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Post-translational modifications (PTMs) of proteins enable fast modulation of protein
function in response to metabolic and environmental changes. Phosphorylation is
known to play a major role in regulating distribution of light energy between the
Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition,
thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to
determine the efficiency of carbon assimilation. Besides these well characterized
modifications, recent methodological progress has enabled identification of numerous
other types of PTMs in various plant compartments, including chloroplasts. To date, at
least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation,
glutathionylation, sumoylation and glycosylation of chloroplast proteins have been
described. These modifications impact DNA replication, control transcriptional efficiency,
regulate translational machinery and affect metabolic activities within the chloroplast.
Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated
at multiple levels by a number of PTMs. It is likely that future studies will reveal new
metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms
of PTM-mediated regulation.

Keywords: chloroplast, phosphorylation, photosynthesis, post-translational modification, redox regulation

INTRODUCTION

Chloroplasts are sites of versatile metabolism. In addition to photosynthetic reactions, chloroplasts
host a number of other processes, such as nitrogen and sulfur assimilation, amino acid and fatty
acid biosynthesis as well as accumulation of pigments, photoreceptors, and hormones. Chloroplasts
are surrounded by the envelope membrane, and the majority of nuclear-encoded chloroplast
proteins are imported through the envelope into the plastid via the Toc/Tic machinery. The
subchloroplastic destination of a specific protein is determined by the information buried within
the primary amino acid sequence, either in the form of cleavable transit peptide or as an internal
targeting signal. Due to their endosymbiotic origin, biosynthesis and function of chloroplasts is
not only dependent on nuclear control, but also on the expression of approximately 120 plastome
encoded genes, mostly involved in photosynthesis and plastid gene expression (Sugiura, 1992;
Green, 2011). Obviously, coordination of gene expression between these compartments as well

Abbreviations: PS, photosystem; psa, genes encoding subunits of Photosystem II; psb, genes encoding subunits of
Photosystem II; PTM, post-translational modification; RA, Rubisco activase; RB, RNA binding protein; rps, genes encoding
ribosome subunits; trn, genes encoding chloroplast transferRNAs.
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as integration of plastid metabolism with the rest of the cell are
required to induce appropriate physiological responses to various
environmental stimuli, thereby enabling successful growth and
reproduction of the plants. This coordination takes place at
many different levels, including the control of nuclear and
plastid transcription, RNA processing and translation, protein
translocation and assembly of protein complexes as well as
functional adjustments of specific enzymes and/or pathways.

Recent interest and methodological progress on PTMs of
non-histone proteins has revealed that also a great number
of chloroplast proteins are post-translationally modified,
which denotes for covalent processing of a mature protein.
The most well-studied chloroplast protein modifications:
(de)phosphorylation, conveyed by kinases and phosphatases,
and oxidation-reduction (including disulfide-thiol exchange of
Cys residues, regulated via thioredoxins) have been extensively
reviewed (e.g., Buchanan and Balmer, 2005; Tikkanen and Aro,
2012; Michelet et al., 2013; Rochaix, 2013) and thus are not
described in detail in the present article. Other PTM types,
such as acetylation, methylation, glycosylation, nitration and
nitrosylation, sumoylation, and glutathionylation have been
identified in chloroplast proteins much later. As only limited
information is available for these PTMs, it is currently not
possible to conclude whether a given PTM is found in the
chloroplasts of all plant and algal species, or whether it is
specific for a certain group of organisms. In addition to the
PTMs modifying a given amino acid, recent studies have shown
that a number of chloroplast proteins are prone to N-terminal
trimming resulting in different N-termini or N-terminal
acetylation (Lehtimäki et al., 2015; Rowland et al., 2015). It is
intriguing that both nuclear- and chloroplast-encoded proteins
may be subjected to these modifications (Lehtimäki et al.,
2015). In most cases the site of the PTM (cytosol or plastid)
and/or the responsible enzymes have remained obscure. PTMs
alter the physicochemical properties and thus the function of
proteins in different ways depending on the modification and the
molecular environment. The molecular structures of the different
chloroplast PTM are presented in Figure 1. Here, we will draw
together the current understanding of the PTMs regulating
distinct metabolic processes in chloroplasts, and review the
known physiological effects of these modifications.

