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Abstract

The appearance of Type 1 diabetes (T1D)-associated autoantibodies is the

first and only measurable parameter to predict progression toward T1D in

genetically  susceptible  individuals.  However,  autoantibodies  indicate an

active  autoimmune reaction,  wherein  the  immune tolerance  is  already

broken. Therefore, there is a clear and urgent need for new biomarkers

that predict the onset of the autoimmune reaction preceding autoantibody

positivity or reflect progressive beta-cell destruction. Here we report the

mRNA-sequencing-based analysis of  306 samples including fractionated

samples of CD4+ and CD8+ T cells as well as CD4-CD8- cells fractions and

unfractionated PBMC samples longitudinally collected from seven children

that developed beta-cell autoimmunity (Cases) at a young age and their

matched controls. We identified transcripts, including interleukin-32 (IL32)

that  were upregulated before  T1D-associated autoantibodies  appeared.

Single cell RNA-seq studies reveal that high IL32 in Case samples were

contributed mainly by activated T cells and NK cells. Further, we showed

that IL32 expression can be induced by a virus and cytokines in pancreatic

islets and beta-cells,  respectively.  The results provide a basis  for  early

detection of aberrations in the immune system function before T1D and

suggest a potential role for IL32 in the pathogenesis of T1D.
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Introduction

Family and sibling studies in Type 1 diabetes (T1D) have implicated a firm

genetic predisposition to a locus containing HLA class I and class II genes

on chromosome 6 suggesting a role for CD4+ as well as CD8+ T cells in

T1D  pathogenesis  (1–3).  As  much  as  30-50%  of  the  genetic  risk  is

conferred  by  HLA  class  II  molecules,  which  are  crucial  in  antigen

presentation to CD4+ T cells.  Further,  CD4+ cells  reactive to beta-cell

antigen peptides  are  found in  peripheral  blood  and the  pancreas,  and

typically secrete the cytokine IFNγ (4,5). CD4+ cells orchestrate adaptive

immune responses, including that of antibody secreting B cells as well as

cytotoxic CD8+ T cells. Indeed circulating autoantibodies against beta-cell

antigens may appear years before the clinical onset. Further, a cytolytic

CD4+ subtype might directly contribute to target cell killing (6). 

Although  HLA  class  II  is  associated  with  the  development  of

autoantibodies,  HLA class I seems to be more strongly linked to disease

progression  (7). Histological analysis of pancreatic sections of cadaveric

donors with T1D revealed that HLA class I  is  highly expressed in islets

(8,9).  Moreover,  CD8+  cells  are  the  most  abundant  cell  type  during

insulitis  (10),  and  the  islets  contain  CD8+  cells  specific  for  T1D

autoantigens  (11). Thus,  the  autoimmune  cascade  in  T1D  might  be

initiated  by  self-reactive  CD4+  cells  that  activate  B  cells  to  produce

autoantibodies  that  target  the  beta-cells  and  unleash  the  cytotoxic

activity  of  the  autoreactive  CD8+  cells.  The  environmental  factors
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triggering and driving the autoimmunity in T1D are poorly defined, but the

disease  has  been  associated  with  viral  infections  (12),  diet  in  early

childhood  (13), and reduced diversity of gut microbiota (14).

Currently,  the appearance of  T1D-associated autoantibodies  is  the first

and  only  measurable  parameter  to  predict  progression  toward  T1D  in

genetically susceptible individuals. Although the disease progression rate

varies considerably, children with genetic HLA risk expressing at least two

T1D autoantibodies will very likely progress to clinical disease during the

next 15 years (15). However, autoantibodies are poor prognostic markers

for  the  timing  of  the  clinical  presentation  of  T1D.  The  appearance  of

autoantibodies  indicates  an  active  autoimmune  reaction,  wherein  the

immune  tolerance  is  already  broken.  Therefore,  there  is  a  clear  and

urgent need for new biomarkers that predict the onset of the autoimmune

reaction preceding autoantibody positivity or reflect progressive beta-cell

destruction. Such markers would present a window for early intervention

aimed at complete disease prevention.  Earlier,  we reported changes in

whole-blood  transcripts  and  serum  proteins  before  the  detection  of

diabetes-associated antibodies in children who later progressed to T1D

(16,17). Therefore, we hypothesized that a comprehensive analysis of the

transcriptome of longitudinal cellular samples including CD4+ and CD8+ T

cells will lead to the identification of new early biomarkers. 

Research Design and Methods

Study cohort
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Samples were collected as part of the DIABIMMUNE study (FP7 grant no.

202063)  from  Finnish  (n=10)  and  Estonian  (n=4)  participants

(Supplementary Table 1). The HLA-DR-DQ genotypes were analysed as

described  earlier  (18).  836  children  with  HLA-DR-DQ  risk  allele  were

monitored and sampled at 3, 6, 12, 18, 24 and 36 months of age. The

study  protocols  were  approved  by  the  ethical  committees  of  the

participating  hospitals,  and  the  parents  gave  their  written  informed

consent. Autoantibodies against insulin (IAA), glutamic acid decarboxylase

(GADA),  islet  antigen-2  (IA-2A),  and  zinc  transporter  8  (ZnT8A)  were

measured  from serum with  specific  radiobinding  assays  (19).  Islet  cell

antibodies (ICA) were analysed with immunofluorescence in autoantibody-

positive subjects. The cut-off values were based on the 99th percentile in

non-diabetic children, which were 2.80 relative units (RU) for IAA, 5.36 RU

for GADA, 0.78 RU for IA-2A and 0.61 RU for ZnT8A. The detection limit in

the ICA assay was 2.5 Juvenile Diabetes Foundation units (JDFU). A sample

was considered seropositive when any of the autoantibodies exceeded the

thresholds.

Sample collections

At  each study visit,  8 ml  of  blood  was  drawn in  sodium-heparin  tubes

(Vacutainer,  368480,  BD).  PBMCs  were  isolated  by  Ficoll-Paque

centrifugation (17-1440-03 GE Healthcare), and were suspended in RPMI

1640 medium (42401-018, Gibco) supplemented with 10% DMSO (0231-

500  ml,  Thermo  Scientific),  5%  human  AB  serum  (IPLA-SERAB-OTC,

Innovative Research), 2 mM L-glutamine (G7513, Sigma-Aldrich), and 25
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mM gentamicin  (G-1397 Sigma-Aldrich).  After  overnight  incubation  at  -

80°C, samples were stored in liquid nitrogen (-180°C). For fractionation,

PBMC samples were thawed quickly in a 37°C water bath, quantitated for

cell numbers and viability. On an average 90% cells were viable. Magnetic

antibody-coupled beads were used for sequential positive enrichment of

CD4+ and CD8+ cells (11331D and 11333D Invitrogen). RNA was isolated

from  the  samples  with  AllPrep  kit  (80224,  Qiagen),  and  quantity  and

quality were determined using Qubit RNA assay (Q32852, Invitrogen) and

Bioanalyzer 2100 (Agilent), respectively.

Bulk RNA-seq of PBMC and other fractions

At  least  80  ng  of  total  RNA  was  processed  for  RNA-seq  with  TruSeq

Stranded mRNA Library Prep kit (RS-122-2101, Illumina). The sequencing

was carried out with Illumina HiSeq2500 instrument using TruSeq v3; 2 x

100 bp chemistry. The average sequencing depth was around 51 million

reads. Quality control  was performed using FastQC (version 0.10.0).  All

the samples passed the quality criteria.  The reads were aligned to the

human  reference  transcriptome,  GRCh37  assembly  version  75  using

TopHat (version 2.0.10) (20). Average mapping percentage was 93. The

concordant  pairs  percentage  was  about  89.  The  aligned  reads  were

counted  with  htseq-count  (HTSeq 0.6.1;  overlap  mode of  ‘intersection-

strict’) (21). The read counts of genes were normalized using the trimmed

means  of  the  M-values  (TMM implemented  in  the  edgeR (22).  Coding,

noncoding information were taken from ensembl. Differential expression

analyses  were  conducted  separately  for  coding  and  non-coding  genes,
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using the  edgeR (22).  The variance of the data was estimated using the

trended  dispersion  method.   Further  filtering  step  retained  only  those

genes as differentially expressed (DE) had that |median log2FC| > 0.5 and

had more than 65% samples across all individuals regulated in the same

direction (i.e., up- or down-regulated). These filtering steps were added to

discard false positives  that  may arise due to  the heterogeneity  of  the

samples due to normal variation, which is non-related to T1D and outliers.

