
A note on subgroups of automorphism groups of

full shifts

Ville Salo
University of Chile

August 1, 2016

Abstract

We discuss the set of subgroups of the automorphism group of a full
shift, and submonoids of its endomorphism monoid. We prove closure
under direct products in the monoid case, and free products in the group
case. We also show that the automorphism group of a full shift embeds
in that of an uncountable sofic shift. Some undecidability results are
obtained as corollaries.

1 Introduction

Automorphism groups of two-sided full shifts were first studied in [2], and the
transitive SFT case was later studied in more detail in [1]. More results on them
were shown in [4]. In particular, these papers prove interesting results about the
set of subgroups of Aut(SZ). It is known for example that (non-abelian) free
groups, finite groups and finitely generated abelian groups can be embedded in
this group [2, 1], and so can all locally finite residually finite countable groups
[4]. Other examples are ‘graph groups’

〈(gi)i∈N | (gigj = gjgi)(i,j)∈R〉

where R ⊂ N2 is arbitrary, fundamental groups of 2-manifolds, and the free
product of all finite groups [4]. Despite the long list of examples, to our knowl-
edge there is no known characterization of the set of subgroups of Aut(SZ).

In the absense of a characterization, we turn to closure properties. One clo-
sure property for this set of groups is proved explicitly in [4], namely closure
under extensions by finite groups. Another one can be found by a direct appli-
cation of the ideas of [1, 4], namely closure under direct sums. We prove this
more generally for the endomorphism monoid.

Theorem 1. For any alphabet S, the set of submonoids of End(SZ) is closed
under direct products.

Our main result is that the set of subgroups of the automorphism groups is
also closed under free products, which answers a question I asked in [9].

Theorem 2. For any alphabet S, the set of subgroups of Aut(SZ) is closed
under free products.

1

The closest result of this type in the literature seems to be the embedding of
the free product of all finite groups into the automorphism group of a full shift.
We are not aware of a published proof, but the result is mentioned in [4] and is
attributed to R. C. Alperin.

The results work not just with binary products, but arbitrary countable
products: we prove that in general a set of submonoids of a monoid is closed
under direct (resp. free) products if and only if it is closed under countable
direct (resp. countable free) products.

In [4], the group Aut(SZ) is embedded into the automorphism group of a
transitive SFT. With a similar proof, we extend this in two directions, by show-
ing that End(SZ) is contained in the endomorphism monoid of every uncountable
sofic shift.

Lemma 1. Let X be any uncountable sofic shift, and AZ any full shift. Then
End(AZ) ≤ End(X).

From our results it follows that this is optimal among sofic shifts in the
sense that End(AZ) cannot be computably embedded into End(X) when X is
countable.1

As corollaries of the results, we obtain undecidability results for cellular
automata on uncountable sofic shifts. The most important of these is that the
embedding of free products is undecidable.

Theorem 3. Given two local rules F : S2r+1 → S and G : S2s+1 → S that
define reversible cellular automata f and g (respectively) on SZ, it is undecidable
whether whether f and g satisfy a nontrivial relation, and whether 〈f, g〉 ∼= F2.

Given our embedding result, this follows for essentially abstract reasons from
the known fact that the torsion problem is undecidable on full shifts [3].

The ‘marker method’ (the use of unbordered words) usually plays an im-
portant role in the construction of endomorphisms, and this note makes no
exception. However, of even more importance in our constructions is the con-
cept of ‘conveyor belts’. This technique is implicit in many constructions found
in the literature, and variants of it are found for example in [1, 4, 6]. We make
this idea more explicit.

While our main interest is in automorphism groups, we prove results for the
whole endomorphism monoid when possible, since the results about monoids
are strictly stronger, and the proofs are typically the same. In some results,
however, the fact we consider groups instead of monoids is important. For
example, we do not know whether the set of submonoids of the endomorphism
monoid of a full shift is closed under free product.

We also leave some open questions. Of course, our main question2 is whether
there is a characterization of the whole set of subgroups:

Question 1. Which groups are subgroups of Aut(SZ)?

This seems (to us) to be hard, and we do not know whether it can be ap-
proached with the current methods. A question that seems more approachable,

1We will also rule out the existence of abstract embeddings in later work, see Remark 1.
2We state this in a question block as it is our main motivating question, but it is not a

rigorous one, but rather an open-ended characterization problem. It does not necessarily have
a ‘correct’ answer, and should judged on an ‘I know it when I see it’ basis.

2

but that we have not succeeded in solving, is the generalization of Lemma 1 to
other pairs of sofic shifts: while it is easy to embed the automorphism group of
a full shift into that of an uncountable sofic shift, we are rarely able to do the
converse.