CHLOROPLAST MACHINERY FOR DNA
REPLICATION AND GENE EXPRESSION

Organellar genomes are organized as nucleoids (also called as
transcriptionally active chromosomes or TACs), DNA-protein
complexes, which have been identified as the sites for both DNA
replication and transcription (Melonek et al., 2016). Recently,
proteomic analyses have suggested that also mRNA processing,
splicing, editing, and ribosome assembly occur in association
with the nucleoid, which supports the idea of co-transcriptional
translation of plastid-encoded genes (Majeran et al., 2012).
Although only few examples are thoroughly studied, PTMs of
various types have been shown to regulate chloroplast genome
replication and gene expression at multiple levels (Figure 2).

Even if a glycosylation machinery has been identified
only in endoplasmic reticulum, some chloroplast proteins
have been found to be glycosylated suggesting an existence
of vesicular Toc/Tic independent chloroplast protein import
route (Villarejo et al., 2005). One of the glycosylated proteins
is the pea chloroplast protein p43, which associates with
and activates the chloroplast DNA polymerase (Chen et al.,
1996). Specifically, the N-terminal domain of p43 is highly
O-arabinosylated (Gaikwad et al., 1999). Glycosylation of the
protein is required for the induction of polymerization activity,
although DNA binding is retained even if the protein is
deglycosylated (Gaikwad et al., 1999, 2000). In addition to DNA
replication, transcriptional activity of chloroplast genes is (partly)
regulated by PTMs. Two different types of RNA polymerases,
the plastid-encoded polymerase PEP, and the nuclear-encoded
polymerase NEP, are responsible for the transcription of plastid-
encoded genes (Shiina et al., 2005). The core subunits of
PEP polymerase are associated with nuclear-encoded sigma
factors, which are regulated by (de)phosphorylation (Link,
2003; Shimizu et al., 2010). Ser phosphorylation of the sigma
factors (SIG6 being the most well studied one) is at least
partly conveyed by the plastid transcription kinase (PTK),
which is a chloroplast Ser/Thr protein kinase (Baginsky et al.,
1997; Baena-González et al., 2001; Ogrzewalla et al., 2002;
Salinas et al., 2006; Schweer et al., 2010). The kinase itself is
regulated via autophosphorylation and glutathione-dependent
redox regulation (Baginsky et al., 1997, 1999; Ogrzewalla et al.,
2002). Effect of sigma factor phosphorylation on transcription
depends on the sigma factor and the transcribed gene in question:
for instance phosphorylation of the Thr170 in SIG1 inhibits
transcription of the psaA gene (Shimizu et al., 2010), while
phosphorylation of Ser94/95 and/or Ser174 in SIG6 enhances
transcription of the atpB and trnK genes with no apparent effect
on the transcription of the psbA gene (Schweer et al., 2010).

Processing of the chloroplast transcripts is also affected by
phosphorylation and redox regulation of RNA binding proteins.
For instance phosphorylation of endoribonuclease p54, which is
responsible for the 3′ processing of the plastid trnK and rps16,
affects the RNA processing activity but not the cleavage specificity
(Nickelsen and Link, 1993; Liere and Link, 1994). Additionally,
the processing activity of p54 was modulated by glutathione
(Liere and Link, 1994). Phosphorylation of 24 kDa (24RNP)
and 28 kDa (28RNP) RNA-binding proteins, associated with a
complex regulating the maturation of the 3′ end of chloroplast
transcripts (Hayes et al., 1996), has been shown to affect the
affinity of the proteins to RNA. Specifically, phosphorylation of
24RNP increased its binding capacity to petD and psbA 3′ UTR
(Loza-Tavera et al., 2006), whereas phosphorylation of 28RNP
resulted in decreased affinity to RNA (Lisitsky and Schuster,
1995). Recently, it was shown that phosphorylation status of
the 24RNP and 28RNP (and apparently other unidentified RNA
binding proteins) mediates the interplay between the petDmRNA
stability and processing (Vargas-Suarez et al., 2013).

The translational machinery of the chloroplast is composed of
prokaryotic-type 70S ribosomes organized in small (Yamaguchi
et al., 2000, 2003) and large (Yamaguchi and Subramanian, 2000)
subunits. Chloroplast ribosomes contain rRNA and proteins,
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FIGURE 1 | Molecular structures of chloroplast Post-translational modifications (PTMs). (A) N-terminal acetylation (Ac denotes acetyl group and N-term.
the N-terminal amino acid of a protein). (B) Lys acetylation. (C) Lys mono-, di- and trimethylation (Me denotes methyl group). (D) Ser and Thr phosphorylation (P
denotes phospho group). (E) Tyr nitration. (F) S-nitrosylation. (G) Disulfide formation (-SS- denotes disulfide bridge). (H) Glutathionylation of Cys (GSH denotes
reduced and G oxidized glutathione). (I) Lys sumoylation. (J) N-glycosylation of Asn (-N-X denotes N-linked glycosyl group). Dash line indicates where structures
have been cut off.