A  flow chart  of  the  scheme  of  analysis  has  been  shown  in

Supplementary Fig. 1.

Single-cell RNA-seq (scRNA-seq)

The concentrations of the PBMC samples varied from 0.55 to 1.80 x 106 cells/ml.

From  each  sample,  we  aimed  at  the  recovery  of  5000  single  cells,  loading

approximately  9000  cells  on  the  Chromium  Controller  using  Single  Cell  3′

Solution v2 reagents and following manufacturer’s instructions (CG00052 Rev B,

10x  Genomics). scRNA-seq  sample  processing  was  carried  out  in  three

batches on consecutive days using the same lot of reagents and chips for

all samples. The cDNA was further amplified using a Veriti Thermal Cycler

(Applied Biosystems/Thermo Fisher), followed by clean-up (SPRIselect kit,

Beckman Coulter). Finally, enzymatic fragmentation, end repair, A-tailing,

adaptor  ligation and PCR were performed to produce indexed libraries,

which were sequenced with Illumina HiSeq 3000 (one sample / lane) using

paired end sequencing and 26 + 98 bp read-length configuration.  The

data were processed using the Cell Ranger pipeline version 2.0.0  yielding

on average 2546 viable cells per sample, and 114,309 reads per cell. 
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The reads were aligned to  the human reference genome (hg19)  using

STAR (23). The mean raw reads per cell varied 57-200 k. QC analysis and

further  exploration  was  done  using  Seurat  (24).  After  filtering  steps,

18,396 cells expressing 20,830 genes were retained. For details on the

filtering  steps  please  see  “Supplementary  Material”.  The  data  were

normalized  using  Seurat’s  default.  Highly  variable  genes  (HVGs)  were

selected for  principal  component  analysis  (PCA).  The top  20  PCs  were

used in the graph-based clustering.  To identify  marker genes for  each

cluster,  cells of a single cluster were compared to the cells of all other

clusters combined. A gene was considered a marker of a cluster if it was

expressed in at least 25% of the cells of either of the two groups and the

logFC between the cluster and all other clusters was at least 0.25.  

 

For trajectory analysis, the pooled cells were ordered in pseudotime (i.e.,

placed along a trajectory corresponding to a type of biological transition,

such as differentiation) using Monocle 2 (25). The analysis was performed

on cells specifically from CD4+ and CD8+ T-cell clusters. For the details

on the trajectory analyses, please see “Supplementary Material”.

RT-PCR analysis 

For  PBMC  samples,  50  ng  of  total  RNA  was  treated  with  DNaseI

(Invitrogen),  and  cDNA  was  synthesized  with  Transcriptor  First  Strand

cDNA Synthesis Kit (Roche). For isoform-specific (IL32α,  β, and γ) assay,

qPCR analysis was performed in triplicate runs using SYBR Select master
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mix (Applied Biosystems).  ΔCt values were calculated relative to Ct values were calculated relative to  EF1αα.

For CD4+ T cells and pancreatic islets, RNA was isolated using the RNeasy

Mini  Kit  (74106,  Qiagen)  and  RNeasy  Plus  Mini  Kit  (74134,  Qiagen),

respectively.  Purified  RNA  was  treated  with  DNaseI  and  cDNA  was

synthesized  with  SuperScript  II  Reverse  Transcriptase  (18064014,

Invitrogen).  For  the detection  of  global   IL32 qPCR reactions  were run

using  a  custom  TaqMan  Gene  Expression  Assay  reagent  (#AJ5IQA9,

Thermo Scientific) in duplicate and in two separate runs. ΔCt values were calculated relative to Ct values were

calculated  relative  to  GAPDH.  The  amplification  was  monitored  with

QuantStudio  12K Flex  Real-Time PCR System,  under  the  following  PCR

conditions: 10 minutes at 95 °C, followed by 40 cycles of 15” at 95 °C and

60” at 60 °C and analysed with QuantStudio Software on Thermo Cloud. 

For EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-H1 cells data, cDNA was synthesized using the Maxima first-

strand  cDNA  synthesis  kit  as  per  manufacturer’s  recommendations

(Thermo Fisher Scientific). All reactions were performed in duplicates on

at  least  three  biological  replicates.  Cyclophilin-A was  used  as  an

endogenous control. Primer sequences are presented in Supplementary

Table 2.

ELISA

To measure secreted IL-32 levels we used IL-32 duoset ELISA kit  (R&D

Systems, (DY3040-05 and DY008) following manufacturer's instructions. 

Intracellular staining and flow cytometry 
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The cells were fixed for 10 minutes in Fix buffer I (BD, 557870), followed

by 45 minutes permeabilization using ice-cold permeabilization buffer III

(BD,  558050).  The  cells  were  stained  using  APC-conjugated  IL-32⍺

antibody (R&D, IC30402A) and FITC-conjugated IFNγ antibody (Invitrogen,

MHCIFG01) in PBS containing 0.5% FCS. The data were acquired in BD

Fortessa and analysed using FlowJo (version 10.4.2). 

EndoC-βH1 cell culture 

The  EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-H1  human  beta-cell  line  was  obtained  from  Univercell

Biosolution  S.A.S.,  France.  The  cells  were  cultured  as  described  (26).

EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-H1 cells were stimulated with either IL-32γ alone (100 ng/ml, R&D

Systems)  or  in  combination  with  a  cocktail  of  IL-1βH1 cells data, cDNA was synthesized using the Maxima first-  (5  ng/ml,  R&D

Systems) and IFN-γ (50 ng/ml, R&D Systems) for 24 h. RNA samples were

collected at the end of each treatment and analysed by RT-qPCR.

Human CD4 T-cell isolation and culturing 

CD4+ T cells were isolated from cord-blood collected from neonates born

in Turku University Hospital and were cultured in IMDM containing 1%AB

serum in absence (Th0) or presence (Th1) of 2.5ng/ml if IL-12 (R&D). Cells

were activated with plate bound CD3 (0.5 μg/well of a 24 well-plate) andg/well of a 24 well-plate) and

soluble  CD28  (0.5  μg/well of a 24 well-plate) andg/ml),  both  from Immunotech,  with  or  without  50

ng/ml  rIL-32-𝛾 (R&D).  12  ng/ml  IL-2  was  added  at  48h.  For  IFNγ

neutralization, anti-IFNγ antibody (10 μg/well of a 24 well-plate) andg/ml, R&D: MAB285) was used. For

reactivation, cells were treated with 5ng/ml PMA (Calbiochem) and 0.5pg/

ml Ionomycin (Sigma) for 5h.
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Human pancreatic islets, their infection with Coxsackie B Virus

Human islets  were isolated from pancreases obtained from brain dead

organ  donors  and  purified  by  handpicking  to  a  purity  of  > 90%.  Islet

culturing  and  virus  infection  with  Coxsackie  B  virus-1  (CBV-1-7-10796

(CBV-1-7) was  performed as described (27). Islets were collected at the

day 4 timepoint, and RNA was extracted using the RNeasy Plus Mini Kit or

the AllPrep DNA/RNA Mini Kit (Qiagen). For RNA-seq, 100 ng of total RNA

from three donors was used for library preparation according to Illumina

TruSeq RNA Sample Preparation v2 Guide (part # 15026495). The high

quality of the libraries was confirmed with Agilent Bioanalyzer 2100 and

Qubit  Fluorometric  Quantitation  (Life  Technologies).  The  libraries  were

pooled  in  two  pools  and  run  in  2  lanes  on  the  Illumina  HiSeq  2500

instrument using 2 x 100 bp. 