Question 2. Let X and Y be two sofic shifts. When do we have Aut(X) ≤
Aut(Y)?

The question is discussed briefly in [4], where it is noted that the embedding
proof for the full shift does not directly generalize.

On the side of computability, we are also interested in the following natural
follow-up question to Theorem 3:

Question 3. Let A be the set of pairs of CA on SZ generating a finite group,
and B the set of pairs generating F2. Are A and B recursively inseparable?

2 Definitions

The letters A, B, C and S stand for finite alphabets. We write A∗ for the set
of finite words over the alphabet A, and A+ the set of nonempty words. The
concatenation of two words u, v is written as u · v or simply uv, and points or
configurations x ∈ AZ can be written as infinite concatenations

x = . . . w−3 · w−2 · w−1 . w0 · w1 · w2 . . .

where the ‘decimal point’ in w−1 . w0 need not be at the origin, but simply
denotes some fixed position of the point.

If u ∈ A∗ is any word, write uR for the reversed word uRi = u|u|−1−i.

Let S be a finite alphabet. Then SZ with the product topology is called a
full shift. We define the shift σ : SZ → SZ by σ(x)i = xi+1. A subshift is a
topologically closed set X ⊂ SZ satisfying σ(X) = X.

If x ∈ X we write w @ x if ∃i : w = x[i,i+|w|−1]. We also write w @ X and
u @ v for words u, v, with obvious meanings, and

Ln(X) = {w ∈ Sn | w @ X}.

A cellular automaton on a subshift X ⊂ SZ is a continuous function f : X →
X that commutes with σ. Equivalently, it has a radius r ∈ N and a local rule
F : L2r+1(X)→ S such that f(x)i = F (x[i−r,i+r]) for all x ∈ X, i ∈ Z.

For a standard reference on symbolic dynamics, see [7, 5].
We assume the reader is familiar with groups and monoids, but give the basic

definitions to clarify our choice of boundary between properties and structure.
A monoid (M, ·, 1M) is a triple where M is a countable set, · is an associative
multiplication operation (a, b) 7→ a · b = ab and 1M is an identity element
satisfying a1M = 1Ma = a for all a ∈M . A group is a monoid (G, ·, 1G) where
for each element g ∈ G there is an inverse g−1 satisfying gg−1 = g−1g = 1G.
In other words, we think of the existence of g−1 as simply a property of the
element g, not as an operation. If N and M are monoids, a homomorphism
φ : N →M is a map satisfying φ(a · b) = φ(a) · φ(b) and φ(1N) = 1M

A submonoid of a monoid M is a subset of N that contains the identity
element 1M of M and is closed under multiplication, so that N obtains a monoid

3

structure fromM with 1N = 1M , and we writeN ≤M . More generally, we write
N ≤M if there is an embedding, or an injective homomorphism φ : N →M . A
bijective homomorphism is called an isomorphism, and we write M ∼= N if M
and N are isomorphic. A subgroup is a submonoid that is a group. If M is a
monoid, write subm(M) for the class of isomorphism classes of its submonoids.
We write subg(M) for the class of isomorphism classes of its subgroups.

The endomorphism monoid End(X) of a subshift X is the (discrete) monoid
of cellular automata on it under function composition, with 1End(X) = idX , the
identity map on X. The automorphism group Aut(X) of X is the subgroup of
End(X) containing the invertible elements:

Aut(X) = {f ∈ End(X) | ∃g ∈ End(X) : f ◦ g = g ◦ f = idX}.

By compactness of X, this is precisely the set of elements of End(X) that are
bijective. When X = SZ, this is further precisely the set of injective CA [2].

Our definitions are set up so that the following holds.3

Lemma 2. Let G be a group such that G ≤ End(X). Then G ≤ Aut(X). In
particular, if subm(End(X)) = subm(End(Y)) then subg(Aut(X)) = subg(Aut(Y)).

The following lemma is useful for defining cellular automata.

Lemma 3. Let X = SZ and let Y ⊂ X be a subset such that σ(Y) = Y and
Y = X. If f : Y → Y is uniformly continuous and commutes with the shift,
then there is a unique continuous map g : X → X such that g|Y = f , and it is
a cellular automaton.

Write S(A) for the set of permutations of A, and S(A,B) for the set of all
bijections c : A→ B. The free group with m generators is written Fm, and F∞
is the free group with a countably infinite set of generators.

