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Abstract

Background: The current gold standard in dimension reduction methods for high-throughput genotype data is the
Principle Component Analysis (PCA). The presence of PCA is so dominant, that other methods usually cannot be
found in the analyst’s toolbox and hence are only rarely applied.

Results: We present a modern dimension reduction method called ’Invariant Coordinate Selection’ (ICS) and its
application to high-throughput genotype data. The more commonly known Independent Component Analysis (ICA)
is in this framework just a special case of ICS. We use ICS on both, a simulated and a real dataset to demonstrate first
some deficiencies of PCA and how ICS is capable to recover the correct subgroups within the simulated data. Second,
we apply the ICS method on a chicken dataset and also detect there two subgroups. These subgroups are then
further investigated with respect to their genotype to provide further evidence of the biological relevance of the
detected subgroup division. Further, we compare the performance of ICS also to five other popular dimension
reduction methods.

Conclusion: The ICS method was able to detect subgroups in data where the PCA fails to detect anything. Hence,
we promote the application of ICS to high-throughput genotype data in addition to the established PCA. Especially in
statistical programming environments like e.g. R, its application does not add any computational burden to the
analysis pipeline.
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Background
The fast progress in analyzing variations in the genome
by deep sequencing has led to a plethora of high density
genotyping arrays in many livestock species. Thereby also,
the amount of single nucleotide polymorphism (SNP) data
that is available for analyzing the genetic relationships
between different samples is constantly growing. One
common approach to handle this type of data and to iden-
tify e.g. subpopulations, is the application of dimension
reduction methods such as Principle Component Analy-
sis (PCA). Currently PCA is established to be the standard
approach in clustering genotype data, see e.g. [1]. How-
ever, as we will demonstrate with an simulation example,
there are drawbacks and pitfalls in the PCA approach. In a
PCA, the principle components are ordered according to
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the variance they explain, but there is no theoretical jus-
tification that the component with the largest explained
variance also contains the information required, e.g. to
separate subgroups within the data. A vivid counterex-
ample is a large hamburger. If it is large enough, the
component with the largest variation goes through the
diameter of the burger, but to separate the subgroups, one
would need a direction from bottom to top. That means,
even in this simple three-dimensional case the interest-
ing component would be only the second one. Hence, the
interesting components might explain only a small frac-
tion of the variance and consequently are easily missed
by checking only the few first or last components. For
an overview and a more theoretical background on the
application of PCA in genotype data, see [2] or [3].
Other dimension reduction methods, such as Invari-

ant Coordinate Selection (ICS), are not commonly applied
to genomic data. ICS is a modern multivariate method
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originally introduced as generalized PCA in [4], but then
established as ICS in the seminal paper [5] to avoid a name
mismatch with a different generalized PCA approach,
see e.g. [6].
The basic idea of ICS is to use two different scatter

matrices and to compare how they differ. Different choices
of scatter matrices lead then to different applications of
ICS. Currently, ICS has been e.g. applied to near-real time
retrieval of low stratiform cloud coverage [7]. Further, ICS
was used to enhance the discrimination between snow
and ice clouds and detection of broken, thin clouds [8]
and also for studies of developmental canalization and the
identification of divergent and stabilizing selection [9].
To discuss possible problems with PCA, we will first

present a basic counterexample to show that PCA does
not necessarily identify cluster structures in a dataset
and after that apply PCA and ICS on a real example
genotype dataset. Further, for both datasets we will com-
pare the two methods also with other methods used by
the Bioinformatics community. For that we apply also t-
distributed Stochastic Neighbor Embedding (t-SNE) [10],
Isomap [11], Locally Linear Embedding (LLE) [12], ker-
nel PCA (kPCA) [13] and Diffusion Maps (DM) [14] to
the simulated and the real data. For completeness, we also
check the performance of a Linear Discriminant Analysis
(LDA) for the simulation example.