Results

Fractionation  of  PBMC  sample  into  CD4+,  CD8+ and  CD4-CD8-

cellular subsets reveals distinct and overlapping gene expression

signatures

We  performed  RNA-seq  of  306  longitudinal  samples  of including

unfractionated  PBMCs,  as  well  as  CD4 enriched (CD4+),  CD8 enriched

(CD8+), and CD4 and CD8 cell  depleted (CD4-CD8-) cell  fractions from

seven  Case-Control  pairs  (Table  1).  The  seven  Case  children  who

developed  T1D-related  autoantibodies  (Aab+)  were  selected  from  the

DIABIMMUNE  Birth  Cohort  (18),  where  HLA-susceptible  children  are
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sampled at 3–36 months of age (Fig. 1A). All seven children developed

T1D-associated autoantibodies by the age of 2 years (Table 1) and four of

them developed clinical T1D between the ages of 2.4 and 3.7 years. For

each  Case,  an  autoantibody-negative  Control  child  was  matched  for

gender, date and place of birth, and HLA-conferred risk category. 

The samples clustered according to the cell  fraction (Fig. 1B)  and the

clustering  was  not  affected  by  Case-Control  status  or  sampling  age,

indicating that cell fraction–specific differences dominated over variation

derived  from other  factors  (Supplementary  Fig.  2A and 2B).  When

CD4+, CD8+ and CD4-CD8- samples from Controls were compared to the

unfractionated PBMC samples, 889, 399, and 1002 genes were specifically

in CD4+ (e.g., CD28, CTLA4), CD8+ (e.g., CD8A, CD8B, KLRK1α), and CD4-

CD8-  (e.g.,  IL1αA,  IL1αB,  IL6) fractions,  respectively  (Fig.  1C and

Supplementary Table 3).  CD4+ and CD8+ fractions shared 1815 DE

genes, of which 1803 genes (99%) were concordant (either up or down in

both fractions) (Supplementary Fig. 2C, Supplementary Table 3). In

summary,  fractionation  of  the  PBMC  population  based  on  the  T-cell

phenotype  allowed  improved  detection  of  DE  genes  and  enabled

identification of cell subset–specific gene expression signatures.

RNA-seq analysis identifies transcriptomic changes associated 

with beta-cell autoimmunity 

Comparison of Case samples to their respective Controls identified 51, 69,

143 and 85 genes as  DE  (FDR<0.05)  in  CD4+, CD8+, CD4-CD8-  and
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PBMC  fractions,  respectively  (Supplementary  Table  4);  total  of  278

unique DE genes in one or more fractions (Fig. 2A). Six genes   AMICA1α,

BTN3A2,  IL32,  RPSAP1α5,  RPSAP58 and  WASH7P were upregulated in the

Cases in  all  four  fractions  (Fig.  2A).  Only  16% of  the DE genes have

previously  been  reported  as  DE  in  genetically  susceptible  prediabetic

children  using  microarrays  (16,28,29)  or  RT-PCR  (30–32),  confirming

dysregulation  of  these  genes  in  children  progressing  to  T1D.  Besides

protein-coding genes, 54 non-coding genes, including three antisense, two

sense  intronic,  seven  enhancer  and  18  promoter-associated  lncRNAs,

were DE. To our knowledge, none of these lncRNAs has been linked to the

aetiology of T1D (16,28–32). 

Hierarchical clustering identifies co-regulated gene expression 

clusters associated with T1D autoimmunity

Gene-  and  sample-wise  hierarchical  clustering  for  each  cell  fraction,

including unfractionated PBMCs (also referred to as a fraction henceforth)

identified a cluster, upregulated in the Case samples in all four fractions

(Fig.  2B  and  Supplementary  Fig.  3A-D).  Interestingly,  this  cluster

consistently contained IL32 and BTN3A2, along with other fraction-specific

genes  (Fig. 2C). In the CD8+ fraction,  expression of a distinct cluster,

including  IFNG, was  lower  in  most  of  the  Case  samples  than  Control

samples (Supplementary Fig. 3B).  Surprisingly,  in the PBMC fraction,

we detected Case-specific upregulation of a cluster, including insulin (INS),

glucagon (CGC) and regulin 1 alpha (REG1αA) transcripts (Supplementary

Fig. 3D), which are predominantly expressed in the pancreas. 
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To explicitly  define coregulated genes in  these clusters,  we calculated

Euclidean distances for  IL32 (in each fraction),  IFNG (in CD8+ fraction),

and  INS (in  PBMC  fraction)  and  considered  the  genes  with  a  median

Euclidean distance < 2.5 across all Case-Control pairs to be co-clustering

with the gene of interest (Supplementary Table 5A). In three of the four

fractions, the IL32 cluster included BTN3A2, AMICA1α, LARS and RSU1α (Fig.

2C).  IL32,  AMICA1α and BNT3A2 show concerted gene expression profiles

in CD4+ samples (Fig. 2D). In at least two of four fractions, this cluster

also  comprised  TRBV4-1α,  TMEM1α4C,  UROS,  WASH7P,  BTN3A3,  CARD8,

CCDC1α67 and LINC01α1α84. The profile of these and other interesting genes

are  shown  in  Supplementary  Fig.  4A-AB.  Upon  examining  the

overrepresented transcription factor binding sites (TFBS) on the promoters

of IL32 cluster genes, the V$IK_Q5_01 motif bound by Ikaros (IKZF1) was

revealed to be among the enriched TFBS shared in both the CD4+ and

PBMC fractions (Supplementary Table 5B). IKZF1 has been genetically

associated with T1D (33). The T1D-associated risk allele rs10272724 (T)

increases IKZF1 transcript level (34). 

IFNG cluster of the CD8+ cells included TBX21α (codes for TBET), BHLHE40,

and ZEB2, transcription factors expressed in CD8+ T cells (35), as well as

NKG7,  OASL,  and  KLRD1α (Supplementary Table 5A).  ZEB2 has been

reported to drive terminal effector CD8+ cell differentiation together with

T-bet  (36). In the PBMC fraction,  GCG and REG1αA were coregulated with

INS (Supplementary Table 4A, Supplementary Fig. 5). 
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Transcriptional changes preceding the appearance of T1D-related

autoantibodies are enriched in the CD8+ T-cell fraction

To identify changes that occur immediately before the first detection of

T1D-related  autoantibodies  (i.e.,  seroconversion),  we  performed  a

separate differential expression analysis for the samples drawn at most 12

months  before  seroconversion.  Altogether  121  coding  and  non-coding

genes  were  DE  in  Cases,  as  compared  to  their  matched  Controls

(Supplementary Table 4 and Supplementary Fig. 6). Notably, more

than half of these (58%) were detected only in the CD8+ fraction. Besides

IL32, only two other genes were common to all fractions  RPSAP58, and

RPSAP1α5,  both being the pseudogenes with unknown functions with very

similar expression profiles (Supplementary Fig. 4M-T). 

Higher  IL32 expression  in  Cases  was  validated  using  qRT-PCR.

Interestingly,  all  three  major  isoforms  (IL32α,  IL-32β and  IL32γ)  were

upregulated in PBMC samples in all the Case children at each of the time

points including 3 months (Fig. 3A and Supplementary Fig. 7). Among

these isoforms, IL-32γ was expressed at the highest level, followed by IL-

32β and IL-32α. 

Single-cell RNA sequencing (scRNA-seq) identifies T and NK cells

as the IL32 high population 

To specify the cell populations responsible for the IL32 and INS signatures,

we performed scRNA-seq on four selected Case and their nearest matched
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Control PBMC samples where the expression of  IL32 or  INS was high (or

low)  based  on  the  bulk  RNA-seq  data  (Supplementary  Table  6).

Unsupervised clustering of 18,396 single cells from all eight PBMC scRNA-

seq runs identified 13 clusters (Fig. 3B and Supplementary Fig. 8). The

two largest clusters expressing high CCR7 were  merged as one cluster of

naive T cells reducing the number of clusters to 12. Clusters named as

RGCC+ T cells,  CD62L+ T cells, and  Activated Th cells expressed lower

levels of  CCR7.  Activated CD8+ T cells cluster expressed high levels of

CD8A and  CD8B as well as  NKG7 and two separate clusters of CD8+ T

cells  expressing  either  granulysin  or  granzyme  A  were  observed

(Activated  GNLY+  CD8+  T  cells and  Activated  GZMA+  CD8+  T  cells,

respectively).  A subcluster of  Activated GZMA+ CD8+ cells  had higher

expression  of  cell-cycle  genes  (e.g.,  STMN1α,  TUBA1αB)  and  was  named

Activated  proliferating  GZMA+  CD8+  T  cells.  An  NK  cell  cluster  was

positive for expression of  CD56,  NKG7, and GNLY and negative for CD8A

and  CD3E.  A B-cell  cluster was identified by the expression of  MS4A1α,

CD79A and CD79B, whereas the Monocyte/DCs cluster was composed of

cells  expressing  CD1α4 or  FCGR3A,  LYZ and  TYROBP.  Interestingly,  the

expression of many HLA class II  molecules was as high in B cells as in

monocytes, suggesting high antigen-presentation potential. 