The (external) direct product of two monoids M,N is the monoid M × N
with operation (a, b) · (c, d) = (ac, bd). The free product of monoids M and N is
defined up to isomorphism as follows: Let M ∼= 〈1M , a1, a2, a3, . . . | r1, r2, . . .〉
be a presentation, where each ri is a relation of the form u = v where u, v ∈
{a1, a2, . . .}∗, and similarly let N ∼= 〈1N , b1, b2, . . . | t1, t2 . . .〉. Then

M ∗N ∼= 〈a1, b1, a2, b2, a3, b3, . . . | 1M = 1N , r1, t1, r2, t2, r3, t3, . . .〉.

We also write Mk for the direct product of k copies of M . There are obvious
embeddings Mk−1 →Mk, and their direct limit is written as Mω. The elements
of the countable monoid Mω are vectors of finite support with component values
in M . Write M ∗M , M∗k and M∗ω for the corresponding concepts for the free
product.

3 Lemmas about submonoids

Lemma 4. Let M and N be monoids. Then subm(M) = subm(N) if and only
if M ≤ N and N ≤M .

3For this, it is (at least a priori) important that the identity element of a subgroup of
End(X) is the identity map – thus, the identity element must be part of the structure of a
monoid, rather than a property.

4

In particular, to show that two groups have the same subgroups, we only
need to show they contain each other as subgroups. We note that the set of
subgroups of a group is not a complete invariant for group isomorphism: for
example, free groups with different amounts of generators are non-isomorphic,
but contain each other as subgroups.

In this note, we concentrate on automorphism groups of full shifts Aut(SZ)
where S is a finite alphabet of size at least 2. It is not known when two such
groups Aut(AZ) and Aut(BZ) are isomorphic – in particular the case |A| =
2, |B| = 3 is open. Nevertheless, the set of subgroups, and more generally
submonoids, is always the same:

Lemma 5. Let A,B be alphabets of size at least 2. Then

subm(End(AZ)) = subm(End(BZ)).

In particular, it follows that subg(End(AZ)) = subg(End(BZ)) if |A|, |B| ≥ 2.
Lemma 5 follows directly from Lemma 8, which we prove in Section 7. The
corollary subg(End(AZ)) = subg(End(BZ)) is well-known, and can be found in
[4] as Corollary 1.

There is not much to say about finite submonoids and subgroups of End(SZ),
as shown by the following result, which essentially already appears in [2]. The
proof illustrates the usefulness of Lemma 5.

Proposition 1. Let |A| ≥ 2. Then every finite monoid embeds in End(AZ).

Proof. Every finite monoid embeds in the transformation monoid of a finite set
S, and thus in End(SZ). The result then follows from the previous lemma.

We note that in general, if subm(M) is closed under binary direct or free
products, then it is closed under the corresponding countable products.

Lemma 6. Let subm(M) = subm(N) = subm(N ′). Then the following are
equivalent:

• N ×N ′ ∈ subm(M),

• M ×M ∈ subm(M),

• subm(M) is closed under finite direct products.

• Mω ∈ subm(M),

• subm(M) is closed under countable direct products.

The analogous result is true for free products.

Proof. We give the proof for direct products, the case of free products being
similar. The equivalence of the first two conditions and the equivalence of the
last two conditions are direct, as is the fact that the last two conditions imply
the first two. We show that the third and fourth condition follow from the
second.

For this, suppose that M ×M ≤M . Let φ0 : M →M and φ1 : M →M be
the embeddings giving the embedding M ×M ≤M , that is, φ0(M)∩ φ1(M) =
{1M} and φ0(a)φ1(b) = φ1(b)φ0(a) for all a, b ∈ M . If this holds for two
maps, we say the embedding conditions hold for them. For w ∈ {0, 1}∗ define

5

inductively φ0w = φ0◦φw and φ1w = φ1◦φw. Then all maps φw are embeddings
of M into itself.

For i ∈ N, define ψi = φ1i0. It is easy to show that the embedding condi-
tions hold for ψi and ψj whenever i 6= j. It follows that (ψi)i∈[0,k−1] gives an

embedding of Mk into M , and (ψi)i∈N of Mω into M .
The claims for free products are proved analogously, but using a different

embedding condition, namely that the images of the embeddings satisfy no
nontrivial relations.

The importance of this lemma and Lemma 5 is that we do not need to worry
about changing the alphabets of our full shifts when proving closure properties
or about whether we use finite or countable products.

4 Conveyor belts

In our constructions, we will typically embed one automorphism group into
another. In practise, this means that in the configurations of one full shift SZ,
we identify subsequences that code (parts of) configurations from another full
shift AZ. In these subsequences, we apply f ∈ End(AZ). To make this into
a homomorphism from End(AZ) to End(SZ), it is important to have natural
behavior at the boundary between an area coding (part of) a configuration in
AZ, and an area containing something else. For this, we use conveyor belts.