which are encoded both by the nuclear and chloroplast genomes
(Carroll, 2013). Several ribosomal proteins in chloroplasts are
targets of extensive PTMs, including formyl group or formyl
methionine removal, N- and C-terminal processing, acetylation
and monomethylation of N-terminal amino acids, trimethylation
of Lys (Kamp et al., 1987; Schmidt et al., 1992; Yamaguchi and
Subramanian, 2000; Yamaguchi et al., 2000; Alban et al., 2014)
as well as phosphorylation (Guitton et al., 1984; Posno et al.,

1984; Wagner et al., 2006). Recently, the enzyme responsible
for the trimethylation of the internal Lys in Arabidopsis plastid
ribosomal protein L11 (RPL11) has been identified as PrmA-
like (Protein Arg methyltransferase-like) protein (Alban et al.,
2014; Mazzoleni et al., 2015). Although depletion of Arabidopsis
PRMA-like gene did not result in any phenotypic effects, mapping
of the trimethylated Lys on the surface of the RPL11 protein
allows hypothesizing that methylation might influence the stalk
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FIGURE 2 | Post-translational modifications in the regulation of plastid machinery for DNA replication and gene expression. Glycosylation (Glc) of
chloroplast protein p43 induces the activity of DNA polymerase. The sigma factors (σ) associated with the plastid encoded RNA polymerase PEP are regulated by
(de)phosphorylation (P) conveyed by the plastid transcription kinase (PTK), which is autophosphorylated and redox-regulated. Glutathione-mediated redox regulation
(GSH) and phosphorylation of endoribonuclease p54 affects the processing activity of trnK and rps16 transcripts. Phosphorylation of RNA-binding proteins 24RNP
and 28RNP affect the binding capacity to the 3′ end of chloroplast transcripts. RPL11 subunit of the 70S ribosome is trimethylated (Me-Lys), and ribosomes are also
subjected to acetylation and monomethylation of N-terminal amino acid (Ac-N and Me-N, respectively), as well as phosphorylation. See text for details.

region, which is responsible for the recruitment of initiation,
elongation and release factors (Mazzoleni et al., 2015).

A special case in the chloroplast gene expression processes is
the regulation of psbA gene expression, which has been under
intense study for decades. The psbA gene encodes the light-
sensitive PSII core subunit D1, which is constantly degraded and
resynthesized in a light-responsive PSII repair cycle (Aro et al.,
1993; Mulo et al., 2008). It has been shown that in chloroplasts
of green algae and higher plants psbA gene expression is mainly
controlled at post-transcriptional levels (Mulo et al., 2012). In
Chlamydomonas reinhardtii, ADP-dependent phosphorylation
of the cPDI (chloroplast protein disulfide isomerase or RB60)
protein in darkness leads to release of the protein from the
5′ UTR of psbA mRNA and cessation of translation (Danon
and Mayfield, 1994). Additionally, binding of RB47 to the psbA
mRNA is controlled via redox regulation of disulfide groups
in RB60 (Danon and Mayfield, 1994; Alergand et al., 2006). It
has also been hypothesized that phosphorylation of the spinach
28RNP (in addition to participating in 3′ UTR processing, see
above) and ribosomal protein(s) might provide a light-dependent
translation control mechanism for the chloroplast, especially
during the repair cycle of PSII (Lisitsky and Schuster, 1995;
Trebitsh et al., 2000; Yamaguchi and Subramanian, 2003).

LIGHT REACTIONS OF
PHOTOSYNTHESIS

Light reactions of photosynthesis, i.e., capture of light energy
by the light harvesting complex (LHC) for the production of
reducing power (NADPH) occur at the thylakoid membrane
via the thylakoid-embedded pigment-protein complexes, namely

