Man-in-the-browser attack:
A case study on malicious browser extensions

Sampsa Rauti

University of Turku, 20014 Turku, Finland
sjprau@utu.fi

Abstract. Man-in-the-browser (MitB) attacks, often implemented as
malicious browser extensions, have the ability to alter the structure and
contents of web pages, and stealthily change the data given by the user
before it is sent to the server. This is done without the user or the online
service (the server) noticing anything suspicious. In this study, we present
a case study on the man-in-the-browser attack. Our proof-of-concept
implementation demonstrates how easily this attack can be implemented
as a malicious browser extension. The implementation is a Ul-level, cross-
browser implementation using JavaScript. We also successfully test the
extension in a real online bank. By demonstrating a practical man-in-
the-browser attack, our research highlights the need to better monitor
and control malicious browser extensions.

1 Introduction

In a man-in-the-browser (MitB) attack, a malicious program can change
the structure and contents of web pages, modify data in HTTP mes-
sages, or steal sensitive data the user enters in the browser without the
user or online service observing anything out of the ordinary [15]. There
are several real-world examples of man-in-the-browser malware, such as
SpyEye, Zeus, Torpig, URLZone and Silentbanker [4, 5].

The attack was originally presented by Augusto Paes de Barros in a
talk about new backdoor trends in 2005. The name man-in-the-browser
attack was later invented by Philipp Giihring, who also described the at-
tack in more detail and discussed possible countermeasures against it [9].
Today, almost 15 years later, pieces of malware with man-in-the-browser
functionality are still a significant threat for many online services. On-
line banking and web services of financial institutions, for example, are
among the most popular targets for man-in-the-browser attacks [6].
This study presents a case study on the man-in-the-browser attack.
We demonstrate how easy it is to build a malicious browser extension
with man-in-the-browser functionality that stealthily changes the data
the user has inputted in the browser. While our implementation is a
Chrome extension, it could easily be utilized in Opera or Firefox as well,
as the code is written in JavaScript and operates on the UI level. We
also successfully test this extension in a real online bank. This study
shows that even a simple, easy-to-implement malware can successfully

perform a man-in-the-browser attack, bypassing all traditional authenti-
cation mechanisms and other security solutions like TLS encryption. By
demonstrating a practical man-in-the-browser attack, our research shows
that MitB is still a serious threat for web applications and outlines the
need to better monitor and control the malicious browser extensions.
The rest of the paper is organized as follows. Section 2 explains how
a typical man-in-the-browser attack proceeds. Section 3 describes our
proof-of-concept implementation for the attack. Section 4 describes the
experiment we performed in a real online bank with our malicious exten-
sion. Section 5 discusses the implications and countermeasures of man-
in-the-browser attacks. Finally, Section 6 concludes the paper.

2 The attack

Because spying on and altering messages in the network is difficult due to
encryption, many attackers are instead looking for an easier opportunity
to perform man-in-the-middle attack at the endpoint of communication —
the user’s infected machine. Man-in-the-browser is a security threat that
can be described as a deceitful proxy inside the browser. The goal of the
malicious program is either to steal or alter the data exchanged by the
user and the web service [20]. This can mean 1) fraudulently altering the
contents of web pages before they are rendered 2) modifying the data in
incoming or outgoing messages 3) generating additional malicious HTTP
requests, or 4) capturing sensitive data and sending it to command and
control server [9, 22]. A MitB malware can contain some or many of these
functionalities. The malicious program usually operates totally silently,
without giving the user or the web service any visible clues about its
existence.

In this paper, we will take a closer look at a type of man-in-the-browser
attack that uses DOM (Document Object Model) modification to quietly
alter the data inputted by the user before the data gets transmitted to
the server. Such an attack usually proceeds as follows:

1. The user’s computer gets infected by malware. Oftentimes, the mal-
ware resides in the browser and is implemented as a malicious browser
extension.

2. The malware has a list of matching URLs and once the user visits a
URL on the list, the man-in-the-browser functionality activates.

3. The malicious program waits until the user logs in and makes a
transaction — for instance, the user transfers money from his or her
bank account.

4. Before the data is sent to the server, the malware tampers with the
request and modifies the data — for example by using the browser’s
DOM interface to change the bank account number of the receiver.