The contribution  of  different Case or  Control  samples  to the cells  in  a

given  cellular  population  (cluster)  varied  from  cluster  to  cluster

(Supplementary  Fig.  9  and  10A-B).  The  naive  T  cells  cluster  was

dominated by the cells from the Control samples (p<0.05) whereas the
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Monocyte/DC cluster  had  more  cells  from  Cases  (p<0.005,

Supplementary  Fig.  10B).  Case  9,  with  the  highest  IL32 expression

levels  in  the bulk  RNA-seq data,  dominated the  CD62L+ T-cell cluster,

Activated NK cells, and most clearly,  Activated and proliferating GZMA+

CD8+ T  cell clusters  (Supplementary  Fig.  10B).  Conversely,  Control

children 5 and 9 seemed to dominate the cluster of  Developing T cells

expressing  pre-T-cell  receptor  PTCRA suggesting  the  presence  of

immature T cells in those samples.

Insulin, glucagon, or REG1αA expression were not detected even in the INS-

high samples of Cases 5 and 9, leaving the origin of these transcripts in

bulk RNA-seq as an open question. In contrast, IL32 expression was clear,

and as expected,  it  was explicitly  over-expressed in  the Case samples

(Supplementary Fig.  11).  IL32 was expressed at  a very  low level  in

Monocyte/DC,  B  cells,  and  Developing  T  cell clusters,  however,  it  was

expressed at higher levels by both the T cells and the NK cells (Fig. 3C).

To further define the relationship of IL32 expression and T-cell activation

status,  we  performed  separate  trajectory  analyses  for  the  CD4+  and

CD8+ T cells. The less activated precursor populations (naive and RGCC+

T cells), which detect CD4 and CD8 transcripts in low abundances, were

used as starting point  for the trajectory analyses.  The results revealed

three major cellular branches (I-III) in the data both in CD4+ as well as

CD8+ T cells (Fig. 3D-I). The branch I consisted mainly of naive T cells,

among which cells from the Control samples were enriched (Fig. 3E and
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H, Supplementary Fig. 12). In contrast, the highest levels of IL32 were

expressed  by  cells  close  to  the  end  points  of  branches  II  and  III,

corresponding to more advanced stages of differentiation (Fig. 3F and I,

Supplementary Fig. 12).

IL-32 and IFNγ are co-expressed by Th1 cells 

To  further  study  IL-32  expression,  we  measured  intracellular  IL-32

expression at protein level in CD4+ T cells isolated from human umbilical

cord blood. Cells were either activated through CD3/CD28 in the absence

of cytokine (Th0) or were differentiated towards a Th1 cell lineage for 72h.

IL-32 was induced upon activation and, unlike IFNγ, was expressed both in

Th0 as well as Th1 cells  (Fig. 4A). Interestingly in Th1 cells, most IFNγ-

producing cells  were also positive for  IL-32 (Fig. 4A; Supplementary

Fig. 13A) and the proportions of IL-32-positive cells and the per cell IL-32

levels were higher in IFNγ-producing Th1 cells than in Th0 cells (Fig. 4B-

C).  Furthermore,  neutralization  of  IFNγ  significantly  reduced  IL-32

secretion by Th1 cells (Fig. 4D) confirming that IFNγ positively regulates

IL32 expression. IL-32 expression was also induced by IL-32 itself in Th1

cells, both at the RNA level (Fig. 4E) as well as in the culture supernatant

upon 48 h re-stimulation after seven days of polarization in Th1 condition

(Fig. 4F).

Pancreatic  beta-cells  can express  IL32 in  response  to  cytokine

stimulation and viral infection
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To  study  how  the  elevated  IL32 expression  may  influence  beta-cell

function, we treated human EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-H1 beta-cell line for 24 h with either

recombinant  IL-32γ  alone  or  in  combination  with  the  pro-inflammatory

cytokines  IL-1βH1 cells data, cDNA was synthesized using the Maxima first-  and IFNγ.  In  agreement  with  earlier  published data on

pancreatic  ductal  cancer  cell  lines  (37),  IL-1βH1 cells data, cDNA was synthesized using the Maxima first-  and  IFNγ  significantly

induced  IL32 expression in human EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-H1 cells (Fig. 4G) However,

addition of IL-32γ did not i) further enhance the IL-1βH1 cells data, cDNA was synthesized using the Maxima first-- and IFNγ-induced

IL32 expression,  ii)  the expression of inflammatory cytokines  TNFA, IL6

and  IL8  (Fig. 4G), iii)  the expression of ER stress marker genes (ATF3,

ATF4, ATF6, HSPA5, CHOP, sXBP1) (Supplementary Fig. 13B) in EndoC-

βH1 cells data, cDNA was synthesized using the Maxima first-H1 cells. Furthermore, the IL-32γ treatment did not affect the expression

of beta-cell–specific genes, such as INS, MAFA or PDX1α (Supplementary

Fig.  13C).  These results  suggest  that,  while  IL-32 does not  appear  to

directly affect the survival or the differentiation status of the beta-cells,

beta-cells actively contribute to inflammation in the islets by secreting IL-

32 upon stimulation by cytokines.   

Coxsackie B viruses are beta-cell trophic viruses that have been linked to

the development of  T1D  (38–43).  To study the possible trigger of  IL32

expression in beta-cells, we infected purified human pancreatic islets of

three cadaveric donors with Coxsackie B virus CBV1-7 strain. Infection by

the virus led to the induction of IL32 expression in the islets (Fig. 4H). We

further validated this finding in the three islet samples used for RNA-seq

as well as one additional islet sample using qRT-PCR assays and found a

consistent increase in the IL32 expression upon CBV1-7 infection (Fig. 4I).
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Taken together these results suggest that upon a viral infection (Fig. 4H-

I) or a cytokine rush (Fig. 4H), beta-cells may upregulate IL-32 secretion

contributing to inflammation.

Discussion

We identified a panel of novel molecular players detected early in children

who developed T1D-associated autoantibodies or even the clinical disease

at  a  young age.  Since  the  immunological  changes  related  to  T1D are

known to be strongest among the T1D cases diagnosed at an early age

(44), focusing on this age group should enhance the possibility to detect

aberrations  in  the immune system predisposing to the disease.  In  this

study, unbiased RNA-seq of CD4+ and CD8+ cells revealed many T1D-

associated DE transcripts not previously reported. Analysis of the PBMC

population offers an excellent overview of stable gene expression patterns

but,  at  the  same time,  appears  to  mask  some  of  the  subtle  fraction-

specific changes. Such changes included upregulation of  CD52 detected

only  in  the  CD4+  cell  fraction  and  downregulation  of  the  IFNG and

associated  transcription  factors  ZEB2,  TBX21  and  ZNF683  detected

specifically in the CD8+ cells. Further studies are needed to understand

whether  at-risk  children  have  defects  in  formulating  effector  CD8+

response,  or  their  effector  CD8+  cells  have  homed  to  the  sites  of

inflammation in the pancreas.

We selected  IL32 as our candidate for functional studies because it has

not  been  linked  to  seroconversion  before,  it  is  easy  to  measure  with
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available assays from clinical samples, and as a secreted molecule it can

potentially  affect  the  function  of  several  cell  types  in  paracrine  and

systemic fashion. Increased expression of IL32 in Cases across many cell

types before seroconversion suggest that IL32 is a critical member of the

immunological  signature  characteristic  for  children developing  beta-cell

autoimmunity. 