Definition 1. Let A be any alphabet. A conveyor belt over A is a word over
the alphabet A2, that is, w ∈ (A2)∗. Write ConvA,k for the set of conveyor
belts over A of length k, that is ConvA,k = (A2)k. For a cellular automaton
f : AZ → AZ and k ∈ N, we define a function fk : ConvA,k → ConvA,k as
follows: if w ∈ (A2)k, we decompose w as w = u × v for some u, v ∈ Ak, and
we define

fk(w) = f((uvR)Z)[0,k−1] × (f((uvR)Z)[k,2k−1])
R.

Applying a CA to a conveyor belt can alternatively be described as applying
its local rule on the first track, applying its local rule in reverse on the second
track, and gluing the tracks at the borders in the obvious way, as if the word
were laid down on a conveyor belt: it is clear that this is essentially the same as
applying the CA to a periodic point of even period. The following is then clear.

Lemma 7. The map f 7→ fk is a monoid homomorphism from End(AZ) to the
monoid of functions on ConvA,k, and

f 7→ (fk)k∈N : End(AZ)→
∏
k

S(ConvA,k)

is an embedding. Furthermore, the maps fk are uniformly continuous in the
sense that there exists a radius r ∈ N such that for all k ∈ N and w,w′ ∈
ConvA,k such that

w[max(0,i−r),min(k−1,i+r)] = w′[max(0,i−r),min(k−1,i+r)],

we have fk(w)i = fk(w′)i.

The radius in the lemma can be taken to be just the usual radius of f ∈
Aut(AZ).

6

5 Direct products

Theorem 4. If |S| ≥ 2, subm(End(SZ)) is closed under direct products.

Proof. By Lemma 5 and Lemma 6, it is enough to show that for two disjoint
alphabets A and B, the monoid End(AZ)× End(BZ) embeds into End(SZ) for
some alphabet S. We choose S = A2 t B2. To prove the claim, it is enough
to give embeddings f 7→ fA : End(AZ) → End(SZ) and f 7→ fB : End(BZ) →
End(SZ) such that fA ◦ gB = gB ◦ fA for all f ∈ End(AZ) and g ∈ End(BZ),
and fA = gB =⇒ f = idAZ ∧ g = idBZ .

Let f ∈ End(AZ). Write Y for the set of points x ∈ (A2 tB2) which are not
left or right asymptotic to a point over A2 or B2, in other words, points where
all continuous runs over one of the subalphabets A2 or B2 are finite. If x ∈ Y ,
then we can write

x = . . . w−3 · w−2 · w−1 . w0 · w1 · w2 . . .

where w2i ∈ (A2)+ and w2i+1 ∈ (B2)+ for all i ∈ Z (and the decimal point need
not be at the origin), and we define

fA(x) = · · ·w−3 · f|w−2|(w−2) · w−1 . f|w0|(w0) · w1 · f|w2|(w2) · w3 · · ·

(where the decimal point is in the same position as in x). It is clear that fA
commutes with the shift on Y . From Lemma 7, it follows that fA is uniformly
continuous on Y , and thus extends uniquely to a cellular automaton on X. This
gives a function from End(AZ) to End(SZ). From Lemma 7, it easily follows
that this is an embedding.

We symmetrically construct a homomorphism from Aut(BZ) to Aut(SZ) by
rewriting the contiguous segments over B2. It is clear that these mappings
commute, and since fA fixes all symbols from B2 and gB all symbols from A2,
only the identity map is in the image of both embeddings.

Corollary 1. If |S| ≥ 2, subg(Aut(SZ)) is closed under direct products.

6 Free products

In this section, we prove our main theorem:

Theorem 5. If |S| ≥ 2, subg(Aut(SZ)) is closed under free products.

In the direct product case, we had two kinds of conveyor belts, and we applied
the fA and gB maps completely independently on both of them. To embed a
free product, the idea is to have these conveyor belts talk to each other, so
that any alternating product of elements from the (f 7→ fA)-embedding and the
(g 7→ gB)-embedding can transmit information arbitrarily far over an alternating
sequence of A-conveyor belts and B-conveyor belts, as long as the lengths and
contents of these belts are chosen suitably.

For this, we increase the size of our alphabet, and add a C-component that
allows us to transmit any kind of modification of the left end of an A-conveyor
belt to any kind of modification of the right end of a B-conveyor belt on its left,
and vice versa. Let us proceed to the details.

7

Proof. By Lemma 5, it is enough to show how to embed the free product of
Aut(AZ) and Aut(BZ) into Aut(SZ), where A and B are two disjoint alphabets
with the same cardinality and S is an alphabet of our choosing. We choose an
arbitrary abelian group structure on both A2 and B2. Let C = S(A2, B2), and
choose the alphabet

S = C tA2 tB2.