5. After the values submitted by the user have been modified, the man-
in-the-browser malware lets the browser proceed with transmitting
the data to the server.

6. The browser then delivers the deceptive HI'TP request to the server.
The server, however, has no way of telling this falsified request from

a real one. It therefore accepts the request, believing this is the real
intent of the user.

7. The user is then usually asked to verify the transaction. For instance,
an online banking website shows the details of a bank transfer to the
user once more so that they can be confirmed.

8. The MitB malware changes any details (e.g. the bank account num-
ber) on the displayed page so that they correspond to the original
transaction that the user intended to make. The user thinks every-
thing is fine and confirms the transaction.

The user and the online service involved in the exchange have been de-
ceived. Later the user will probably notice that the transaction was al-
tered (e.g. when receiving a reminder letter for the invoice). At this point,
the money has probably already been irrevocably lost.

3 Implementation

We studied how a man-in-the-browser attack could be implemented as an
extension for the Chrome web browser. Like in the example description
of a man-in-the-browser attack in the previous section, we decided to
make a malicious browser extension that manipulates the data the user
has filled in on a web site before it is sent to the server. Later on, we
perform an experiment with our extension by changing the recipient
account number when making a transaction in an online bank.

For better security, changing HTTP messages has been made tricky in
Chrome by restricting this functionality in the WebRequest API. We
circumvent this problem by using an easier method of manipulating the
data with the DOM API before it is sent to the server. This way, we do
not even need to use any browser specific APIs, the extension will just
consist of a few lines of very basic JavaScript.

When using DOM to replace the data given by the user with our own
fraudulent data, we have to find a way to do this stealthily so that the
user does not notice anything. Simply changing the value of a text field
so that the user can easily spot the change does not work, for example.
There are many possible approaches to modify the DOM and manipulate
data, but in our implementation we used the following one:

Find the text field containing the value we want to change.

Make a fake copy of this original text field.

Make the original field invisible (with CSS).

Replace the value of the invisible original text field with a deceptive
value.

5. Insert to fake field in the place of the original one.

L

Now, the user will think that the fake field is the real one, and he or she
will use this field to input the value in the application. However, what
is really going to be sent to the server is the data in the original text
field that is invisible and unreachable to the user. Figure 1 illustrates

Receiver name: | Company Ltd |

Receiver account: | Fl14615943910072074 | XX33278892100032055

Reference number | 1002309947 | \

| The original text field, now

Amount: | 100.00 invisible and controlled by
the attacker
Submit The fake field for the user

Fig. 1. A man-in-the-browser attack against the online bank application by substitut-
ing the receiver account field with a fake one. The user types a value in the fake field,
which is never going to be submitted. Instead, the value in the original, invisible text
field, controlled by the attacker, is transmitted to the server.

this situation. Of course, the same trick could be used with other text
fields as well. For instance, the attacker could easily increase the amount
of money that is being transferred.

The whole malicious modification functionality in the extension can be
written in about 5 lines of basic JavaScript which uses the DOM API. We
will not share the code here, because it is a piece of malware, but anyone
with a moderate knowledge of JavaScript could write the extension in just
a few minutes. The code is available upon request for research purposes.
There is one more minor thing to take care of: we want the malicious ex-
tension to also deceive the user when the verification page is displayed.
On the verification page, the extension just searches the element that
displays the data which has been sent to the server (e.g. payment in-
formation with an account number) and replaces its contents with the
original value the user has inputted. This requires just a few lines of
code: capture the data written by the user in the fake text field, store
it and display it on the verification page instead of the fallacious data
that has really been sent to the server. With this, our extension is pretty
much finished.

The extension should normally only be installed through Chrome Web
Store, but one can also test unpacked extensions by enabling Chrome’s
developer mode. To load the extension in Chrome, we just have to have
two separate files in a folder: a manifest (manifest.json) and a content
script (content.js) containing the malicious functionality that was de-
scribed previously. The contents of the manifest file are shown in Fig-
ure 2.