IL-32 is  expressed by many immune and epithelial  cells  and has been

described to be proinflammatory (45). However, to our knowledge, it has

not been associated with human beta-cell autoimmunity. In contrast, IL32

is  downregulated  in  CD4+  T  cells  from  recently  diagnosed  adult  T1D

patients (46) which along with our findings suggests a dynamic changes in

immune cell  signalling  during the pathogenesis  of  the disease.  On the

other  hand,  IL-32  overexpression was  observed in  synovial  biopsies  of

patients  with  rheumatoid  arthritis  (47),  in  inflamed  mucosa  of

inflammatory bowel disease patients (48), and in the serum of myasthenia

gravis  patients  (49) indicating  a  connection  between  IL32  and

autoimmunity in general. In T cells, IL-32 is induced by T-cell activation,

and it modulates human CD4+ T-cell effector function by promoting Th1

and Th17 responses (50). Both Th1 and Th17 cells have been linked to the

T1D pathogenesis in both human and mouse(50). The IL32 gene has been

identified  only  in  higher  mammals,  excluding  rodents.  Nonetheless,

human  IL-32γ  transgenic  mice  exhibit  impaired  glucose  tolerance,

increased  levels  of  IFNγ  and  other  proinflammatory  cytokines  in  the

pancreas, as well as accelerated streptozotocin-induced experimental T1D
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(51). No specific cell-surface receptor for IL-32 has been identified, but it

may act through cell-surface integrins  or proteinase-3 (52). 

Our results showed that IL32 was often co-regulated with genes previously

linked to autoimmunity. For example, the BTN3 gene cluster reside in the

extended MHC Class I locus. Further, BTN3 genes have been associated

with  T1D in  a  genetic  screen,  especially  in  the  case  of  BTN3A2  (53).

AMICA1, is a plasma membrane protein involved in lymphocyte migration

through  its  interaction  with  Coxsackie-adenovirus  receptor  (CAR)

expressed  in  epithelial  cells  and  has  been  associated  with  multiple

sclerosis (54). An analogous scenario could be envisaged for T1D: CAR is

expressed by the pancreatic islet cells, including beta-cells  (42), and its

expression  is  elevated  in  autoantibody-positive  individuals  and  T1D

patients  (55) suggesting that it  might help recruit  T cells to the islets.

Interestingly,  the  findings  point  to  human-specific  phenomena  not

detectable in mouse models as IL-32 and the BTN3 protein family are not

encoded by the mouse genome.

The strength of  our study is that the children studied here comprise a

homogeneous  population  with  the  early  appearance  of  T1D-associated

autoantibodies. Increasing evidence suggests that T1D can be subdivided

to  different  phenotypes,  e.g.  characterized  by  age-dependent  B-cell

infiltration in the pancreas (56), defect in Coxsackievirus-induced antibody

response in children with early insulin autoimmunity (57), or rapid versus

slow progression to clinical disease (58). Thus, our results may not apply
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to “late progressors”, adolescents, and adults. Although the analysis of

the global transcriptome of T-cell subsets of prediabetic children over the

period of seroconversion is unique, a limitation of the current study is the

analysis of only seven Aab+ children. The results of this study need to be

validated and expanded on a larger  cohort  of  prediabetic  children but

serve  as  a  starting  point  for  better  understanding  of  immunological

changes preceding the clinical onset of the disease. In the future, we are

interested in addressing if our findings on cellular level are reflected also

in  IL-32  levels  in  plasma  as  well  as  to  study  if  IL-32  alone  or  in

combination of other identified molecules would have sufficient sensitivity

and specificity as early indicators for T1D.
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Figure  1.  Fractionation  of  PBMC  sample  into  CD4+,  CD8+  and

CD4-CD8- cellular subsets reveals distinct and overlapping gene

expression  signatures. A)  Outline  of  the  sample  collection  and  cell

fractionation.  B) tSNE  (t-Distributed  Stochastic  Neighbor  Embedding)

visualization  of  the  log2-transformed  expression  data  (without  any

filtering steps) coloured according to cell fraction information. C) Number

of DE genes, when CD4+, CD8+ and CD4-CD8- fractionated samples were

compared  to  their  original  PBMC  aliquots.  The  functionally  important

fraction-specific upregulated genes are highlighted in red. Analysis was

restricted  to  healthy  Controls  only.  For  the  gene  lists,  see

Supplementary Table 3.  

Figure 2. RNA-seq analysis identifies transcriptomic changes 

associated with beta cell autoimmunity. A) Number and overlap of 

DE genes between Cases and Controls identified in cell fractions analysed.

Genes shared between all four fractions are highlighted. B) Heatmap of 

the genes DE in CD4+ T cells between the Cases and Controls. Values are 

presented as log2FC (truncated between [-2, 2]) between each Case-

Control pair at each timepoint (3–36 months) and standardized to the 

mean of each gene. Genes co-regulated with IL32 (< 2.5 Euclidean 

distance) are marked with red box and text. Additional information about 

the samples is marked on top of the heatmap. ‘Before/After SC’ informs 

whether the Case-sample was collected before (Before SC) or after 

seroconversion (After SC). ‘Pair Info’ provides the case-control pair 

information. The ‘SC / T1D’ annotation indicates whether the Case has 
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progressed to clinical T1D diagnosis (T1D) or not (SC). C) Number and 

overlap of IL32 co-clustered genes in indicated cell fractions. Genes 

regulated at least in two fractions are highlighted. D) Profiles of IL32, 

AMICA1α and BNT3A2 in CD4+ samples, presented in log2 RPKM scale. For 

individual profiles, see Supplementary Fig. 4. The Case-Control pairs 

are grouped according to the diagnosis of the Cases. T1D= Case has been

diagnosed with clinical T1D, SC=Case has seroconverted to autoantibody 

positivity.  

Figure 3. scRNA-seq of PBMCs identifies T and NK cells as  IL32

high populations 

A) Expression of IL32γ isoform in longitudinal PBMC samples of Cases and

their Controls (n=7+7), assayed by qRT-PCR. For alpha and beta isoforms,

please see  Supplementary Fig.  7. B)  tSNE clusters  from the pooled

data from all scRNA-seq samples (4 Cases and 4 Controls, in total 18 396

cells). Clusters are named according to the expression of classical marker

genes,  such  as  CD8A (for  details  and  marker  gene  list,  please  see

Supplementary  Fig.  8;  for  contribution  of  each  sample  per  cluster,

please refer to Supplementary Fig. 9 and 10.  C) Expression of  IL32 in

the 12 cell clusters (natural logarithm transformation with addition of 1).

For Case-Control comparison, please see Supplementary Fig. 11.  D-F)

trajectories  emerging  when  using  the  data  from  CD4+  cells  and  the

precursor cells, as well as G-I) from CD8+ and the precursor cells. Here,

precursor cells refer to cells from the naive and RGCC+ T cell clusters. For

the  trajectory  analysis  of  all  the  cells  from all  clusters  as  well  as  the
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breakdown of each individual  cluster,  please see  Supplementary Fig.

12.  In  D) and  G),  cells  are  coloured  based  on  the  contributions  from

different  tSNE  clusters.  In  E) and  H), cells  are  coloured  by  the  Case

(orange) or Control (grey) status. In  F) and I), cells are coloured by the

intensity of IL32 expression (log10 transformation with addition of 0.1). 

Figure  4.  Virus-  and  cytokine  induce  IL32 expression  by

pancreatic beta cells

A) Representative FACS dot plots showing IFN-γ and IL-32 double staining

in  Th0 and  Th1 polarized  CD4+ cells.  Staining  controls  and two other

replicates are shown in Supplementary Fig. 13A. Percent IL-32 positive

cells as well as Median Fluorescence Intensity (MFI) data (mean+/- SEM)

from  all  the  three  replicates  are  shown  in  B)  and  C),  respectively.