Similarly as in the proof of Theorem 4, for each f ∈ Aut(AZ), we will define a
CA fA : SZ → SZ so that f 7→ fA embeds Aut(AZ) into Aut(SZ) as a subgroup
GA ≤ Aut(SZ). An embedding f 7→ fB of Aut(BZ) into GB ≤ Aut(SZ) is
defined symmetrically by swapping the roles of A and B, and GA ∩GB = {id}
will be clear from the construction. To show they generate the free product
of Aut(AZ) and Aut(BZ) in Aut(SZ), we must show there are no non-trivial
relations between elements of GA and GB . Because the roles of A and B are
symmetric, this will follow from showing that for any

f = fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0 ∈ Aut(SZ)

where k ≥ 1, and fi ∈ GA \ {id} for even i and fi ∈ GB \ {id} for odd i, we
have f 6= id.

Let f ∈ Aut(AZ). Let Y be the set of points where contiguous runs over each
of the subalphabets A2, B2 and C are finite. The set Y is shift-invariant, so to
define cellular automata on SZ, it is enough to define shift-invariant uniformly
continuous maps on Y . Let thus x ∈ Y , so that

x = . . . w−2 · w−1 . w0 · w1 · w2 . . .

where for all i ∈ Z, wi ∈ (A2)+, wi ∈ (B2)+ or wi ∈ C+, and wi and wi+1 are
over different alphabets. We write

f(x) = . . . u−2 · u−1 . u0 · u1 · u2 . . . ,

where |ui| = |wi| for all i. If wi ∈ C+, we let ui = wi. If wi ∈ (A2)+, we apply
f to the conveyor belt wi as in the proof of Theorem 4, and let ui = f|wi|(wi).

Finally, let us define ui for wi ∈ (B2)+. Suppose |ui| = `. First, (ui)j =
(wi)j for j ∈ [0, ` − 2], that is, only the last symbol may change. If wi+1 /∈ C
(that is, either wi+1 /∈ C+ or wi+1 ∈ C+ but |wi+1| > 1) or wi+2 /∈ (A2)+, we
also let (ui)`−1 = (wi)`−1. If wi+2 ∈ (A2)+ and wi+1 = c ∈ C, we let

(ui)`−1 = (wi)`−1 − c((wi+2)0) + c((ui+2)0),

where addition is performed with respect to the abelian group structure of B2. It
is easy to see that this defines fA on Y , and since the map defined is uniformly
continuous and shift-commuting, we can extend it in a unique way to a CA
fA : SZ → SZ. If f ∈ Aut(AZ), it has an inverse f−1 ∈ Aut(AZ), and it is easy
to see that fA|Y ◦ f−1A |Y = f−1A |Y ◦ fA|Y = idY . It follows that fA ∈ Aut(SZ),
because the only extension of the identity map on Y to a CA on SZ is the
identity map.

For g ∈ Aut(BZ), the map gB : SZ → SZ is defined symmetrically, modifying
the rightmost symbol of a word over A2 as a function of the leftmost symbol of
a word over B2 to the right of it when separated by the single symbol c ∈ C, by
the same formula, but using the abelian structure of A2 instead of that of B2,
and the function c−1 : B2 → A2 instead of c.

8

We now show that GA and GB indeed give the free product of Aut(AZ) and
Aut(BZ). Suppose thus that

f = fk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ f0 ∈ Aut(SZ)

where k ≥ 1, and fi ∈ GA \ {id} for even i and fi ∈ GB \ {id} for odd i. We
need to show f 6= id. Suppose the minimal radius of fi is ri ≥ 0. We show that
f(x)0 depends on at least the cell xh where h =

∑
i ri + 2k. Clearly this will

imply that f 6= id.
For this, we will define two points

x = y . uk−1 · ck−2uk−2 · · · c1u1 · c0u0 · z

x′ = y . uk−1 · ck−2uk−2 · · · c1u1 · c0u′0 · z

where y ∈ C−N, z ∈ CN, ui ∈ (A2)+ if i is even, ui ∈ (B2)+ if i is odd,
|u′0| = |u0|, (u0)i = (u′0)i for i 6= |u0| − 1, and ci ∈ C for all i. The choices of
y and z are arbitrary, and |ui| = ri for all i. We will choose the words ui and
symbols ci carefully so that f(x)0 6= f(x′)0, while xi = x′i for all i 6= h. Write
Ii = [αi, βi] for the interval where ui occurs in x.