The main thing to note about the manifest file is the fact that it defines
the website or the websites on which the extension activates (matches).
The content script, content.js, is injected into the web page once the
DOM of the page is complete [7]. Naturally, the name and description of
the extension displayed to the user on the extension page of the browser

"manifest versiocn": 2,

"name": "Bank transfer modifier",
"yersion™: "0.1.0",
"description™: "Sends your payments to the evil attacker”™,
"content scripts™: [{
"js": ["content.js"],
"matches": ["*://bank.com/*"],
"run_at™: "document end”

H

Fig. 2. The extension’s manifest file.

would be changed if we really were building a real malware. Malware ex-
tensions are usually Trojans: they trick the user by performing some use-
ful functionality, but at the same time, malicious activities are stealthily
performed in the background.

4 Experiment

We used Chrome’s developer mode and installed our extension. The ex-
tension was tested on a machine with Windows 10 and Chrome version
76.0.3809.132 installed. Figure 3 shows the extension on Chrome’s ex-
tension page.

We proceeded to test our extension on a real online bank service. We
will leave out the name of the bank from this study, suffice it to say it
was a relatively large European bank. The experiment was a success, as
our extension was able to divert the payment to a different bank account
than given in the bank application.

Regarding the experiment, the following observations are especially note-
worthy:

1. Two-factor authentication is useless. The bank uses two-factor au-
thentication in the login process. This is useless against man-in-the-
browser attacks that bypass the authentication phase and modify
the transaction ”on the fly” as the user makes the payment. There-
fore, our extension did not experience any challenges in the login
phase.

2. Out-of-band wverification is useless to some extent. The bank uses
out-of-band (OOB) verification to confirm the transaction. OOB ver-
ification verifies the transaction using a second channel other than
just the web browser [5,24]. This can be done with a mobile appli-
cation (where the user gives a PIN code) or using a separate little
device supplied by the bank. If the user uses the separate device,
he or she gives the device a code on the bank’s web page, and then
gives the bank web page a code calculated by the device. However,

= Extensions Q, Search extensic

Load unpacked Pack extension Update

Bank transfer modifier 0.1.0

—@ Sends your payments to the evil attacker

1D: kgcogmdgedclkgjfonaiihchmbkmgkfk

Details Remove c ®

Google Docs Offline 1.7

% Get things done offline with the Google Docs

family of products.

ID: ghbmnnjooekpmoecnnnilnnbdlolhkhi
Inspect views background page (Inactive)

Details Remove ®

Fig. 3. Chrome’s extension page.

the device never displays the receiver’s account number to the user,
and in this sense, the verification is not really complete and does not
really protect against our MitB attack.

The other way of verification, the mobile application, is better, be-
cause the receiver account number is displayed to the user for veri-
fication. Of course, this can potentially stop a MitB attack and our
extension, if the user notices the difference in account number is dif-
ferent from what he or she originally inputted in the browser. One
problem in mobile verification is the fact that nowadays, many users
can use their mobile phones for online banking. In this case, OOB
verification may be rendered useless if the phone is infected, because
there is no real second channel anymore in the verification process
[3,10]. In addition, our most prominent concern with OOB verifica-
tion is related to user errors and simple psychology. After a while,
the verification process most likely becomes an automatic routine for
the user. Is the user really going to carefully check the receiver ac-
count number every time? We believe a high percentage of the users
will probably not do this. Instead, the users simply automatically
give the mobile app the PIN code to verify the transaction as a part
of a routine.

3. TLS encryption is useless. TLS encryption is a good measure for
protecting against man-in-the-middle attacks in general. However,
when the modification attack happens inside the browser, the data
can easily be modified before it is encrypted. Therefore our extension
and MitB attacks in general bypass TLS encryption. Too many banks
and other critical online services today still state in their security
instructions that the user will be safe when he or she sees the lock
indicating a secure connection in the address bar. This can lull users
into a false sense of security.

4. Many anti-virus programs are currently useless. Sadly, anti-virus
vendors have not really been interested in what happens inside web
browsers, which leads to low detection rates for malicious browser ex-
tensions [2]. Anti-virus programs consider browsers safe, and there-
fore they often also consider browser extensions harmless without
any stricter scrutiny. As web applications become more popular,
replacing many desktop applications, and the browser becomes a
new platform for running many application and extensions, mali-
cious activity inside the browser should be more closely monitored.
The computer we performed our experiment on also had an anti-
virus program installed. Unsurprisingly, the program did not react
to our man-in-the-browser attack in any way.