Statistical significance was determined by paired two tailed t-test.  D) IL-

32 secretion  in  culture  supernatant  as  measured by ELISA.  Cells  were

cultured in Th0/1 condition for 72 h in the presence (+) or absence (-) of

anti-IFNγ.  The  expression  plotted  is  relative  to  Th0  (-).  Statistical

significance  was  determined  by  paired  two  tailed  t-test. E)  IL32

expression in non-polarized Th0 cells and cells differentiated to Th1 for

72h  in  the presence (+)  or  absence (-)  of  IL-32γ as  measured by  the

Taqman assay. The expression is calculated relative to EEF1αA.  Statistical

significance  was  determined  by  unpaired  two  tailed  t-test.  F) IL-32

secretion  in  culture  supernatant  as  measured  by  ELISA.  Cells  were

cultured in Th0/1 condition for 7 days in the presence (+) or absence (-) of

37



IL-32γ, followed by washing and re-stimulation by PMA and ionomycin for

48 h. The expression plotted is relative to Th0 (-).  Statistical significance

was determined by paired two tailed t-test. G) Expression of the TNFA and

IL6 or IL8 and IL32 genes when the EndoC-βH1 cells data, cDNA was synthesized using the Maxima first-H1 cells were stimulated with

IL32γ alone or in combination with other inflammatory cytokines for 24 h.

The  fold-change is  calculated compared  to  non-treated (NT)  cells.  The

results shown here are from four independent biological replicates (mean

+/- SEM).  Statistical significance was determined by paired two tailed t-

test.  H)  IL32 expression as measured in an RNA-seq experiment where

pancreatic islets were infected with CBV1-7. Statistical significance was

determined by EdgeR. I) IL32 expression in virus infected pancreatic islets

as measured by RT-qPCR Taqman assay. The expression is calculated as

2^-(dCt). The statistical significance is determined by paired two-tailed t-

test. *= p-value <0.05, ** = p-value <0.01, and *** = FDR<0.001. 

TABLES

Table 1. Summary of the Case and Control children sampled at the age

of 3–36 months.

Case # Gender Seroconversio

n* age

First 

autoantibodies

Age at T1D 

diagnosis 

Matched 

control #

Case 1 Female 12 mo IAA, GADA 3.2 y Control 1

Case 2 Male 12 mo IAA - Control 2

Case 3 Male 18 mo IAA, ICA 3.7 y Control 3

Case 5 Female 24 mo IAA, IA-2A, 

ZnT8A, ICA

2.6 y Control 5
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Case 9 Male 18 mo IAA, GADA, ICA - Control 9

Case 10 Male 12 mo IAA, GADA - Control 

10.1 

Control 

10.2

Case 11 Female 18 mo GADA 2.4 y Control 11

*First detection of T1D-associated autoantibodies. 

For further details, see Supplementary Table 1.
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Supplementary Figures 

Early detection of peripheral blood cell signature in children developing beta cell 
autoimmunity at a young age 

 

 

Supplementary Figure 1. Related to Figure 2. 

Flow chart depicting the steps taken in the differential expression analyses of the RNA-

seq data in this study.  
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Supplementary Figure 2. Related to Figure 1. 

A-B) tSNE (t-Distributed Stochastic Neighbor Embedding)  visualization of the log2-

transformed expression data from all cell fractions and all genes. Figure 1 was colored 

according to cell fractions, and  here the colouring of the samples is done according 

to A) Case and Control status and B) age at sample collection. For further sample 

information, see Table 1 and Supplementary Table 1.  C) Venn diagram expanding 

on the 1815 genes found DE in both CD4+ vs PBMC and CD8+ vs PBMC analyses 

(Figure 1C). Here, the intersection represents the genes regulated in the same 

direction. For full lists of genes, see Supplementary Table 2. 
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Supplementary Figure 3A. Related to Figure 2. 

Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, 

ZnT8A, and GADA) and the 51 differentially expressed (DE) genes between the Cases 

and Controls detected in the CD4+ fraction. Each gene’s expression was standardized 

across samples from each case-control pair individually. Genes with an Euclidean 

distance (ED)< 2.5 to IL-32 (co-clustering results from k-means clustering) are marked 

with red text (Supplementary table 4). The samples labels along the x-axis include the 

sample number, case/control indicator, age of sampling in months, and months to 

(negative no. of months) or from (positive no. of months) seroconversion time. Here, 

SCC stands for seroconversion-centered, which is why the months to/from 

seroconversion are negative or positive.  
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Supplementary Figure 3B. Related to Figure 2. 

Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, 

ZnT8A, and GADA) and the 69 DE genes between the Cases and Controls detected 

in the CD8+ fraction. Each gene’s expression was standardized across samples from 

each case-control pair individually. Genes with an Euclidean distance (ED) < 2.5 to IL-

32 (co-clustering results from k-means clustering) are marked with red text and those 

with ED < 2.5 to IFNG are marked with blue text (Supplementary table 4). The samples 

labels along the x-axis include the sample number, case/control indicator, age of 

sampling in months, and months to (negative no. of months) or from (positive no. of 

months) seroconversion time. Here, SCC stands for seroconversion-centered, which 

is why the months to/from seroconversion are negative or positive.  
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Supplementary Figure 3C. Related to Figure 2. 

Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, 

ZnT8A, and GADA) and the 143 DE genes between the Cases and Controls detected 

in the CD4-CD8- fraction. The expression of each gene was standardized across 

samples from each case-control pair individually. Genes with an Euclidean distance 

(ED) < 2.5 to IL-32 (co-clustering results from k-means clustering) are marked with red 

text (Supplementary table 4). The samples labels along the x-axis include the sample 

number, case/control indicator, age of sampling in months, and months to (negative 

no. of months) or from (positive no. of months) seroconversion time. Here, SCC stands 

for seroconversion-centered, which is why the months to/from seroconversion are 

negative or positive.  
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Supplementary Figure 3D. Related to Figure 2. 

Hierarchical clustering of the levels of standardized autoantibodies (IAA, IA-2A, 

ZnT8A, and GADA) and the 85 DE genes between the Cases and Controls detected 

in the PBMC population. Each gene’s expression was standardized across samples 

from each case-control pair individually. Genes with an Euclidean distance (ED) < 2.5 

to IL-32 (co-clustering results from k-means clustering) are marked with red text and 

those with ED < 2.5 to INS are marked with blue text (Supplementary table 4). The 

samples labels along the x-axis include the sample number, case/control indicator, 

age of sampling in months, and months to (negative no. of months) or from (positive 

no. of months) seroconversion time. Here, SCC stands for seroconversion-centered, 

which is why the months to/from seroconversion are negative or positive.  



 

7 
 

 

Supplementary Figure 4A-W. Related to Figure 2. 

Expression profile plots of genes highlighted in the manuscript: 

 

 

A) Expression levels of IL-32 gene in CD4+ cells. 

 

 

B) Expression levels of IL-32 gene in CD8+ cells. 
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C) Expression levels of IL-32 gene in CD4-CD8- cells. 

 

 

D) Expression levels of IL-32 gene in PBMCs. 
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E) Expression levels of AMICA1 gene in CD4+ cells.  

 

 

 

F) Expression levels of AMICA1 gene in CD8+ cells. 
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G) Expression levels of AMICA1 gene in CD4-CD8- cells.  

 

 

H) Expression levels of AMICA1 gene in PBMCs. 
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I) Expression levels of BTN3A2 gene in CD4+ cells.  

 

 

 

J) Expression levels of BTN3A2 gene in CD8+ cells. 



 

12 
 

 

K) Expression levels of BTN3A2 gene in CD4-CD8- cells.  

 

 

L) Expression levels of BTN3A2 gene in PBMCs.  
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M) Expression levels of RPSAP15 gene in CD4+ cells.  

 

 

N) Expression levels of RPSAP15 gene in CD8+ cells. 
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O) Expression levels of RPSAP15 gene in CD4-CD8- cells.  

 

 

P) Expression levels of RPSAP15 gene in PBMCs.  
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Q) Expression levels of RPSAP58 gene in CD4+ cells.  

 

 

R) Expression levels of RPSAP58 gene in CD8+ cells.  
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S) Expression levels of RPSAP58 gene in CD4-CD8- cells.  

 

 

T) Expression levels of RPSAP58 gene in PBMCs.  
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U) Expression levels of INS gene in PBMCs. 

 

 

V) Expression levels of GCG gene in PBMCs.  
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W) Expression levels of REG1A gene in PBMCs.  

 

 

X) Expression levels of TRBV4-1 gene in CD4+ cells.  
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Y) Expression levels of VIPR1 gene in CD8+ cells.  

 

 

Z) Expression levels of PRKCQ-AS1 gene in CD4-CD8- cells. 
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AA) Expression levels of RP11-747H7.3 gene in CD4+ cells.  