Methods
Simulated data
First we simulated a dataset as an example that PCA is not
always capable of detecting clusters in high-dimensional
data. Consider three 10-variate normal populations with
N10(μi,�), where

μ1 = (−μ∗,μ∗, 0, 0, 0, 0, 0, 0, 0, 0)�,
μ2 = (μ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0)� and
μ3 = (0,−μ∗, 0, 0, 0, 0, 0, 0, 0, 0)� and
� = diag

( 1
5 ,

1
5 , 1, 1, 1, 2, 2, 2, 2, 2

)
with μ∗ = 2. From

each population we simulated then 100 samples. In order
to hide the clearly visible subpopulations, we further
rotated the simulated observations with a random orthog-
onal matrix. Note that the rotation has no impact on the
performance of PCA as the method is rotation invariant.
Additional file 1: Figure S1 shows the simulated data

before the rotation andAdditional file 1: Figure S2 the data
after it. In the latter one, the groups are clearly not visible
anymore.

Chicken data
The high-density genotype data consists of 749 chicken
from 4 generations. The last generation is the largest
group with 603 samples. The other generations contain
50, 46 and 50 samples. The data consists of sequence
based variation data from 7 genomic regions, cover-
ing approx. 35% of the genome. The regions have been

preselected based on previous studies as containing loci
affecting egg-quality traits, see [15] and [16]. As reference
genome we used galgal4.
In total there were 157,528 genotypes measured in those

regions. See Additional file 1: Figure S3 for the locations
of the used regions on the chicken reference genome.
In addition to the genotype data, also a set of 15 different

breeding values was available for all chicken. These were,
besides others, egg production in period 3 to 7, egg pro-
duction in period 9 to 12 and feed intake. We use this data
as real data example and will follow up on the biological
findings only for one detected subgroup in order to keep
the focus on the method.

Invariant coordinate selection
To explain ICS we need first to introduce the concept of
scatter matrix. For a p-variate random vector x any p × p
matrix-valued estimator S(x) is called a scatter matrix if it
affine equivariant in the sense that

S(Ax + b) = AS(x)A�,

for any full-rank p × p matrix A and any p-variate vec-
tor b. Clearly the regular covariance matrix COV is a
scatter matrix. But especially in the robust statistics lit-
erature many other scatter matrices were introduced. For
more details about how scatter matrices generalize the
covariance matrix and many related references see [17].
A scatter matrix we will use later is the so-called scatter
matrix of fourth moments

COV4(x) = 1
p + 2

E
(
r2(x − E(x))(x − E(x))�

)
,

where r = ||COV(x)−1/2(x− E(x))|| and || · || denotes the
Frobenius norm.
The main idea of ICS is to compare two different scat-

ter matrices S1(x) and S2(x) by solving the following
eigenvector-eigenvalue problem

S−1
1 (x)S2(x)B�(x) = B�(x)D(x),

where D(x) is then the diagonal matrix containing the
p eigenvalues of S−1

1 (x)S2(x) in decreasing order. The
rows ofB(x) contain then the corresponding eigenvectors.
For convenience of notation we will denote from now on
S1(x) = S1, S2(x) = S2, B(x) = B and D(x) = D.
The ICS equation above can be seen as the problem of

jointly diagonalizing the two scatter matrices, i.e. find B
and D such that

BS1B� = Ip and BS2B� = D.

An interpretation can then be given as follows. First S1
is used to whiten the data, i.e. uncorrelate the variables
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and standardize the scales. Then perform on the whitened
data PCA using S2. Therefore the idea is to see if S2 finds
still some interesting structure after removing second
order information as measured by S1.
The transformation B(x)x yields then an invariant coor-

dinate system in the sense that

B(x)x = B(Ax)(Ax),

where equality holds up to marginal signs for any full rank
p × pmatrix A. The new vector z = B(x)x is then usually
referred to as the invariant coordinates.
The univariate concept of kurtosis can be seen as the

ratio of two (standardized) scale measures and similarly
S−1
1 S2 can hence be seen as amultivariate extension of this

concept. Therefore the eigenvalues contained in D can be
interpreted as generalized kurtosis values as measured by
S1 and S2. In the special case of S1 = COV and S2 =
COV4 it can be shown that the diagonal elements inD are
a linear function of the classical measures of kurtosis of
the components in z [18].
And for example when searching clusters it is well-