PSII, Cyt b6f, and PSI. Concomitantly, protons are pumped
into the thylakoid lumen, and ADP is photophosphorylated
to ATP upon release of the generated proton gradient via
the ATP synthase (Figure 3). NADPH and ATP, in turn,
are used for numerous reactions, carbon assimilation being
the major process. PSII functions as an oxygen-plastoquinone
oxidoreductase, which is prone to light-induced photoinhibition
(Aro et al., 1993; Tyystjärvi, 2013). The PSII core proteins
D1 and D2 as well as the inner antenna protein CP43 and a
minor PSII subunit PsbH are targets for light-dependent Thr
phosphorylation (Figure 3) catalyzed mainly by the STN8 kinase
(Bellafiore et al., 2005; Bonardi et al., 2005; Fristedt and Vener,
2011), while the PSII CORE PHOSPHATASE is responsible
for the reverse reaction (i.e., dephosphorylation; Samol et al.,
2012). PSII protein phosphorylation is involved in the folding
of the thylakoid membrane, which affects the lateral migration
of damaged D1 protein from grana stacks to stroma lamellae
for degradation and resynthesis (Tikkanen et al., 2008; Fristedt
et al., 2009). Another well-studied phosphorylation process is
involved in the balancing electron transfer between PSII and
PSI according to ambient environmental cues (i.e., light quality
and quantity). Phosphorylation of the light harvesting proteins
Lhcb1, Lhcb2 and Lhcb4 is catalyzed by the STN7 kinase (Depege
et al., 2003; Bellafiore et al., 2005), and instead of PSII, the
phosphorylated LHC trimers deliver excitation energy to PSI (so
called state transitions) to adjust the absorption cross sections
of the two PSs (Rochaix, 2014). Dephosphorylation of LHC
by the PPH1/TAP38 (chloroplast protein phosphatase/thylakoid
associated phosphatase of 38 kDa) protein phosphatase, in turn,
results in redistribution of excitation energy toward PSII (Pribil
et al., 2010; Shapiguzov et al., 2010). The STN7 kinase is activated
by the binding of plastoquinol to the Qo site of Cyt b6f complex
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FIGURE 3 | Post-translational modifications in regulation of photosynthetic light reactions (Lower) and Calvin cycle (Upper). In light reactions,
phosphorylation (P) of Photosystem (PS) II subunits D1, D2, CP43 and PsbH are involved in PSII repair cycle, while phosphorylation of light harvesting proteins (Lhcb)
is required for state transitions. Tyr nitration (NO2-Tyr), N-terminal and Lys acetylation (Ac-N and Ac-Lys, respectively) and sumoylation (SU) of various PSII,
Cytochrome b6f (Cyt b6f) and PSI subunits have been detected. In Calvin cycle, the function of Rubisco is controlled by a multitude of PTMs, including
phosphorylation, Tyr-nitration, acetylation, Lys methylation (Me-Lys), nitrosylation (NO) and glutathionylation (GSH). Additionally, several other enzymes functioning in
the Calvin cycle and activation of Rubisco are targets of various PTMs. The subchloroplastic sites of the PTMs are not indicated in the figure. 3PG,
3-phosphoglycerate; 1,3BPG, 1,3-bisphosphoglycerate; G3P, glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; FBP, fructose 1,6-bisphosphate;
F6P, fructose 6-phosphate; X5P, xylulose 5-phosphate; R5P, ribose 5-phosphate; Ru5P, ribulose 5-phosphate; RuBP, ribulose 1,5-bisphosphate; S7P,
sedoheptulose 7-phosphate; SBP, sedoheptulose 1,7-bisphosphate; E4P, erythrose 4-phosphate. The modified proteins are indicated with colors, while the
non-modified proteins are shown as transparent. See text for details.
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(Vener et al., 1997; Lemeille et al., 2009) and inhibited by stromal
reductants (Rintamäki et al., 2000).