 

 

AB) Expression levels of CTA-445C9.15 gene in CD4+ cells.  
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Supplementary Figure 5. Related to Figure 2. 

PBMC-specific co-regulation of pancreatic transcripts Insulin (INS), Glucagon (CGC) 

and Regulin 1 alpha (REG1A). Profiles of INS, CGC and REG1A show concerted gene 

expression profiles. For individual profiles, see Supplementary Figure 4.  

 

 

 

 



 

22 
 

 

Supplementary Figure 6. Related to Figure 2. 

Number of DE genes between the Cases and Controls in the time-window of 12 

months before seroconversion (RPKM > 3 for coding genes and RPKM < 0.5 for non-

coding genes, Up- or downregulated in ≥ 65% of the Cases). For complete listing, see 

Supplementary Table 3 columns “12 mo before SC”. 
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Supplementary Figure 7. Related to Figure 3A. 

mRNA expression of IL32 isoforms analysed in PBMC samples of Cases (n=7) and 

their matched Controls (n=7) by qRT-PCR. For expression level plot of IL32γ isoform, 

please refer to Figure 3A. 
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Supplementary Figure 8. Related to Figure 3. 

Heatmap of the top 10 most highly expressed genes in the 13 clusters identified after 

Seurat clustering analysis of the pooled single-cell RNA-Seq data (4 Cases + 4 

Controls) represented as a tSNE plot in Figure 3B. As the two biggest clusters were 

similar in their gene expression profiles, they were merged to form the Naive T cell 

cluster, leaving in total 12 cell clusters. Genes used in the annotation of the cell 

clusters are marked on the right column, where bolded genes are those that were also 

found to be DE between Cases and Controls in the bulk RNA-seq data analysis 

(Supplementary Table 3). 
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Supplementary Figure 9. Related to Figure 3. 

Contribution of individual samples in the t-SNE visualization of pooled single-cell RNA-

Seq data, presented in Figure 3B and C. 
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A 

 

B 

 

Supplementary Figure 10. Related to Figure 3. 

A) Proportion of cells coming from individual samples per cluster (cluster-wise 

proportioning) B) Box-plot highlighting the proportions of cells per cluster in Case 

(orange) and Control (green) samples. * p < 0.05, *** p < 0.005 according to paired t-

test of the sample-wise proportions of cells per cluster.  
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Supplementary Figure 11. Related to Figure 3. 

Violin plot showing the expression of IL32 in the 12 cell clusters identified from the 

single-cell RNA-Seq data, displayed separately for Cases (orange) and Controls 

(green). 
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B 

 

 

Supplementary Figure 12. Related to Figure 3. 

A) Trajectory in pseudotime of CD4+ specific and B) CD8+ specific cells along with 

the precursor cells plotted individually. 
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B                                                                                                      C 

 

Supplementary Figure 13. Related to Figure 4. 

A) Tow additional replicates of the Th0/Th1 intracellular staining data shown in Figure 

4C. B) EndoC-βH1 cells were treated for 24 h with recombinant IL-32𝛾 in presence 

and absence of IL-1β and IFNγ, and the expression of ER stress markers ATF3, ATF4, 

ATF6, CHOP, HSPA5 and sXBP1 was measured by RT-qPCR assay. C) Expression 

of endocrine marker genes INS, PDX1 and MAFA was measured after treatment of 

EndoC-βH1 cells with 100 ng of IL-32γ for 24h. In B-C fold change is calculated as 

compared to non-treated (control) cells. Statistical significance was determined by 

Tukey's multiple comparisons test. *  =p-value <0.05 while ** =p-value <0.01.  
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Supplementary Material  

Bulk RNA-seq data analysis 

RNA-seq data processing and analysis  

Of the 306 RNA-seq samples (Supplementary Table 1), 298 were used for the 

differential expression analysis because some Case samples had more than one 

corresponding control samples. The average sequencing depth of the samples in this 

study was around 51 million paired-end reads. Quality control checks were performed 

on the raw RNA-seq data using FastQC (version 0.10.0, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The reads were aligned 

to the human reference transcriptome, Human GRCh37 assembly version 75 

(http://feb2014.archive.ensembl.org/index.html), using TopHat (version 2.0.10), where 

the default parameters of the software were retained. On average, approximately 93% 

of the reads from each sample in each fraction were mapped (average overall read 

mapping of samples in each cell type was CD4+: 93%, CD8+: 92.6%, CD4-CD8-: 

93.4%, PBMC: 93.5%). This resulted in about 89% of concordant pair alignments 

(CD4+: 88.9%, CD8+: 88.93%, CD4-CD8-: 89.89%, PBMC: 89.89%). The aligned 

reads, with a mapping quality > 10, were counted at the gene level availing the htseq-

count function from the HTSeq package and using the overlap resolution mode of 

‘intersection-strict’ (htseq-count version 0.6.1). The read counts of genes were 

normalized using the trimmed means of the M-values (TMM) method, implemented in 

the software package edgeR, which adjusts for varying sequencing depths as well as 

normalizes for the RNA composition. Using the biotype information, the genes were 

divided into coding and non-coding categories. The biotype data for each gene were 

retrieved from the Ensemble database , and the descriptions of biotypes were taken 

from Gencode (http://www.gencodegenes.org/gencode_biotypes.html).  

 

Filtering genes using RPKM values 

First, the RPKM values were calculated for each gene in each sample of the analysis, 

where the length of the gene was taken to be the sum of the lengths of all its known 

exons. Second, a max-of-means RPKM value (mmRPKM) was computed for each 
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gene to assess the overall expression of the gene in all the samples of the analysis. 

As the differential expression analyses in this study usually involved two groups (e.g., 

cases and controls, CD4+ and PBMCs), the max-of-means of RPKM value refers to: 

maximum(mean(“RPKM values in Group 1”), mean(“RPKM values in Group 2”)). 

Subsequently, coding genes with mmRPKM > 3 and non-coding genes with mmRPKM 

> 0.5 were retained. These filtering criteria usually retained about 7000–7500 coding 

genes and 600–700 non-coding genes.  

  

Differential expression analysis 

Differential expression analyses were conducted separately for coding and non-coding 

genes, using the edgeR package. The variance of the data was estimated using the 

trended dispersion method. 

  

Post-differential analysis filtering steps (only for paired sample analyses) 

The edgeR output of differentially expressed (DE) genes with FDR < 0.05 from the 

paired sample analyses were further subjected to median log2FC filtering, where DE 

genes with a |median log2FC| > 0.5 were retained for downstream filtering step. The 

final filtering step retained only those genes as DE that had more than 65% samples 

across all individuals regulated in the same direction (i.e., up- or down-regulated). 

These filtering steps were added to discard false positives that may arise due to the 

heterogeneity of the samples due to normal variation, which is non-related to T1D and 

outliers. A visual depiction of the RNA-seq data processing and analysis pipeline has 

been shown in Supplementary Figure 2. 

  

Analysis 1: Cell fraction vs PBMC 

In this analysis, the expressions of genes from each cell fraction (i.e., CD4+, CD8+ 

and CD4-CD8-) were compared to those of the (paired) original PBMC population of 

Control children. Samples collected at all ages were included but were required to 

have expression data from both the fraction under analysis as well as PBMCs.  
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Analysis 2: Cases versus Controls – over all timepoints 

The aim of this analysis was to identify genes that are differentially expressed in 

children who have seroconverted to autoantibody positivity (Cases) in comparison to 

those who have not (Controls). Each Case child was matched to a Control child, 

according to date of birth, HLA-risk class, gender and country. Case samples were 

compared to the samples from their matched Controls that were collected at the same 

age. In these analyses, other than for pairing purposes, the sampling ages were not 

utilized. 

Differential expression analysis of Cases and Controls were compared with another 

method. The RNA-seq data of the filtered coding and non-coding genes were modelled 

using generalized linear mixed effects models (GLMMs) using glmer() function from 

lme4 package (23). A random effect is added in this model for each child’s samples. 