known that large clusters can be found often in directions
with small kurtosis and outliers and small clusters in
directions with large kurtosis. This means that invariant
coordinates are very suitable for searching for groups as
the components are ordered according to their (general-
ized) kurtosis. As actually [5] show, in the context of mix-
tures of elliptical distributions with proportional scatter
matrices, ICS finds Fisher’s linear discriminant subspace
without knowing the group memberships. Hence, when
using ICS for exploratory data analysis usually most atten-
tion is paid to the components with extreme generalized
kurtosis values, like for example the first 3–5 and last 3–5
components. For more details about ICS see [4, 5, 18, 19].
As practical considerations we would however like to

point out that there is no general best combination of scat-
ter matrices and the performance might depend on the
choice of S1 and S2. The choice S1 = COV and S2 =
COV4 is however well-established and for example also a
solution to the independent component problem (ICA) if
x follows it (see eg [20] for further details). ICA has been
applied in the context of genetic data e.g. in [21].
Furthermore, ICS is however currently limited to the

case when p < n − 1 as otherwise scatter matrices are
always proportional to each other, see [22] for details.
Therefore if p ≥ n − 1, then one can for example first
perform dimension reduction using PCA, resulting in a
n × n matrix where the n-th eigenvalue is zero. Then ICS
is only applied to a subspace which is known to have vari-
ation and is of smaller dimension than n − 1. This is for
example standard practice in many multivariate methods
which are limited to the p ≥ n − 1 case, like for example
the high-dimensional noisy ICA approaches [23].

Distance measure, distance groups and statistical testing
For the simulated data the classification decision based on
the scatterplot matrices from PCA and ICS was done by
applying a k-means algorithm to the desired components.
The classification results of the different dimension reduc-
tionmethods were then evaluated using the adjusted Rand
index [24]. In the real data example, the classification
decision was done by visual inspection of the figures.
In order to calculate the genetic distance of two dif-

ferent groups in a region of interest, we followed a basic
approach. Assuming two subpopulations A and B have
been identified in the data, we determined first at each loci
l = 1, 2, . . . the most common genotypes for both groups
and denote these G̃A,l respective G̃B,l. Then, we compared
if these genotypes match between the two groups, by set-
ting Gl = 1, if G̃A,l = G̃B,l and 0 else. Afterwards we
calculated a moving average of length 1000 across the data
and calculated in each window the average level of agree-
ment. Let W = w1,w2, . . . be the set of all windows of
length 1000 with w1 = l1, . . . , l1000,w2 = l2, . . . , l1001,
the average level of agreement in window i is then x̄wi =∑

∀l∈wi Gl/1000. For the sake of simplicity, we calculated
the moving average also across chromosomal borders.
For all windows wi with level of agreement between two

subpopulations x̄wi ≤ 0.4, the individual distance of each
individuum in the one group was calculated to the average
of the other group. For that, we use again the most com-
mon genotype for each loci in the subpopulation coded
as 0,1,2 and then we calculated the Manhattan distance of
each individuum from the standard population to that.
Testing for differences in the breeding values between

the two subpopulations has been done by applying a two-
sided Mann-Whitney test. Significant breeding values
(p-value ≤ 0.05) are further investigated with a direc-
tional test, as proposed by [25] and implemented in the
R-package gMWT [26]. The individual distance measure
of the chicken from the main population to the subpop-
ulation showed three types of chicken, those which are
genetically close (c), those that are medium (m) and those
that are far (f ) away from the subpopulation. Let Fp,c, Fp,m
and Fp,f be the distributions of the three groups for a
given phenotype p, we have then the following two testing
problems in mind