In addition to phosphorylation, LHC proteins are prone to
various other PTMs (Figure 3), such as N-terminal acetylation
(Michel et al., 1991; Wu et al., 2011; Rowland et al., 2015),
Lys-acetylation (Finkemeier et al., 2011; Wu et al., 2011), Tyr-
nitration (Galetskiy et al., 2011b) and sumoylation (Elrouby and
Coupland, 2010; López-Torrejón et al., 2013). As acetylation
neutralizes the positive charge either on the protein N-terminus
or on Lys residue, it has numerous implications in biologic
processes including determination of enzyme activity, protein
stability and mediation of protein–protein interactions (Hwang
et al., 2010; Bienvenut et al., 2011; Scott et al., 2011; Hoshiyasu
et al., 2013). Accordingly, acetylation of the Lhcb1 and Lhcb2
proteins appear to be involved in the regulation of LHC
attachment to the PSII complexes: the peripheral LHC antenna
loosely bound to PSII showed higher level of Lys acetylation than
the PSII-LHCII supercomplexes (Wu et al., 2011). In contrast to
phosphorylation, acetylation status did not respond to changes
in illumination (Wu et al., 2011). It is also worth noting that
only the N-terminally trimmed form of Lhcb5 starting with Leu38
(other forms starting with Phe39 or Ser40) were reported to be Lys
acetylated, indicating a cross-talk between N-terminal processing
and acetylation of chloroplast proteins (Wu et al., 2011). Neither
the chloroplast acetylation machinery (Dinh et al., 2015) nor the
enzymes responsible for N-terminal processing (Rowland et al.,
2015) have been thoroughly characterized yet. Also Tyr nitration
of proteins representing PSII (including D1), Cyt b6f, PSI as well
as LHC has been detected (Galetskiy et al., 2011a,b). Protein Tyr
nitration is a marker of nitrosative stress, and it can irreversibly
modify the conformation of proteins thus affecting the catalytic
activity and susceptibility to proteolysis (Corpas et al., 2007).
Indeed, changes in light conditions resulted in variation in
nitration levels in different PSII-LHCII complexes, suggesting
that nitration might be involved in photodamage, disassembly
of complexes and subsequent degradation of proteins (Galetskiy
et al., 2011a). It has also been found that LHC may be post-
translationally modified by sumoylation (Elrouby and Coupland,
2010; López-Torrejón et al., 2013), which refers to covalent
binding of the small ubiquitin-like modifier (SUMO) protein
(Miura et al., 2007). Sumoylation has been implicated in the
regulation of protein localization, interactions and catalytic
activity (Vierstra, 2012). Obviously, the exact effects of these
PTMs on the function of LHC require further studies.

CARBON ASSIMILATION AND STARCH
METABOLISM

The photosynthetic carbon reduction cycle, i.e., the Calvin
cycle, is a multistep pathway in which redox equivalents and
chemical energy (NADPH and ATP) originating from the light
reactions is utilized for the reduction of atmospheric carbon
dioxide into organic compounds. Calvin cycle involves 11
stromal enzymes, which catalyze 13 distinct reactions. In the
first step, inorganic CO2 is fixed by ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco), producing 3-phosphoglycerate

(3PG), which is first phosphorylated and then reduced into
glyceraldehyde-3-phosphate (G3P). G3P then exits from the
Calvin cycle and is further used for the synthesis of more
complex sugars, including starch that is the most abundant
storage polyglucan in nature (Tetlow and Emes, 2014). Several
Calvin cycle enzymes have been reported to be activated in
light upon reduction of specific disulfide bonds by thioredoxin
(Pedersen et al., 1966; Jensen and Bassham, 1968; Buchanan
and Wolosiuk, 1976; Wolosiuk and Buchanan, 1976; Buchanan,
1980). In addition to redox regulation, all steps of CO2 fixation
and starch metabolism are carefully controlled by multiple
(PTM-dependent) mechanisms which balance the rate of starch
synthesis with the availability of energy and carbon in different
plant tissues and under various environmental conditions
(Figure 3).

Rubisco
In terrestrial plants and green alga, Rubisco exists as a
holocomplex composed of eight nuclear-encoded small subunits
(RBCS) and eight plastid-encoded large subunits (RBCL).
Among the other enzymes involved in Calvin cycle Rubisco has
been reported as a target of reversible phosphorylation in many
plant species (Figure 3) (Reiland et al., 2009, 2011; Facette et al.,
2013; Wang et al., 2014; Roitinger et al., 2015), RBCL being
phosphorylated in response to light (Budde and Randall, 1990;
Wang et al., 2014). The RBCL and RBCS subunits of Rubisco have
been shown to contain multiple phosphorylation sites (Cao et al.,
2011; Wang et al., 2014). Phosphorylation of the highly conserved
RBCL residues Ser208, Thr246, Tyr239 and Thr330, located in the
close proximity to RuBP binding site, might affect the catalytic
activity of the enzyme (Lohrig et al., 2009; Hodges et al., 2013).
Indeed, dephosphorylation of RBCL has been shown to result
in decreased activity of the enzyme (Chen et al., 2011), perhaps
via affecting the interaction between Rubisco and RA (Guitton
and Mache, 1987; Aggarwal et al., 1993; Hodges et al., 2013).
Moreover, it has been suggested that dephosphorylation of RBCL
and/or RBCS may lead to dissociation of Rubisco holocomplex
(Guitton and Mache, 1987; Aggarwal et al., 1993; Hodges et al.,
2013).

