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We present a high magnetic field study of electron spin waves in atomic hydrogen gas compressed
to high densities of ∼ 1018 cm−3 at temperatures ranging from 0.26 to 0.6 K. We observed a variety
of spin wave modes caused by the identical spin rotation effect with strong dependence on the spatial
profile of the polarizing magnetic field. We demonstrate confinement of these modes in regions of
strong magnetic field and manipulate their spatial distribution by changing the position of the field
maximum.
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Spin and magnetization oscillations are well known
phenomena in condensed matter physics. In solids wave-
like spin excitations are caused by long-range dipolar
or exchange interactions [1]. Quantized spin excitations
(magnons) may exhibit collective quantum phenomena
similar to BEC and superfluidity in quantum gases and
liquid He. Observation of these effects in superfluid 3He
[2] and ferromagnets [3] have been extensively discussed
recently. In quantum gases, where the interactions are
weak and occur only during short collisional events, a
different mechanism causes the excitation of spin waves:
the Identical Spin Rotation (ISR) effect [4, 5]. This phe-
nomenon results from exchange interactions, which be-
come important once the de Broglie wavelength Λth ex-
ceeds the characteristic range a of the interatomic po-
tential. Accumulated in numerous collisions, ISR leads
to the propagation of spin excitations. The efficiency of
ISR is determined by the parameter µ ∼ Λth/a, which
becomes large for cold gases in the quantum gas limit.
These gases are found within a range of densities n and
temperatures T where n−1/3 À Λth À a so that the gas
is in the quantum regime but not yet degenerate. This
range is especially wide for the smallest atoms like H
(a ≈ 0.07 nm). Experimentally the ISR effect was first
observed in the nuclear spins of electron-spin polarized H
(H↓) [6], then in 3He gas [7] and recently also in ultracold
87Rb vapors [8, 9]. The latter work has been performed
in a small magnetic field, where the oscillations of the to-
tal electron and nuclear spin were studied. Pure electron
waves were predicted for electron spins of H↓ [4, 10] but
have not been observed so far.

Spin transport in quantum gases is described by
the complex diffusion equation for the transversal spin-
polarization S+ = Sx + iSy [11], simplified for S+ ¿ Sz

and µ À 1 to:

i
∂S+

∂t
= D0

ε

µ
∇2S+ + γδB0S+, (1)

where D0 is the spin diffusion coefficient in unpolarized
gas, ε = +1 for bosons and −1 for fermions, γ is the
gyromagnetic ratio, and δB0 is the deviation of magnetic

field from its average value B0. Eq. (1) is similar to
the Schrödinger equation for a particle with an effective
mass M∗ = −~µ/2D0ε and a potential energy given by
the second term on the right-hand side. The behavior of
such quasiparticles in an inhomogeneous magnetic field
depends on the signs of the parameters µ, ε, and γ. The
sign of the spin-wave quality factor µ, introduced above,
is determined by the details of the interatomic poten-
tial. For hydrogen µ < 0, whereas for 3He µ changes
its sign from negative to positive when the temperature
is lowered below ≈ 0.5 K [12]. The gyromagnetic ra-
tio γ is important for the effect of the potential energy
term in Eq. (1). Nuclear spin waves (γn > 0) of H feel
a lower potential energy in regions of smaller magnetic
field, which causes a behavior similar to low-field seeking
atomic species. In contrary, due to γe being negative, the
electron spin waves behave as high field seekers, similarly
to 3He at T > 0.5 K (µ > 0, ε = −1). In addition, as
γe/γn ≈ −650, the strength of the potential energy for
electron spin waves is much larger than that for nuclei.
Consequently local magnetic field maxima become effec-
tive potential wells. We will show in this letter that in
analogy with real particles, ISR spin waves in H↓ may be
spatially confined and manipulated by magnetic forces.