Let i ∈ [0, k − 1] be even, and let vi and v′i be words of length 2ri + 1 with
(vi)j = (v′i)j for j ∈ [1, 2ri−1] such that Fi(vi) 6= Fi(v

′
i), where Fi : A2ri+1 → A

is the local rule of fi. We then have (vi)0 6= (v′i)0 or (vi)2ri 6= (v′i)2ri , and if
ri > 0 we can (and do) suppose (vi)0 = (v′i)0 or (vi)2ri = (v′i)2ri . If (vi)0 6= (v′i)0,
i is called a left dependence and otherwise a right dependence.

If i is a left dependence, define the words ti, t
′
i ∈ (A2)ri+1 by

(ti)j =

{
((vi)ri+j+1, (vi)ri−j) if j < ri
(a, (vi)0) if j = ri,

where a is arbitrary, and t′i by the same formula using the word v′i. In other
words, the word ti is a conveyor belt version of vi where the center of vi is at
the left end of ti and the leftmost coordinate is at the right end of ti.

The important property of ti and t′i is that they agree apart from their
rightmost coordinates, but after applying fi to the conveyor belt, the images
differ in the leftmost coordinate, that is,

(ti)[0,ri−1] = (t′i)[0,ri−1] ∧ (fi)|ti|(ti)0 6= (fi)|ti|(t
′
i)0.

If i is a right dependence, we produce words ti and t′i with this property in a
similar fashion. Note that when ri > 0, it was important that we chose the
words vi and v′i so that they differ in one end but not the other, as otherwise
(ti)ri−1 6= (t′i)ri−1.

Choose ci so that ci((fi)|ti|(ti)0) = 0 and

ci((fi)|ti|(t
′
i)0) = (t′i+1)ri+1

− (ti+1)ri+1
.

For odd coordinates i, we choose words ti, t
′
i ∈ (B2)+ and ci ∈ C similarly,

switching the roles of A and B.
We let u0 = t0, u′0 = t′0. The words ui will be chosen inductively in such a

way that
fi−1 ◦ · · · ◦ f1 ◦ f0(x)Ii = ti,

9

fi−1 ◦ · · · ◦ f1 ◦ f0(x′)Ii = t′i,

and
fi−1 ◦ · · · ◦ f1 ◦ f0(x)Ij = fi−1 ◦ · · · ◦ f1 ◦ f0(x′)Ij

for j > i.
To see this is possible, observe that information travels only from right to

left over C-symbols when maps from 〈GA, GB〉 are applied, and a map f ∈
(GA ∪ GB)k will move information over at most k symbols in C. Thus, when
applying our maps g` = f`−1◦· · ·◦f1◦f0 to the points x, x′, we will automatically
have g`(x)Ij = g`(x

′)Ij for all j > `. It follows that it is enough to show that
the ui can be chosen so that g`(x)I` = t` for all `: by the choice of the symbols
ci, we will then automatically have g`(x

′)I` = t′`.
But naturally we can choose such words ui by induction on i, since each of

the maps g` is reversible and information travels only to the left over symbols
in C.

In [1], it is shown that Z2 ∗ Z2 ∗ Z2 embeds in Aut(X) for a full shift X,
and thus also the two-generator free group does. More generally, it is known
that every free product of finitely many finite groups embeds in Aut(X) for a
full shift X. In [4], this is attributed to R. C. Alperin. Combining the previous
theorem and Proposition 1 gives a new proof of this result.

Corollary 2. If |S| ≥ 2, every free product of finite groups embeds in Aut(SZ).

7 Embeddings between endomorphism groups

In [4], it was shown that automorphism groups of full shifts embed in those of
transitive SFTs. With essentially the same proof, we show that endomorphism
monoids of full shifts embed in those of uncountable sofic shifts, equivalently in
ones with positive entropy. The proof relies on a number of basic properties of
sofic shifts, which can be found in [7, 5].

Lemma 8. Let X be any uncountable sofic shift, and AZ any full shift. Then
End(AZ) ≤ End(X).

Proof. It is easy to see that for a sofic shift, uncountability is equivalent to
having positive entropy.

The syntactic monoid of a subshift X is the monoid whose elements are
equivalence classes of words in X under the equivalence w ∼ w′ ⇐⇒ ∀u, v :
uwv @ X ⇐⇒ uw′v @ X. Sofic shifts are characterized as the subshifts with a
finite syntactic monoid. If X has positive entropy, then its minimal SFT cover
Y also does. Then Y has a transitive component with positive entropy, and its
image in the covering map is a positive-entropy transitive sofic subshift Z of X.