Rubisco has also been found as a target of both N-terminal
acetylation and Lys acetylation (Figure 3). In spinach, RBCL
is post-translationally processed by removal of Met1 and Ser2
followed by the acetylation of the penultimate amino acid
(Mulligan et al., 1988). Although N-acetylation of proteins in
general is known to modify their activity and stability, the detailed
significance and mechanism of RBCL N-termini modification
remains unknown (Mulligan et al., 1988; Houtz et al., 1992;
Zybailov et al., 2008). Lys acetylation of the Rubisco subunits
has been identified only recently, and it has been reported
as a dynamic modification in response to the changes in the
energy status in plants under different light conditions (Gao
et al., 2016). The Rubisco holocomplex contains multiple Lys
acetylation sites (e.g., nine in Arabidopsis and thirteen in wheat;
Finkemeier et al., 2011), which are localized either in the
catalytic center of Rubisco (Cleland et al., 1998; Finkemeier et al.,
2011), at the interface between the two RBCL subunits (Knight
et al., 1990; Finkemeier et al., 2011) or at the site crucial for
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the formation of tertiary structure of Rubisco (Knight et al.,
1990). Therefore, Lys-acetylation has been suspected to affect
Rubisco activity and interactions between the subunits and with
other molecules, and indeed recent studies have shown negative
regulation of Rubisco activity by Lys acetylation (Finkemeier
et al., 2011; Gao et al., 2016). Thus, acetylation of Rubisco
might provide a mechanism to coordinate the function of light
reactions and carbon assimilation with the carbon status of the
cell.

In addition to acetylation, Lys residues of RBCL may be
methylated (Figure 3). In many organisms (e.g., pea and
tobacco), RBCL is considered as the main stromal methylprotein
(Alban et al., 2014). Trimethylation of RBCL at Lys14 has
been found in several plant species (Alban et al., 2014; Ma
et al., 2016) as a modification catalyzed by the large subunit
Rubisco methyltransferase (LSMT), a highly conserved SET-
domain protein lysine methyltransferase found in all plant species
(Dirk et al., 2006). Despite numerous studies, the role of Lys14
trimethylation of RBCL (as well as the role of methylation
for other chloroplastic methylproteins) has not been identified
(Clarke, 2013; Ma et al., 2016). Interestingly, in Arabidopsis,
spinach, and wheat plants RBCL is not methylated at Lys14
indicating species-specific differences in regulatory mechanisms
(Houtz et al., 1992; Mininno et al., 2012; Ma et al., 2016).
The methylation of chloroplast proteins seems to be biologically
important, as a mutant impaired in PTAC14 (plastid-located
SET-domain methyltransferase) exhibits defects in chloroplast
differentiation and shows an albino phenotype (Steiner et al.,
2011). On the other hand, the LSMT knockdown plants do not
show any decrease in CO2 assimilation and growth (Mininno
et al., 2012).

Intriguingly, some Calvin cycle enzymes, including Rubisco,
have been reported to be modified by peroxynitrite (Figure 3)
(Cecconi et al., 2009; Lozano-Juste et al., 2011; Barroso et al.,
2013). It has been suggested that Tyr-nitration of RBCL (and
RA) might act as a modulator of plant defense-related responses
including hypersensitive responses (Cecconi et al., 2009). On
the other hand, Tyr-nitration of abundant proteins such as
those involved in carbon metabolism might function as a non-
specific scavenging system for reactive nitrogen forms under
stress conditions. Reversibility of Tyr-nitration is still discussed,
thus additionally raising new questions about a potential function
as a specific signaling event (Souza et al., 2008; Baudouin,
2011).

The reversible S-nitrosylation of Rubisco Cys residues has
been reported both in vitro and in vivo for several plant species in
response to nitric oxide (NO) -releasing compounds or to abiotic
stresses (Figure 3) (Abat et al., 2008; Abat and Deswal, 2009;
Fares et al., 2011; Vanzo et al., 2016). As the redox-active thiols
in Cys residues can be modified by the covalent binding of NO
resulting in the formation of S-nitrosothiol (Lindermayr et al.,
2005), it is plausible that S-nitrosylation of Cys residues adjacent
to the Rubisco active site in Arabidopsis might regulate the
activity of the enzyme and degradation of the protein (Takahashi
and Yamasaki, 2002; Marcus et al., 2003; Romero-Puertas et al.,
2008). Indeed, recent enzymatic activity assays have revealed that
Rubisco inactivation in response to S-nitrosylation is probably

the main cause of reduction in carbon fixation upon various stress
conditions (Clark et al., 2000; Abat et al., 2008; Abat and Deswal,
2009).