In our experiment H↓ gas is hydraulically compressed
up to n ∼ 1018 cm−3, as described in [13]. The gas is
compressed in a thin-walled (2 µm) 0.5 mm diam. Kap-
ton tube (KT) below the flat mirror of a Fabry-Perot
resonator (FPR), limited by the 12.5 µm thick Kapton
film at the top and by the meniscus of superfluid he-
lium at the bottom (see Fig. 1). The height L of the
sample volume (SV) can be varied from 6.5 to 0.5 mm.
The lifetime of the compressed sample was limited by
the three-body recombination to 300-1000 s depending
on the strength of the compression and starting density.
The Kapton tube and the Kapton film are glued together
by Stycast 1266 with the help of an epoxy disk of conical
cross section. The thickness of the disk at the tube wall
is ≈ 0.5 mm. Below the epoxy disk the outer surface of
the KT is flushed with superfluid helium which is cooled
to Ts = 200− 600 mK. Active cooling of the SV sidewall



2

FIG. 1: (Color online) ((a) Schematic drawing of the sample
cell showing the sample volume (SV), Kapton tube (KT),
liquid-helium volumes (l-He), Fabry-Perot resonator (FPR),
and epoxy structures (E). (b) Magnetic field inhomogeneity
due to magnetized epoxy. The field amplitude in the top of
SV is shown as a colormap, dark red (dark) corresponding to
the strongest and yellow (light) to the weakest field. Axial
(z) and radial (r) cuts of the field profile through the field
maximum are also shown for three different additional linear
gradient values: -1.7 (red/dark), -0.85 (green/intermediate)
and 0 (blue/light) G/mm.

strongly reduces the sample overheating, which is largest
in the upper region of the SV. We estimate that the gas
overheating did not exceed 10 % of Ts for the data re-
ported in this work. Such construction of the SV allows
reaching high densities with linear response of the FPR
to the electron spin resonance (ESR) in H↓. Compressed
H gas is coupled to the rf. field of the resonator via an
evanescent field (EF) beneath a subcritical (0.4 mm dia.)
orifice in the gold layer on the top of the Kapton film.
The evanescent field amplitude H1(z) has an approxi-
mately Gaussian shape decreasing downwards, with an
effective height of lEF ≈ 80 µm [14]. The homogeneity of
the magnetic field in the compression region was limited
by the weakly magnetized 4πM ∼ −0.8 G epoxy disk,
creating a saddle shaped field with a maximum located
near the wall (see Fig. 1(b)). We were able to reduce
the inhomogeneity to ≈ 20 mG over the rf. field region
using a set of linear and parabolic shim coils, which were
also capable of generating linear axial field gradients up
to Gz = ±4 G/mm.

The H↓ spectra were studied by continuous wave ESR
in a 4.6 T field applying a 128 GHz excitation from
a highly stabilized mm-wave source while sweeping the
static magnetic field offset h through the resonance [15].
We utilized the b-c transition, since the population of
the hyperfine state a is vanishingly small due to rapid
exchange recombination [16]. At small enough densities
n . 5× 1016 cm−3 the ESR lines were inhomogeneously
broadened due to the spurious field of the epoxy ring. A
small positive gradient Gz ≈ 1 G/mm best compensated
the inhomogeneity resulting in the smallest line widths.
For n > 1017 cm−3 we observed two distinct changes in
the shape of the ESR lines: (i) the main absorption peak

FIG. 2: ESR absorption spectra for different values of axial
magnetic field gradient. The resonance frequency is fixed and
magnetic field is swept through the resonance. The regions
of the sample volume located in larger local fields will get in
resonance at smaller sweep field. The direction of the field
axis is reversed to get the local field increasing from left to
right. Insert: peak (ii) position as a function of Gz.

was split into several narrow lines whose position and sep-
aration depended on n and Gz, and (ii) within the range
of Gz ≈ −2... + 0.85 G/mm an extra peak appeared on
the right side of the spectra. These features are summa-
rized in Figs. 2 and 3. The separation of the peak (ii)
from the main ESR line increased for larger negative Gz,
while for positive gradients the feature merged with the
main ESR peak at Gz ≈ +0.85 G/mm and has not been
observed on either side from the main resonance for larger
positive gradients. The peak (ii) remained visible even
at the lowest densities n ∼ 1016 cm−3 at which we were
still able to resolve ESR lines. We have not observed any
dependence of the peak positions of the features (i) and
(ii) on the height of the gas sample, except for L < 0.5
mm, when the sample evolved into a small bubble.