Let k be such that if u, v @ Z then uav @ Z for some word a with |a| ≤ k –
such k exists because Z is transitive and because its syntactic monoid is finite.
Let m be such that Z contains at least n = |A2| words of length m representing
the same element of the syntactic monoid of X – such m exists because the
syntactic monoid of X is finite,4 and because Z has positive entropy. Let w′ be

4It is important that the words indeed represent the same element in the syntactic monoid
of X and not just Z – we will need to be able to interchange them in any configuration of X.

10

a synchronizing word in Z of some length `, that is, such that

u1w
′, w′u2 @ Z =⇒ u1w

′u2 @ Z.

Such a word can be found in any sofic shift [5].
In every aperiodic infinite word, one can find unbordered words of arbitrary

length [8]. Take any configuration in Z which is aperiodic and where w′ appears
syndetically (in every long enough subword), to find an unbordered word w @ Z
of length at least 2k +m+ 1 containing the word w′. Then w is synchronizing,
since it contains a synchronizing subword.

By the assumptions on k and m, there is a set of words wUw, where U ⊂ Sp
for some p ≤ 2k +m and |U | = n, such that all words in wUw occur in Z and
represent the same element of the syntactic monoid of X. Note that two words
in wUw can only overlap nontrivially by sharing the subword w. Since all words
in wUw occur in Z and w is synchronizing, the language (wU)∗w is contained
in the language of Z.

Now, let U = {u1, . . . , un}, and fix a bijection φ : [1, n] → A2. Given a CA
f : AZ → AZ, the embedding is now constructed as in the previous sections: if
we have a maximal finite subword of the form

wui1wui2wui3w · · ·wui`w

(note that U -subwords of two such words cannot overlap by the assumptions), we
apply f to the corresponding conveyor belt and let v = f`(φ(i1)φ(i2) · · ·φ(i`)).
We rewrite the word wui1w · · ·wui`w by

wuφ−1(v1)wuφ−1(v2)wuφ−1(v3)w · · ·wuφ−1(v`)w.

As in the previous proofs, it is easy to check that this gives an embedding
of End(AZ) into End(X).

The converse End(X) ≤ End(AZ) is not true in general for positive-entropy
sofic shifts X:

Example 1. The group Aut(AZ) is residually finite [1]. We show that End(X)
need not be residually finite for a sofic shift X. For this, let

Xk = {x ∈ {0, 1}Z | |{i ∈ Z | xi = 1}| ≤ k}.

Then Aut(X2) contains a copy of the group of all permutations of N with finite
support, by permuting the (orbits of) isolated points. This group is not residually
finite, so X2 × Y is not residually finite for any subshift Y . In particular, by
letting Y be a positive-entropy sofic shift we obtain the result. 4

Even assuming transitivity, we are not aware of a general technique of em-
bedding End(X) into End(Y) for two sofic shifts:

Question 4. Let X and Y be two sofic shifts. When do we have Aut(X) ≤
Aut(Y)?

We are mainly interested in the case where X and Y are mixing SFTs.
Even in this case, we find it tricky to find embeddings even between concrete
examples. For example, let X ⊂ {x ∈ {0, 1}Z | 11 6@ x}, the golden mean SFT.
Do we have Aut(X) ≤ Aut({0, 1}Z)?

11

8 Decidability

In this section, we briefly discuss some decidability corollaries for cellular au-
tomata that follow from the constructions. We fix the local rule of a CA as its
computable presentation. This allows us to ask decidability questions about cel-
lular automata. We start with a lemma that shows that the translation between
cellular automata and their local rules is completely algorithmic. We omit the
standard proof.

Lemma 9. Let X be a sofic shift. Then given a function F : S2r+1 → S,
it is decidable whether f(x)i = F (x[i−r,i+r]) defines a cellular automaton on
X, and if it does, we can compute a minimal radius r′ ∈ N and a local rule
F ′ : L2r′+1(X)→ S for f .

Of course, an algorithm that minimizes the local rule implies that given two
local rules F : S2r+1 → S and F ′ : S2r′+1 → S, it is decidable whether they
define the same CA.

Let G be a countable group, with a fixed computable presentation for the
elements. The torsion problem is the problem of, given g ∈ G, deciding whether
there exists m > 0 such that gm = 1G.

Theorem 6 ([3]). For some S, the torsion problem of Aut(SZ) is undecidable.

Theorem 7 ([10]). The torsion problem of Aut(X) is decidable for every zero-
entropy sofic shift X.

Combining the theorems with Lemma 8 gives the following.

Theorem 8. Let X be a sofic shift. Then the torsion problem of Aut(X) is
decidable if and only if X has zero entropy.

Remark 1. It follows that for sofic X, there can exist a computable embedding
of Aut(SZ) into Aut(X) only if X is uncountable. However, this does not pro-
hibit the existence of an abstract embedding. We will address this problem in a
later work, where we show that Aut(X) is amenable when X is countable.