Another modification of Cys residues is protein
S-glutathionylation, a well-described mechanism of signal
transduction and protein regulation in mammals (Chrestensen
et al., 2000). S-glutathionylation is a reversible post-translational
formation of a mixed disulfide between the Cys residue of protein
and glutathione. Previously, three Cys residues in RBCL and one
in RBCS have been identified as targets of S-glutathionylation
in plants (Rouhier et al., 2005), green alga (Zaffagnini et al.,
2012a) and cyanobacteria (Sakr et al., 2013; Chardonnet et al.,
2015). Protein S-glutathionylation probably protects specific Cys
residues against irreversible oxidation under stress conditions
(Ito et al., 2003; Zaffagnini et al., 2012b), but this PTM can
also result in modulation of protein activity (Klatt and Lamas,
2000; Fratelli et al., 2004) and localization (Chardonnet et al.,
2015). Nevertheless, the functional significance of Rubisco
S-glutathionylation is not known yet.

Activation and Function of the Calvin
Cycle
Although PTMs of Rubisco have been extensively studied, also
numerous other enzymes involved in carbon assimilation have
been shown to possess multiple PTMs (Figure 3). As RA is
responsible for removing inhibitors from Rubisco active center
and thus contributes to initiation of carbon fixation, the stimuli
affecting the RA activity is reflected in the yield of the entire
carbon assimilation cycle. In green alga C. reinhardtii, RA is
phosphorylated at Ser53 by the thylakoid-localized Stn7 ortholog
Stt7 kinase (see above; Lemeille et al., 2010). RA is mainly
localized in the stroma, but a smaller portion of the enzyme
has been found in association with the thylakoid membrane
(Jin et al., 2006). It has been suggested that phosphorylation
of RA increases the attachment of RA to the membrane,
protecting Stt7 against proteolysis (Lemeille et al., 2009, 2010).
The relocation could also be a mechanism reducing the activity
of Rubisco under specific environmental conditions (Lemeille
et al., 2010). In Arabidopsis plants, RA is phosphorylated at
two sites, Thr78 and Ser172 (Boex-Fontvieille et al., 2014). In
the dark, the phosphorylation percentage of Thr78 increases
(Reiland et al., 2009; Kim et al., 2016). As Thr78 is located in
the region crucial for Rubisco interaction (Zhang and Portis,
1999; Kim et al., 2016), it has been suggested that Thr78
phosphorylation inhibits Rubisco activation (van de Loo and
Salvucci, 1996; Stotz et al., 2011; Boex-Fontvieille et al., 2014).
However, the importance of Thr78 phosphorylation for the
Rubisco activation requires further investigation as the Thr78 is
not conserved and replaced by Ile in maize and rice (Baginsky,
2016).

In addition to Rubisco, three other enzymes involved in Calvin
cycle have been reported as phosphoproteins. Phosphoglycerate
kinase (PGK) enzyme catalyzing the transfer of phosphate
group from ATP to 3PG is phosphorylated in Arabidopsis, rice,
and maize plants (Reiland et al., 2009; Facette et al., 2013;
Roitinger et al., 2015; Baginsky, 2016). The two latter species
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share the identical phosphorylation site VGAVSpSPK whereas
in Arabidopsis PGK is phosphorylated in a domain much closer
to the N-terminus. The kinase responsible for phosphorylation
is unknown, but the phosphorylation motif suggests proline-
directed kinase as a possible candidate (Baginsky, 2016).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) possesses
several phosphorylation sites, but as the sites differ significantly
between different organisms, it is plausible that phosphorylation
is not a major determinant of GAPDH activity in chloroplasts
(Baginsky, 2016). Moreover, the main transketolase isoform in
Arabidopsis (TKL1) is phosphorylated in a Ca2+ dependent
manner at Ser428, and phosphorylation affects enzyme activity
(Rocha et al., 2014). Although Ser428 is conserved in higher
plants, Ser428 has been found phosphorylated only in Arabidopsis
plants (Hou et al., 2015; Baginsky, 2016). It is intriguing that
PGK and GAPDH are also targets of Lys acetylation and
S-glutathionylation (Finkemeier et al., 2011; Zaffagnini et al.,
2012a; Chardonnet et al., 2015; Shen et al., 2015). The enzymatic
activity of GAPDH and PGK is increased upon deacetylation, but
the functional importance of S-glutathionylation of GAPDH and
PGK remains to be elucidated (Finkemeier et al., 2011; Shen et al.,
2015). These examples indicate that further studies are urgently
needed in order to fully understand the dynamic regulation of
Calvin cycle enzymes and to pinpoint the responsible enzymes
involved (Friso and van Wijk, 2015; Baginsky, 2016).