Next we consider the splitting of the main ESR peak
for high densities and large negative Gz (feature (i)). To
estimate the expected separation between the ISR spin
wave modes we assume an integer number of their half-
wavelengths between the walls of the compression region.
From the ISR spin-wave dispersion law ω = D0

µ k2 we get
∆ω . π2D0/µL2. Taking the minimum sample height
L ≈ 0.5 mm and the values D0n = 1.5 × 1018 cm−1s−1

and µ ≈ 7 from experiments with nuclear spin waves in
H↓ [6], we find that the spin wave modes will be sepa-
rated by . 1.5 kHz at n = 1017 cm−3. This corresponds
to . 0.5 mG in the field sweep and cannot be resolved in
the experiment. It is thus unlikely that the peaks seen in
Fig. 2 and 3 correspond to individual spin wave modes,
but rather to a number of overlapping modes. It turns
out that just in the case of strong negative field deviation
δH0 = Gzz the overlapping modes provide a resolvable
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FIG. 3: ESR absorption spectra observed for samples Gz =
−4 G/mm. Dotted line: the simulated contribution F (h) of
spin waves to the ESR absorption. In the insert the orienta-
tions of the potential U(z) (thick solid line), a spin wave mode
S+(z), and the evanescent field H2

1 (z) are shown emphasizing
the upper part of the sample volume.

structure. The small inhomogeneity created by epoxy
may be neglected in this case. A negative Gz implies
that the potential shape is a box with tilted bottom de-
creasing downwards as U(z) = γeGzz (insert in Fig. 3).
The oscillating solutions of Eq. (1) are found in the form
of Bessel functions in the radial and Airy functions in the
axial direction. The shape of the solution should match
the shape of the rf. field excitation, which is axially sym-
metric and has a maximum at r = 0. Since only the
zeroth-order Bessel function satisfies this condition, the
solution is written as

S+ ∼ J0(κr)eiωtAi(z/λ + λ2k2
z), (2)

with κ2 = µω/D0 and λ = (D0/γeGzµ)1/3 being the
length scale of the Ai(z) function. We apply reflective
boundary conditions with zero spin flux through the walls
of the cylinder. These conditions define the eigenvalues
of κ and kz, eigenfrequencies ω of the oscillations, and
the number of Ai function oscillations in the axial direc-
tion. For n = 5 × 1017 cm−3 and T = 260 mK we esti-
mate λ ≈ 7 µm. In order to generate spin waves, their
wave function given by Eq. (2) should overlap with the
rf. field. This implies that in a negative gradient we may
excite only high-lying modes, which have their frequency
eigenvalues in the vicinity of the intersection of the linear
potential and the upper wall (see insert in Fig. 3). The
total number of modes counting from the bottom of the
potential U(z) and the corresponding number of Ai(z) os-
cillations areÀ L/λ ∼ 100 even for our shortest samples.
Therefore, we deal with a quasi-continuum of mode fre-
quencies, and excite only those with non-vanishing wave
functions near the top of the cylinder. The position of
the lower boundary does not influence the shape of these
modes near the top because of the rapid oscillation of
Ai(z) near the bottom. This explains why the observed

FIG. 4: Positions of spin wave peaks for samples in large
negative magnetic field gradients of -4 G/mm as functions of
H gas density.

ESR lineshapes do not depend on the sample height.
Since the position of the lower boundary does not influ-

ence the shape of S+ near the top, we consider the case of
a semi-infinite cylinder. In this case the spin waves may
freely propagate downwards along the slope of the mag-
netic potential. Sweeping the magnetic field h we scan
through the region lEF by tuning the rf. field in reso-
nance with electron spins. At each point the transversal
magnetization is created locally and two spin waves are
launched; one up and the other down. For zero axial gra-
dient these would be similar to the electromagnetic waves
in a cylindrical waveguide. Moving the point of excita-
tion with respect to the top we scan a standing wave
pattern formed by the direct and reflected waves with
the spatial period equal to half-wavelength. For non-zero
gradients the sine-waves are accelerated downwards and
are replaced by the Airy functions Ai(z/λ). The contri-
bution of spin wave modes to the ESR absorption is then
∼ F (h) = Ai2(h/(Gzλ))×H2

1 (h/Gz), shown by the dot-
ted line in Fig. 3. This will produce maxima of absorption
at the antinodes of Ai(z/λ), the points zi corresponding
to the roots xi of dAi(x)/dx. The peak positions in the
field sweep are hi = Gzλxi +B0. They have a n−1/3 den-
sity dependency since the diffusion coefficient is inversely
proportional to the H density; nD0 = 1.5 × 1018 cm−3