H0 : Fp,c = Fp,m = Fp,f vs H1 : Fp,c �st Fp,m �st Fp,f
or

H0 : Fp,c = Fp,m = Fp,f vs H2 : Fp,f �st Fp,m �st Fp,c
with �st being the stochastical ordering of the two dis-
tributions. Two distributions F1 and F2 are stochastically
ordered, if F1(x) ≥ F2(x) ∀x ∈ R and we write F1 �st F2.
These directional hypotheses have been used to test for a
directional relationship between the similarity group and
the different phenotypes.
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Results
To evaluate the performance of the different dimension
reduction methods to unravel the original cluster struc-
ture, we first clustered the plain simulated data using
k-means with the constrain of three classes (k = 3). For
the classification result, we then calculated the adjusted
Rand Index for the 3 × 3 table between the original class
labels and the result of the k-means clustering. Next, we
performed a PCA, followed again by a k-means clustering
using the first two components for classification. Also for
this classification result table we calculated the adjusted
Rand index. Then we applied ICS onto the dataset and
calculated in the same way again the Rand index for the
k-means applied to the last two components. To compare
the results to other popular dimension reduction meth-
ods, we applied also t-SNE, Isomap, LLE, kPCA and DM
to the simulation data and calculated the corresponding
Rand indices. Further, we searched with each dimension
reduction method the same dimensionality, that was d =
2 for the simulated and d = 7 for the real chicken data.
The Rand index for the clustering using the original data

is 0.20, the index for PCA is 0.48 and for ICS it is 0.94.
In other words, the k-means clustering applied to the raw
data does not detect any of the original groups and the
PCA only detects two groups, but mixes the second and
third one. The ICS method, however, recovers the original
cluster structure to a large extent, indicated by an adjusted
Rand index of nearly one. See also Fig. 1 that visualizes
the cluster labels in the projected datasets for the k-means
classifications applied to the different methods.

The results for the other dimension reduction methods
were rather weak. Whereas the t-SNE method was almost
as good as the ICS (Rand-index 0.93), the four others
clearly were outperformed by these two mothods. Isomap
had a Rand index of 0.71, LLE had a value of 0.48, DM
had also only 0.50 and the kPCA method had with 0.42
even a value smaller than the PCA had. That means, none
of these methods was able to fully recover the original
data. The corresponding Figures S4–S11 can be found
in the Additional file 1. To calculate the t-SNE we used
the R-Package tsne [27], Isomap is implemented in the
R-Package RDRToolbox [28] and LLE in lle [29]. For
kPCA we used the kernmap package [30] and for DM the
destiny package [31].
The lda function applied to the simulation data

resulted in an error-free separation of the data and had
consequently a Rand index of 1. However, the ICS method
is with 0.94 not too far away from that optimum. In abso-
lute numbers, 6 out of 300 observations were mislabeled
using the ICS function. LDA cannot be applied to the
real example data, as the identification of subgroups is
done without any prior knowledge and as such supervised
methods like LDA cannot be applied to the problem.
To analyze the real chicken data using PCA, we applied

the snpgdsPCA function of the SNPRelate [32] R-
package to it. Figure 2 shows the scatter plot matrix of the
ten first components, but no particular subgroup could be
identified. The PCA identifies only two strongly deviating
individuals. Next we determined the number of eigenvec-
tors that account for a total variance of 80%.

Fig. 1 Cluster labels of the k-means clustering for mixed data (left), the first two principle components (middle) and the last two ICS components
(right). The true class labels are colored accordingly and the k-means classification is represented with different symbols
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Fig. 2 Scatterplot matrix of the PCA analysis. No particular subgroup could be identified. The first component detects only two outlying observations

We plugged the corresponding matrix with the first 169
eigenvectors from the eigen-decomposition of the PCA
into the ics function of the ICS [19] R-package. We
applied the ics function using the regular covariance
matrix and the covariance matrix of forth order moments
(default), as described above. By using this method we
could clearly identify two subgroups in the last compo-
nents of the ICS as well as deviating individuals in the
first components. One subpopulation is separated by the
antepenultimate component (Number 167). This subpop-
ulation of 20 individuals is marked in red and green in

the scatterplot matrix of the ICS components, see Fig. 3.
Further, we could also identify another possible subgroup
of size 10 by projecting the data onto the penultimate
component (Number 168), indicated in blue. We do not
follow up on the individual outliers identified in the first
components as the current goal was subgroup detection.
Before analyzing the phenotypical particularities of the