Furthermore, a number of other enzymes involved in carbon
assimilation have been shown to be post-translationally modified.
For instance, fructose 1,6-bisphosphate aldolase (FBA) is
trimethylated at a conserved Lys residue close to the C-terminus
of the protein, however, without any effect on catalytic activity or
the oligomeric state of the enzyme (Mininno et al., 2012; Ma et al.,
2016). In poplar trees sedoheptulose-bisphosphatase (SBPase),
RA, ribose-5-phosphate isomerase (RPI), phosphoribulokinase
(PRK), GAPDH, triosephosphate isomerase (TPI), and PGK
were S-nitrosylated during short-term oxidative stress induced
by NO treatment (Vanzo et al., 2014, 2016), but the functional
importance has not been described yet (Lindermayr et al., 2005;
Abat et al., 2008; Romero-Puertas et al., 2008; Abat and Deswal,
2009).

Starch Metabolism
Starch synthesis and degradation occur in a coordinated manner
on a diurnal basis. In leaves, starch is synthesized during
the day and degraded in darkness (Kötting et al., 2010).
Reversible protein phosphorylation plays an important role
also in the regulation of starch metabolism (Tetlow et al.,
2004a, 2008; Grimaud et al., 2008; Reiland et al., 2009),
and five different phosphoproteins (phosphoglucose isomerase,
phosphoglucomutase, starch synthase and two subunits of ADP-
glucose pyrophosphorylase) involved in starch biosynthesis
have been identified in Arabidopsis leaves (Geigenberger,
2011). Interestingly, starch synthase has been reported to be
phosphorylated in a light dependent manner, i.e., exclusively
at the end of the dark period (Reiland et al., 2009).
Analyses of amyloplasts and chloroplasts from Triticum aestivum
(wheat) have shown that some isoforms of starch-branching
enzymes (SBE) are catalytically activated by phosphorylation and

deactivated by dephosphorylation of one or more of their Ser
residues (Tetlow et al., 2004b). Additionally, phosphorylation
is apparently involved in the formation of protein complexes
composed of starch synthase, SBE isoforms as well as other
enzymes with undefined role(s) (Tetlow et al., 2004b; Kötting
et al., 2010). It has been speculated that the physical association
of the enzymes could alter their activities thus improving the
efficiency of starch polymer construction (Kötting et al., 2010;
Geigenberger, 2011). Moreover, numerous enzymes involved in
starch metabolism, such as glucan water dikinase (GWD, also
termed SEX1), starch excess4 (SEX4), β-amylase 1 (BAM1),
ADP-glucose pyrophosphorylase, ADP-Glc transporter and class
II SBE (Mikkelsen et al., 2005; Balmer et al., 2006; Sokolov
et al., 2006; Valerio et al., 2011; Tuncel et al., 2014) are redox
activated by thioredoxin. However, it is worth noting that redox
modification of starch biosynthesis enzymes in response to
light (and other environmental stimuli; reviewed in Kötting
et al., 2010; Geigenberger, 2011) is not the only determinant of
starch accumulation in plants, but most probably other (PTM-
dependent) regulatory mechanisms will be identified in the future
(Li et al., 2012).

CONCLUSION

Recently developed new experimental tools, i.e., PTM-specific
antibodies and stains as well as enrichment techniques and
high quality equipment for mass spectrometry have enabled
identification of a range of PTMs in chloroplast proteins. Detailed
knowledge about the effects of protein phosphorylation and
redox regulation on the photosynthetic reactions already exists,
but the regulation of most metabolic pathways in the chloroplast
is poorly understood. Because a specific amino acid residue may
be targeted by different PTM types (e.g., Lys methylation or
Lys acetylation), and because different PTMs may have either
antagonistic or cooperative effects, it will be important to reveal
the entire PTM code of a protein(s) in order to understand
the physiological significance of PTM-mediated regulation in
a given metabolic pathway. Future studies are likely to reveal
novel modification types as well as molecular mechanisms of
PTM-dependent regulation of various metabolic pathways in
chloroplasts.
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