[12]. The separation between the peaks is proportional
to the roots of the Ai function, which we verified as fol-
lows. First we fit the position of the leftmost peak by the
relation h1 = Cn−1/3x1+B0 with C and B0 being fitting
parameters. Then we calculate the positions of the next
four peaks as functions of density as hi = Cn−1/3xi+B0.
The results plotted by dashed lines in Fig. 4 match the
experimental data within the error bars. The relation
C = (G2

znD0/γeµ)1/3 provides the measurement of the
ratio nD0/µ = 1.9(4)× 1017 cm−3. From the fit we find
µ = 8(2), which has been confirmed by numerical so-
lutions of Eq. (1). The value of µ reported here is in
good agreement with the calculations of ref. [10], and
well matches that for nuclear spin waves in H↓ [6], as
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predicted by the theory [10].
The feature (ii) was best visible for zero or small nega-

tive gradients. In this case there is a local magnetic field
maximum near the top of the sample and close to EF. An
example of a δB(r, z) profile calculated for Gz = 0 is pre-
sented in Fig. 1 (b). Together with the wall of the tube
such a field profile forms a 3D trap for the electron spin
waves. A numerical solution of Eq. (1) reveals a large
number of modes in this trap with the separation of a
few kHz, again too small to be resolved. Sweeping the
static field offset h we tune our excitation to resonance
in different regions of the sample volume. Absorption is
increased as energy is pumped into the spin wave modes
and the absorption strength depends on the density of
modes for a given frequency and spatial position. Ap-
plying a small linear gradient we modify the axial profile
and consequently move the trap bottom up or down as
shown in Fig. 1 (b). The position of the corresponding
spin wave peak in the ESR spectrum is determined by the
static field at the trap bottom, which leads to a nonlin-
ear dependence of the peak position on Gz (Fig. 2 insert).
The spin-wave modes (ii) always originate from the mag-
netic field maximum, and therefore can not be observed
on the left from the main ESR peak, corresponding to
the lower local field. For large positive gradients the field
maximum is always located at the top of the cylinder,
coinciding with the position of the main ESR line at the
H2

1 (z) maximum. Note that if the peak (ii) would be
caused by the second rf. field maximum located some
what below the main one, changing the sign of the field
gradient would mirror the spectrum and this peak (ii)
would be on the left hand side with linear dependence
on Gz. Remarkably, the spin-wave modes (ii) are well
excited and detected even by the very weak tail of the
rf. field. The spin wave signal is much larger than ab-
sorption due to the ESR itself. Comparing the density
dependence of the two spin wave types we find that the
type (ii) survive at much smaller gas densities than the
propagating modes (i). These observations confirm that
in case (i) we deal with a spin wave-guide and with a 3D
spin wave trap in case (ii).

We have also considered the possibility of magneto-
static Walker modes [17] which should exhibit a strong
dependence of the mode positions on the sample geome-
try. However, this was not observed in our experiments.
The magnetostatic modes do not depend on temperature,
because they are caused by long range dipolar forces and
do not involve atomic collisions. We verified that the
separation between peaks (i) increases slightly at higher
temperatures. For the ISR modes we expect a tempera-
ture dependence D0/µ ∼ √

T or weaker [12], which is in
line with our observations. We conclude that both types
of the spin wave modes described above are caused by
the ISR effect.

In this work we have studied electron spin waves in
atomic hydrogen quantum gas. We detected two types

of spin wave excitations; travelling modes guided by the
cylindrical spin wave-guide and modes confined in the
magnetic potential well. Similarly to the matter wave in-
terference of cold atoms [18, 19] the presence of a reflec-
tive boundary in the spin-waveguide leads to interference
of the two travelling spin waves, one falling straight down,
and the other one reflecting from the upper wall. In the
quantum regime the spin waves are described as quasi-
particles called magnons [2, 3]. Our trapping technique
resembles the original technique for trapping cold gases,
but here it is realized for high field seeking quasiparti-
cles. In further experiments we hope to observe effects of
statistical correlations between trapped magnons leading
to Bose-Einstein condensation and spin superfluidity.
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[18] I. Bloch, T. Hänsch, and T. Esslinger, Nature 403, 166



5

(2000).
[19] K. Härkönen, O. Vainio, and K.-A. Suominen, Phys. Rev.

A 81, 043638 (2010).