5. The bank did not question the transaction. Finally, the transaction
we tested was a success and the online bank did not notice anything
suspicious was going on. It is not completely fair to criticize the
bank about this, because we transferred a relatively small amount
inside the same country (from a Finnish account to a Finnish ac-
count). Still, we want to make this observation here to remind that
banks should check all transfers on the server side and require extra
verification (for example by calling the customer and asking for ver-
ification) for payments that differ from the normal pattern of trans-
actions. Also, banks could include some client side security measures
in their web applications to mitigate MitB attacks, as we will see in
the next section.

5 Discussion and Countermeasures

The proof-of-concept implementation for a malicious MitB extension pre-
sented in this study shows that in 2020, about 15 years after their ap-
pearance, man-in-the-browser attacks are still a significant threat and
can effectively work against the modern online banking web systems
which are supposed to be at the top of their game in terms of securing
transactions. As already noted by Blom a couple of years earlier [1], it
still seems that many banks do not consider man-in-the-browser attacks
a serious threat.

As noted before, a malicious extension is regrettably easy to implement.
Writing a few lines of rudimentary JavaScript and using the DOM inter-
face is not difficult. However, to create an an extension that changes data
entered in a form, not even this is actually required. This is because the
code of extension could be shared to less technically oriented attackers,

who would then only need to fill in two details in the code: 1) the ID of
the text field which we want to fabricate (or IDs for several text fields,
if required), and 2) the ID of the corresponding element on the verifica-
tion page so that it can be edited as well. Actually, the latter ID is not
strictly necessary, because the extension could just scan the verification
page and replace the value regardless where it is. Even more danger-
ously, why not make the extension the look for IBAN account numbers
(or any other well-formatted data) in the text fields and replace all such
fields? Then the extension would be completely automatic and proba-
bly work against several banks even without prior knowledge about the
exact user interfaces of the banking web apps. At any rate, it should
be clear that even when not automatized to this extent, our extension is
really easy to parametrize. Anyone can search for IDs of HTML elements
(e.g. using Chrome’s inspect functionality) and then make the necessary
replacements in the JavaScript code.

Google has continuously striven to make the process of reviewing exten-
sions more rigorous [16], and in 2018, installation from web sites other
than Chrome Web Store was disabled. However, many malicious authors
have still succeeded in slipping their extensions into Chrome Web Store.
With over 60 % market share, Chrome is still a very attractive choice
for malware developers. Many malware authors also first publish a com-
pletely harmless extension and then integrate malicious functionality to
the extension later. The adversary can also use malware that circum-
vent Chrome’s installation restrictions and programmatically install the
extension to Chrome without the user’s knowledge and permission. For
example, the notorious ”Catch-All” extension for Chrome that stole all
data user typed in the browser used a malicious installer program that
started Chrome from command line with parameters that allowed the
installation of the extension and circumventing many security features
related to extensions [12]. Finally, the adversary could employ social en-
gineering to get the user to install the harmful extension in developer
mode.

Although Chrome’s extension policy has become stricter in recent years,
many other browsers, other browsers such as Firefox and Opera have
looser policies when it comes to extension installation and permissions.
It is also important to note that the JavaScript code we wrote does not
use any browser specific features, and it could be directly used for Firefox
and Opera extensions as well.

It is quite apparent additional countermeasures are needed against mal-
ware with man-in-the-browser functionality modifying the user’s trans-
actions. Scientific literature has proposed numerous different counter-
measures over the years, but we will discuss just a few solutions in the
context of our practical experiment here:

— Stricter permission control for browser extensions. Chrome has a
system in place that makes the users confirm the permissions an ex-
tension can have. However, many users are probably going to accept
these permissions without really reviewing them or understanding
what they mean. Firefox and Opera, on the other hand, do not have
this fine-grained extension permission management. Therefore, new

ideas and frameworks for permission and access control management
and monitoring [8, 13, 23] are needed. For example, Liu et al. pro-
pose assigning different sensitivity levels for HTML elements [11]. It
could be a good idea to restrict the ability of extensions to modify
text fields, for example. At the very least, certain patterns such as
an extension modifying an invisible text field (like in our example
implementation) are highly suspicious. Also, it would not be that dif-
ficult to compile a list of the most critical web sites (such as online
banks) where extensions would be completely turned off.