identified subgroup, we also test the performance of the
other dimension reduction methods on the real chicken
data. Here, kPCA and LLE are able to identify the same
clusters as ICS does, but t-SNE and Isomap fail to identify
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Fig. 3 Scatterplot matrix of the ICS analysis. Clear subgroups could be identified in component 167 and 168. All members of the subgroup 167 have
the same father, but two different mothers, indicated by red (n=19) and green (n=1). Another subgroup could be identified in component 168
(blue, n=10)

any clear cluster structures. In case of t-SNE we tried both
k=7 and k=2, but in neither case any obvious subgroup
could be identifed. Diffusion map, however, apparently
identifies another subgroup. The corresponding scatter-
plot matrices can also be found in the Additional file 1.We
used the default settings and protocols as provided by the
different packages. That means, e.g. for LLE we calculated
the optimal number of neighbors as 17.
Members of the red subgroup, identified by the ICS

method are all offsprings from the same father and mainly

from the same mother. From the 20 members of the
subgroup only one individual (indicated by green) has a
different mother. The subpopulation indicated in blue is
also formed by a family. Seven chicken from this popula-
tion have the same father and mother. Further, the father
of those 7 chicken can also be found in this group.
A region of approximate length 4Mb (Chr2:70,348,413-

74,448,870), containing 1340 SNPs was identified by
calculating the genetic similarity between the deviating
(red) family and the remaining population. The genetic
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similarity was calculated with a moving average using
windows of size 1 kb. Areas, where the average level of
agreement drops below 0.4 are considered to be the major
cause for the difference between the divergent red fam-
ily and the main population. Additional file 1: Figure S12
shows the level of agreement across the considered chro-
mosomal regions. Also for the blue subpopulation we
could identify in a candidate region a similar way.
Next, we calculated for each chicken within the main

population the Manhattan distance between the mode
genotype values of the deviating red family in the region
of interest and the individual genotypes. There we could
clearly identify three subgroups within the main popula-
tion, see Additional file 1: Figure S13. We denote those
subgroups as close, intermediate and far.
When breeding values of 15 production values were

compared between the red subpopulation and the main
population, significant differences were seen in 10 traits
(The two-sided Mann-Whitney test was significant at
level α = 0.05). These were then tested further using
a generalized Mann-Whitney test for directional alterna-
tives. This means, we tested for a directional trend of the
phenotypes with respect to the close, the intermediate and
the far group.
For six breeding values a directional relationship in the

main population could also be verified. Especially the
production values followed a directional order, see the
corresponding boxplots in Fig. 4. In details thatmeans that
the red subgroup had a significant higher egg production
compared to the main group and within the main group
the chicken that are genetically closer to the subgroup in
an identified region also had a higher production com-
pared to those that are genetically further away. However,
the increased production values occurred with a higher
feed intake.

Discussion
We applied the modern dimension reduction method ICS
to a simulation example and compared it to the commonly
used PCAmethod to visualize some deficiency of the PCA
approach. Further, we applied the other, modern dimen-
sion reduction methods t-SNE, Isomap, LLE, kPCA and
DM to the simulation data. Here, in the controlled envi-
ronment we could clearly see that the PCA method was
not able to identify all three true groups in the simulated
data, but the ICS method, however, was. From the other
tested methods, only t-SNE was able to recover all three
subgroups, but all other four tested methods failed doing
so. Some of them separated a single subgroup, but mixed
the remaining two groups into a single large cluster. When
the methods were then applied to a high-density geno-
type chicken data, the PCAmethod could not identify any
subgroups. The ICS method clearly identified two sub-
groups consisting of 20, respective 10 samples, that share
the same family background. Two (kPCA and LLE) of the
five other methods, however, also detected the same sub-
groups in the real chicken data. The other three methods
failed to identify any clear cluster structures.
In the scatterplot matrices some outlying observations

could be identified by t-SNE (see Additional file 1), but
not as evident as in the ICS case. A closer look at compo-
nent 3 showed e.g., that some of the chicken with a value
larger 25 are related but the most of them are unrelated. In
terms of calculation times, the ICS needed around 0.2 s,
whereas the t-SNE run took around three minutes. The
other usedmethods needed at most only a few seconds for
the calculation.
We considered also the red subgroup identified by ICS

closer. It was superior in more than half of the avail-
able breeding values compared to the standard chicken
population. Within the standard chicken population we