Another definition of the torsion problem is to decide, given a CA, whether
it generates a copy of Z. Next, we discuss other problems of this type, omitting
the easy proofs.

Proposition 2. Given a finite set F ⊂ Aut(SZ) and a finite group G, it is
decidable whether 〈F 〉 ∼= G.

Abelianness is also easy to check.

Proposition 3. Given a finite set F ⊂ Aut(SZ), it is decidable whether 〈F 〉 is
abelian.

Nevertheless, combining the result of [3] with Theorem 4 and the fundamen-
tal theorem of abelian groups we see that it is impossible to check which abelian
group is generated by a finite set of CA.

Proposition 4. Let G be any infinite finitely-generated abelian group. Then
given a finite set F ⊂ Aut(SZ), it is undecidable whether 〈F 〉 ∼= G.

12

Finally, combining the result of [3] with Theorem 5, we obtain the undecid-
ability of free products.

Theorem 9. Given f, g ∈ Aut(SZ), it is undecidable whether 〈f, g〉 ∼= F2, and
whether f and g satisfy a nontrivial relation.

We note that deciding whether 〈f, g〉 ∼= F2 is not equivalent to (the com-
plement of) deciding whether f and g satisfy a nontrivial relation (as the CA
might satisfy a set of relations, yet generate a group isomorphic to F2).

Proof. Let ψ1 : Aut(SZ) → Aut(SZ) and ψ2 : Aut(SZ) → Aut(SZ) be a com-
putable embedding of Aut(SZ) ∗ Aut(SZ) into Aut(SZ), given by Theorem 5.
That is, there are no nontrivial relations between elements of ψ1(SZ) and ele-
ments of ψ2(SZ).

Now, let h ∈ Aut(SZ), and consider the CA f = ψ1(h) and g = ψ2(h). If h
is not a torsion element, then f and g satisfy no nontrivial relations, and thus
〈f, g〉 ∼= F2. If hn = id for some n > 0, then both f and g are torsion elements,
and thus certainly satisfy a nontrivial relation: fn = gn = id for some n. Taking
minimal such n, we have 〈f, g〉 ∼= Zn ∗ Zn. Unlike F2, this is not a torsion-free
group, so 〈f, g〉 6∼= F2. Since it is undecidable whether a given CA h is a torsion
element, the claim follows.

Finally, we note that the undecidability of the torsion problem tells us that
the set of reversible CA that generate a finite group are recursively inseparable
from the set of reversible CA that generate a copy of Z. The corresponding result
for the two-generator free group does not seem to follow from our embedding
theorem.

Question 5. Let A be the set of pairs of CA on SZ generating a finite group,
and B the set of pairs generating F2. Are A and B recursively inseparable?

9 Acknowledgements

The author was supported by FONDECYT Grant 3150552.

References

[1] Mike Boyle, Douglas Lind, and Daniel Rudolph. The automorphism group
of a shift of finite type. Transactions of the American Mathematical Society,
306(1):pp. 71–114, 1988.

[2] Gustav A. Hedlund. Endomorphisms and automorphisms of the shift dy-
namical system. Math. Systems Theory, 3:320–375, 1969.

[3] Jarkko Kari and Nicolas Ollinger. Periodicity and immortality in reversible
computing. In Proceedings of the 33rd international symposium on Math-
ematical Foundations of Computer Science, MFCS ’08, pages 419–430,
Berlin, Heidelberg, 2008. Springer-Verlag.

[4] K. H. Kim and F. W. Roush. On the automorphism groups of subshifts.
Pure Mathematics and Applications, 1(4):203–230, 1990.

13

[5] Bruce P. Kitchens. Symbolic dynamics – One-sided, two-sided and countable
state Markov shifts. Universitext. Springer-Verlag, Berlin, 1998.

[6] Douglas Lind. Entropies of automorphisms of a topological markov shift.
Proceedings of the American Mathematical Society, 99(3):589–595, 1987.

[7] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics
and coding. Cambridge University Press, Cambridge, 1995.

[8] M. Lothaire. Algebraic combinatorics on words, volume 90 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cam-
bridge, 2002.

[9] Ville Salo. Groups and monoids of cellular automata. In Jarkko Kari, editor,
Cellular Automata and Discrete Complex Systems, volume 9099 of Lecture
Notes in Computer Science, pages 17–45. Springer Berlin Heidelberg, 2015.

[10] Ville Salo and Ilkka Törmä. Computational aspects of cellular automata
on countable sofic shifts. Mathematical Foundations of Computer Science
2012, pages 777–788, 2012.

14