— Out-of-band verification. We already saw that out-of-the-band veri-
fication has its downsides. The process can become a boring routine
for the user or both web banking and verification can be done on
the same infected mobile phone. However, out-of-band verification is
still a good security mechanism when used correctly. An uninfected
second channel has to be used for verification and the transaction
details have to be shown to the user. The user has to understand
why verification is important and check the transaction carefully.
Aside from a mobile device which may not be completely secure,
for instance a separate USB gadget with a display can be used for
verification [14, 18].

— Monitoring web page integrity. One way to protect against DOM-
based man-in-the-browser attacks is to verify the integrity of the
web pages [17]. The challenge here, of course, is that there are many
legitimate extensions such as advertisement blockers that need to
modify pages. On some web sites with critical functionality and sen-
sitive information, however, this countermeasure could provide great
benefits. Cryptography can be used to protect the integrity of web
content [21]. As a mechanism to mitigate man-in-the-browser at-
tacks, critical applications could add functionality guarding the in-
tegrity of the web page. An even more secure solution would be to
integrate this check in the browser. This way, performing tricks such
as adding extra text fields would become more difficult.

— Hardening the browser. Hardening refers to securing software by lim-
iting the attack surface and implementing other mechanisms pre-
venting cyber attacks. For example, a clean web browser can be
loaded from an external tamper-proof device [19]. The hardened
browser would use TLS to encrypt communication with the server
and browser extensions would not be allowed. Therefore, setting up
a man-in-the-browser attack would become difficult for the adver-
sary. However, the usability of this solution is not as good as that
of a normal browser, as the user has to attach the device and use a
separate browser for critical transactions.

To summarize, thwarting man-in-the-browser attacks is a co-operative ef-
fort involving many parties. First, web browser vendors need to make sure
permissions of extensions are controlled and users are informed about
possible implications of granting these permissions. Installing malicious
extensions should not be too easy. Intuitive mechanisms for turning off
extensions on certain web sites should be provided. Second, providers of
critical services such as banks should always provide appropriate out-

of-band verification and emphasize the importance of carefully checking
the transactions. Client-side mechanism such as DOM integrity check-
ing can be used on client side. Third, anti-virus vendors should do even
better job in analyzing what happens inside the browser (e.g. by analyz-
ing activities of extensions and monitoring what kind of resources they
access). Fourth, organizations need to pay attention to their policies on
browser extensions. It would be a good idea to regularly review the in-
stalled extensions. Last but not least, it is important for the users to
understand how powerful browser extensions are and select the exten-
sions they use carefully. Many attacks could be proactively prevented by
educating users.

Finally, although we have been mainly discussing online banks in our ex-
amples, it is worth noting that man-in-the-browser attacks are a threat
to a wide variety of different web services. One can easily imagine replac-
ing the content sent by the user in social media or webmail services with
messages decided by the adversary. Tampering with online voting, in-
put data for medical appliances, or industrial processes could potentially
have even more serious consequences.

6 Conclusion

We have presented a case study on man-in-the-browser attacks and
demonstrated how a practical attack can be carried out by building a ma-
licious browser extension. It is concerning how simple the malicious code
is and how effortlessly the attack can be deployed against users even 15
years after man-in-the-browser attacks were first discovered. While no se-
curity solution completely prevents man-in-the-browser attacks (and still
preserves good usability), combining several countermeasures and enforc-
ing these security approaches more effectively in modern web browsers
and web applications should significantly alleviate the problem in the
future. This goal can be reached with co-operative efforts of web devel-
opers, users, antivirus program vendors and browser manufacturers.