GLMM with the negative binomial likelihood was fit to the data using the MASS 

package, where the dispersion values per gene were obtained from the edgeR. For 

the filtered coding and non-coding genes from all fractions, the Spearman rank 

correlation coefficients of the results from the two methods ranged between 0.91 and 

0.96 with an average of 0.936, indicating similar ranking of the genes after FDR 

correction in both the methods. Further details of RNA-seq data analysis can be found 

in the “Supplementary Material”. 

 

Analysis 3: Cases versus Controls – 12 months before the seroconversion 

window 

This analysis is similar to Analysis 2 in terms of the Case versus Control analysis set-

up. However, to understand gene expression changes that take place in Cases right 

before seroconversion, this analysis compared only those Case samples that were 

taken at most 12 months before seroconversion with their matched Control samples.  

 

For comparison, the RNA-Seq data of the filtered coding and non-coding genes were 
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also modelled using generalized linear mixed effects models (GLMMs) using the same 

design as explained in Analysis 2. A random effect is added in this model for each 

child’s samples. The glmer() function from lme4 package was used here for modelling. 

GLMM with the negative binomial likelihood was fit to the data using the MASS 

package, where the dispersion values per gene were obtained from the edgeR 

Analysis 2. For the filtered coding and non-coding genes from all fractions, the 

Spearman rank correlation coefficients of the results from the two methods ranged 

between 0.91 and 0.96 with an average of 0.936, indicating similar ranking of the 

genes after FDR correction in both the methods. 

Differential gene clustering  

To find the genes and autoantibodies (together referred to as ‘features’ in this section) 

co-regulated/co-clustering with IL32 in each cell-fraction, k-means clustering, followed 

with Euclidean distance based co-clustering selection criteria, was performed on the 

expression levels of coding and non-coding differentially expressed genes (Analysis 

2) as well as on the autoantibodies. Due to the heterogeneity of the data and the 

disease, the clustering was done individually on each case and its matched control. 

Before clustering, the RPKM expression values of each gene and expression level of 

each autoantibody were log2 transformed to ensure approximately normal distribution 

of the values, and gene-wise standardized to make the features comparable. 

 

For each possible number of clusters (i.e., from 2 to total number of features - 1), the 

features were clustered using the k-means clustering algorithm (kmeans function 

implemented in R stats package). Subsequently, using the resulting classification of 

features into clusters along with the Euclidean distance measures between the 

features, a silhouette score was calculated. The optimum number of clusters was 

chosen to be the one with the largest silhouette score. The features were then 

clustered into the “optimum number of clusters” using k-means clustering with 20 

random sets of initialization values and sufficient iterations for convergence, where the 

configuration with minimum loss score was reported as the best clustering. Once 

clustered, the cluster containing IL32 was considered the IL32-cluster with its co-

regulated features.   
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To summarize over the IL32-clusters from the seven case-control pairs, a feature co-

clustering with IL32 in at least one case-control pair was considered to co-cluster with 

IL32 if the median of its Euclidean distances to IL32 across all pairs was below 2.5. 

This selection criteria, based on median Euclidean distance to IL32, ensured that only 

those features were considered to co-cluster with IL32 that co-clustered with it in at 

least 5–6 case-control pairs (Supplementary Table 4). 

 

As IFNG-cluster in CD8+ cells and INS-cluster in PBMCs were of specific interest also, 

the Euclidean distance-based summarization over the seven case-control pairs was 

repeated for these genes as well (Supplementary Table 4). 

Transcription factor binding site analysis 

Overrepresented transcription factor binding motifs on the promoters of IL32 and its 

co-regulated genes were analysed with updated (2018) TRANSFAC database, using 

the Fmatch tool with default parameters (best supported promoter, -10,000 to +1000 

bp around transcription start site) and a randomly selected gene set as a background. 

Afterwards the p-values were corrected for multiple testing using the Benjamini-

Hochberg method. Results with FDR < 0.05 are presented in Supplementary Table 

4. 

Single-cell RNA-seq data processing and analysis  

The Chromium single-cell 3’ RNA-Seq data from four Case and four Control samples 

(Supplementary Table 5) was individually preprocessed using the Cell Ranger 

Single-Cell Software Suite. The reads were aligned to the human reference genome 

(hg19) using STAR  and the data from non-cellular barcodes were filtered out. Across 

samples, the mean raw reads per cell varied between ~57 k to ~200 k 

(Supplementary Table 5). To identify rare cell types, the cells from different samples 

were pooled together using Cell Ranger’s multi-library aggregation algorithm where 

the samples were normalized using subsampling normalization. The downsampling 

(subsampling normalization) of sample reads after pooling retained on average ~31 k 

confidently mapped reads per cell (from ~59 k raw reads per cell on average). These 



 

35 
 

mapped to the median of 801 genes per cell. After the pooling, expression of 32,738 

genes from 20,370 cells was obtained. 

For QC analysis and further exploration of the single-cell RNA-Seq data the Seurat  R 

package was used. Firstly, all the genes expressed in less than one cell and all the 

cells expressing less than 200 genes or more than 4000 genes were filtered out. 

Furthermore, any cells containing more than 5% of mitochondrial genes or a UMI count 

higher than 5000 but a gene count less than 500, were also filtered out. The latter 

filtering steps involved filtering of cells with high UMI count but low gene count on the 

basis of the gene count and UMI count relationship plots following the 

recommendations of Seurat tool. After these quality control filtering steps, 18,396 cells 

expressing 20,830 genes were retained for downstream analyses. 

The filtered data were normalized using Seurat’s default global-scaling normalization 

method, ‘LogNormalize’, and variation from uninteresting sources (i.e., the number of 

molecules detected and percentage of mitochondrial genes expressed per cell) was 

regressed out. To capture the heterogeneity of the single-cell data and cluster the 

cells, a set of highly variable genes (HVGs) was selected, whose average expression 

was above 0.0125, and dispersion above 0.5 resulting in ~1200 HVGs in pooled cell 

library. Principal component analysis (PCA) was then performed on the HVGs, and 

the resulting top 20 PCs were used in the graph-based clustering employed by Seurat, 

keeping other parameters as default.  

To determine the cell type represented in each cluster, markers defining the clusters 

were determined via differential expression algorithm implemented in Seurat, where 

cells of a single cluster were compared to the cells of all other clusters combined. A 

gene was considered a marker of a cluster if it was expressed in at least 25% of the 

cells of either of the two clusters and the log fold change between the cluster and all 

other clusters was at least 0.25. On average, one to five genes were used as markers 

for each cluster (Supplementary Figure 8). On the basis of these cluster-specific 

markers, no biological difference was found in two of the 13 clusters, which both 

represented cells from naive T cells. Therefore, they were merged into a single cluster 

and were labeled as naive T cells, resulting in a total of 12 different clusters. 

Single-cell RNA-seq trajectory analysis  
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The QC filtered pooled cells from the Seurat analysis were ordered in pseudotime (i.e., 

placed along a trajectory corresponding to a type of biological transition, such as 

differentiation) using Monocle 2. The trajectory analysis was performed on cells 

specifically from CD4+ (CD62L+ T cells and Act. Th cells) and CD8+ (Act. GNLY+ 

CD8+ T cells, Act. GZMA+ CD8+ T cells and Act. prolif. GZMA+ CD8+ T cells) T-cell 

clusters, using the cell typing information from the Seurat analysis. In both CD8+ and 

CD4+ specific cell ordering, cells identified as naive T cells or T cells were also 

included. The trajectory analysis in Monocle 2 has three major steps. 

 

In the first step, all genes expressed in at least 1% of the cells were used in a principal 

component analysis, whose resulting top PCs (six in the case of CD8+ and 11 in the 

case of CD4+ specific single-cell trajectory analyses) were used to initialize the t-SNE 

ordination of the cells. Then, the dpFeature function was used to cluster the cells 

defined in the 2-D t-SNE space. Finally, the differential gene expression test of all 

genes expressed in more than 10 cells was performed between the clusters defined 

in the previous step as a way to extract the genes that distinguish them from each 

other. The top 1000 significant genes were then selected for subsequent steps of the 

analysis. The second step reduced the dimensionality of the data using the feature 

genes from the previous step and availing technique called reverse graph embedding 

(RGE) implemented in DDRTree algorithm. In the final step, cells were ordered along 

the trajectory by performing manifold learning on the tree from the second step.  

 


