI) 1 

Mean difference 

(95% CI) 1 

Wake wear time, minutes    

Choi vs. log -14 (-17 to -12) -7 (-10 to -4) 2 (1 to 4) -12 (-16 to -8) 

Choi vs. sensor 10 (7 to 13) 9 (5 to 13) 8 (6 to 9) 8 (4 to 13) 

Log vs. sensor 24 (21 to 27) 16 (12 to 20) 5 (4 to 6) 20 (16 to 25) 

Mean vector magnitude counts/60s2    

Choi vs. log 24 (19 to 28) 6 (3 to 9) -3 (-3 to -1) 14 (9 to 18) 

Choi vs. sensor -23 (-28 to -18) -20 (-24 to -16) -18 (-20 to -17) -18 (-24 to -13) 

Log vs. sensor -47 (-52 to -42) -26 (-29 to -22) -15 (-17 to -14) -32 (-37 to -26) 

Mean sedentary time, minutes2    

Choi vs. log -9 (-11 to -7) -2 (-3 to -0) 1 (1 to 2) -5 (-7 to -3) 

Choi vs. sensor 9 (7 to 10) 8 (7 to 9) 6 (6 to 7) 7 (5 to 9) 

Log vs. sensor 18 (16 to 19) 10 (9 to 11) 5 (4 to 6) 12 (10 to 14) 
1 The confidence intervals are Bonferroni corrected 533 

2 Includes only participants with 4 valid days  534 
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 535 

Figure 1 Flow chart of the analyses.  536 

 537 
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 538 

Figure 2 Graphical presentation of wear time (a-c) and wake time (d-g) defined by the different methods. 539 

  540 
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 541 

 542 

Figure 3 The Bland-Altman plots describing the level of agreement in sleep time defined by the different methods.  543 

 544 

Legend for Figure 3: The difference in sleep times between the participant log and a) Tudor-Locke, b) Tracy and c) Actigraph algorithm is 545 

plotted against the mean of sleep time obtained by these two methods. Zero bias line (solid gray line) represents the mean of the difference and 546 

95% upper and lower limits are 95% limits of agreement (dashed lines).  547 
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 549 

Figure 4 The Bland-Altman plots describing the level of agreement in sedentary time defined by the different methods.  550 

 551 



32 

 

Legend for Figure 4: The difference in sedentary times between the participant log and a) Tudor-Locke, b) Tracy and c) ActiGraph sleep 552 

algorithm is plotted against the mean of sedentary time obtained by these two methods, while non-wear time is excluded by the Choi algorithm. 553 

The difference in sedentary time between excluding non-wear time by Choi algorithm and d) participant log and e) functioning wear sensors is 554 

plotted against the mean of sedentary time obtained after excluding non-wear by these two methods, while waking time is defined by the 555 

participant log. Zero bias line (solid gray line) represents the mean of the difference and 95% upper and lower limits are 95% limits of agreement 556 

(dashed lines). 557 