References

1. Blom, A., de Koning Gans, G., Poll, E., De Ruiter, J., Verdult, R.:
Designed to fail: A USB-connected reader for online banking. In:
Nordic Conference on Secure IT Systems. pp. 1-16. Springer (2012)

2. DeKoven, L.F., Savage, S., Voelker, G.M., Leontiadis, N.:
Malicious browser extensions at scale: Bridging the ob-
servability gap between web site and browser. In: 10th
USENIX Workshop on Cyber Security Experimentation
and Test (CSET 17). USENIX Association, Vancouver, BC
(2017), https://www.usenix.org/conference/cset17 /workshop-
program/presentation/dekoven

3. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.R.: On the
(In)Security of Mobile Two-Factor Authentication. In: Christin, N.,
Safavi-Naini, R. (eds.) Financial Cryptography and Data Security.
pp. 365-383. Springer Berlin Heidelberg (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dougan, T., Curran, K.: Man in the browser attacks. International
Journal of Ambient Computing and Intelligence (IJACI) 4(1), 29-39
(2012)

Entrust: Defeating Man-in-the-Browser Malware — How to prevent
the latest malware attacks against consumer and corporate banking.
White paper. (2014)

Gezer, A., Warner, G., Wilson, C., Shrestha, P.: A flow-based ap-
proach for trickbot banking trojan detection. Computers & Security
84, 179-192 (2019)

Google: Content scripts. https://developer.chrome.com/extensions/
content_scripts (2019)

Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security
for browser extensions. In: 2011 IEEE symposium on security and
privacy. pp. 115-130. IEEE (2011)

Giihring, P.: Concepts against man-in-the-browser attacks. Technical
Report. (2006)

Konoth, R.K., van der Veen, V., Bos, H.: How anywhere computing
just killed your phone-based two-factor authentication. In: Interna-
tional Conference on Financial Cryptography and Data Security. pp.
405-421. Springer (2016)

Liu, L., Zhang, X., Yan, G., Chen, S., et al.: Chrome extensions:
Threat analysis and countermeasures. In: NDSS (2012)

Marinho, R.: ” Catch-All” Google Chrome Malicious Extension Steals
All Posted Data. https://morphuslabs.com/catch-all-google-chrome-
malicious-extension-steals-all-posted-data-f2472e272101 (2017)
Marouf, S., Shehab, M.: Towards improving browser extension per-
mission management and user awareness. In: 8th International Con-
ference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom). pp. 695-702. IEEE (2012)

Migdal, D.; Johansen, C., Jgsang, A.: DEMO: OffPAD - Offline Per-
sonal Authenticating Device with Applications in Hospitals and e-
Banking. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1847-1849. CCS ’16,
ACM, New York, NY, USA (2016)

OWASP: Man-in-the-browser attack. https://www.owasp.org
/index.php/Man-in-the-browser_attack (2019)

Protalinski, E.: Google updates Chrome Web Store re-
view process and sets mnew extension code requirements.
https://venturebeat.com/2018/06/12/google-disables-inline-
installation-for-chrome-extensions/ (2018)

Rauti, S., Leppénen, V.: Man-in-the-browser attacks in modern web
browsers. In: Emerging Trends in ICT Security, pp. 469—-480. Elsevier
(2014)

Rautila, M., Suomalainen, J.: Secure inspection of web transactions.
International Journal of Internet Technology and Secured Transac-
tions 4(4), 253—-271 (2012)

Ronchi, C., Zakhidov, S.: Hardened client platforms for secure inter-
net banking. In: ISSE 2008 Securing Electronic Business Processes,
pp. 367-379. Springer (2009)

Stahlberg, M.: The trojan money spinner. In: Virus bulletin confer-
ence. vol. 4 (2007)

21.

22.

23.

24.

Toreini, E., Shahandashti, S.F., Mehrnezhad, M., Hao, F.:
Domtegrity: ensuring web page integrity against malicious browser
extensions. International Journal of Information Security pp. 1-14
(2019)

Utakrit, N.: Review of browser extensions, a man-in-the-browser
phishing techniques targeting bank customers (2009)

Wang, L., Xiang, J., Jing, J., Zhang, L.: Towards fine-grained access
control on browser extensions. In: International Conference on In-
formation Security Practice and Experience. pp. 158-169. Springer
(2012)

Zhang, P., He, Y., Chow, K.: Fraud Track on Secure Electronic Check
System. International Journal of Digital Crime and Forensics 10(2),
137-144 (2018)