Fig. 4 Boxplot of production values P2 (left) and P3(right). A clear directional relationship between the subpopulation and the three distance groups
close, medium and far. In both production periods have chickens that are in the identified region closer to the subpopulation also higher
production values
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could identify three subgroups that were either genet-
ically close, intermediate or far away from this sub-
group based on the most deviating chromosomal region.
In addition, these three groups of the main popula-
tion showed a directional trend in many traits, espe-
cially in the important production values P2 and P3.
Also the blue subgroup is deviating in five breeding val-
ues from the main population, including the production
values P3.
There were no other combinations with those parents in

the data available so that no further investigations could
be conducted to identify the reason for the subgroups to
behave in such a different way. The biological explanation
for the difference is beyond the scope of this paper.
The identification of three groups (main group and

two subgroups) within the data is remarkable. As all the
chicken originate from the same line, one would not
assume any subpopulation structures and by applying a
PCA to it, we did not identify any. ICS identified two
subpopulations that were thereafter also seen to differ
from the main population for some of the phenotypes for
production traits.
Further, we could identify strongly deviating genetic

regions between the subpopulations and the main group
and followed exemplary up on the one that corresponds
to the red subgroup. Within that, we calculated then the
genetic distance of the remaining chicken to the identi-
fied subpopulation and could see that chicken genetically
more similar with regard to the deviating region to the
subpopulation also have better production values. More-
over, we could identify a directional relationship between
the genetic similarity in that region and certain produc-
tion values.

Conclusion
We presented here an alternative dimension reduction
method that is already used in other scientific fields, but
that has not yet made its way to the genomic community.
However, although ICS is superior over PCA in the cur-
rent scenario, its purpose is not to replace PCA or any
other dimension reductionmethod, but it is rather consid-
ered to be another tool in the dense genotype data analysis
toolbox.
Its good results for both, the simulation and the real

dataset encourage its use also for other genomic datasets
to further evaluate its performance in a larger scale. Com-
pared to other, modern dimension reduction methods,
we saw that there is a large variation in the perfor-
mance of each method, depending on the dataset. For our
data, only ICS showed good results in the simulation as
well as in the real data set, Isomap and Diffusion map
had the weakest results for both setups. t-SNE only per-
formed well in the simulation setup and LLE only for the
real data.

Additional file

Additional file 1: The supplemental material contains additional Figures.
Included figure files are provided below. Figure S1. Scatterplot matrix of
the unmixed simulation data. Figure S2. Scatterplot matrix of the rotated
simulation data. Figure S3. Visualization of genomic regions that have
been used for the analysis. Figure S4. Scatterplot with cluster labels of the
k-means clustering for t-SNE, Isomap and the LLE. Figure S5. Scatterplot
with cluster labels of the k-means clustering for Diffusion Maps and kernel
PCA. Figure S6. Scatterplot matrix for t-SNE output with k=7 applied to the
real chicken data. Figure S7. Scatterplot matrix for t-SNE output with k=2
applied to the real chicken data. Figure S8. Scatterplot matrix of the first 7
components of the LLE output applied to the real chicken data. Figure S9.
Scatterplot matrix of the first 7 components of the Isomap output applied
to the real chicken data. Figure S10. Scatterplot matrix of the first 7
components of the kPCA output applid to the real chicken data. Figure S11.
Scatterplot matrix of the first 7 components of the DM output applied to
the real chicken data. Figure S12. The values of the level of agreement
across the regions of interest. Figure S13. The individual genetic distances
betweenmain population to themode of the subpopulation. (PDF 2130 kb)
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