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Many coastal foundation plant species thrive across a range of environmental
conditions, often displaying dramatic phenotypic variation in response to environmental
variation. We characterized the response of propagules from six populations of the
foundation species Rhizophora mangle L. to full factorial combinations of two levels
of salinity (15 ppt and 45 ppt) reflecting the range of salinity measured in the field
populations, and two levels of nitrogen (N; no addition and amended at approximately
3 mg N per pot each week) equivalent to comparing ambient N to a rate of
addition of 75 kg per hectare per year. The response to increasing salinity included
significant changes, i.e., phenotypic plasticity, in succulence and root to shoot biomass
allocation. Propagules also showed plasticity in maximum photosynthetic rate and root
to shoot allocation in response to N amendment, but the responses depended on
the level of salinity and varied by population of origin. In addition, propagules from
different populations and maternal families within populations differed in survival and all
traits measured except photosynthesis. Variation in phenotypes, phenotypic plasticity
and propagule survival within and among R. mangle populations may contribute
to adaptation to a complex mosaic of environmental conditions and response to
climate change.

Keywords: coastal ecosystem, conservation genetics, foundation species, mangroves, phenotypic plasticity,
Rhizophora mangle

INTRODUCTION

Many plant species thrive across an extensive range of environmental conditions, often displaying
dramatic phenotypic variation (McKee, 1995; Smith and Snedaker, 1995; Richards et al., 2005;
Feller et al., 2010). This is particularly true in coastal ecosystems that are characterized by
temporal cycles and spatial variation in tidal inundation, temperature, nutrient availability,
and salinity (Pennings and Bertness, 2001; Krauss et al., 2008; IPCC, 2014; Proffitt and
Travis, 2014; Wuebbles et al., 2014). In addition to the naturally dynamic nature of coastal
habitats, anthropogenic activities can increase the input of nutrients and alter watersheds,
further contributing to environmental variation (Bertness et al., 2002; Barbier et al., 2008;
Gedan et al., 2009, 2011; Crotty et al., 2020). Within these dynamic conditions, foundation
plant species such as mangroves provide ecosystem services. These services include providing
habitat for many juvenile fish species, biotic filtering of pollutants, and buffering of storms
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(Ellison et al., 2005; Zedler and Kercher, 2005; IUCN, 2007;
Alongi, 2008, 2013; Costanza et al., 2008; Gedan et al., 2011;
Bertness, 2020). Foundation species are defined not only as
those that dominate a community assemblage numerically or
in biomass, but they also determine diversity of associated
taxa through a variety of interactions (Ellison, 2019). Further,
foundation species modulate fluxes of nutrients and energy
in their ecosystem (Ellison, 2019). Hence, these species
disproportionately contribute to maintaining habitat integrity
and ecosystem resilience (Bertness and Callaway, 1994; Keith
et al., 2017; Ellison, 2019; Bertness, 2020; Qiao et al., 2021).
Understanding how these species cope with challenges from
anthropogenic impacts is key to preserving the ecosystems they
create and define (Gedan et al., 2009, 2011; Guo et al., 2021).

Understanding the mechanisms of response in coastal
foundation species has become increasingly important for
conservation and management strategies as these species
must cope with rising sea levels, increased warming, and
anthropogenic disturbances (Gedan et al., 2011; Kirwan and
Megonigal, 2013; Osland et al., 2013, 2017). The Food and
Agriculture Organization of the United Nations (FAO) estimates
that as much as 35% of global mangrove forest habitat has
been destroyed since the early 1980’s for the development of
human settlements, agriculture and aquaculture, and industrial
shipping harbors, although the rate of loss appears to have
slowed in the last decade (Food and Agriculture Organization
of the United Nations, 2007; Polidoro et al., 2010; Ellison et al.,
2015; FAO, 2020). In some regions, mangrove trees are also
harvested for wood and charcoal (Ellison et al., 2015), resulting
in habitat fragmentation and isolation of existing remnant
fragments (Friess et al., 2012; Haddad et al., 2015). The resultant
loss of diversity could pose risks for these coastal foundation
species in the future, particularly as sea levels are projected to rise
between 0.2 and 2 m over the next century due to anthropogenic
climate change (Melillo et al., 2014).

The vulnerability of coastal foundation plant communities to
global change has been debated. Several authors have suggested
that the combination of eutrophication and sea-level rise may
have a synergistic effect that results in enhanced losses of
coastal habitats, and requires further research (Deegan et al.,
2012; Kirwan and Megonigal, 2013; Kirwan et al., 2016; Crosby
et al., 2017; Schuerch et al., 2018). While coastal eutrophication
may enhance growth of foundation species, nutrient enrichment
studies have reported a range of impacts on coastal systems
depending on the local conditions (Anisfeld and Hill, 2012;
Kirwan and Megonigal, 2013). For example, nutrient cycling and
marsh stability were affected by local sediment characteristics, soil
nutrients, microbial processes, and shifts in allocation of the plant
species (McKee et al., 2007; Turner, 2011; Deegan et al., 2012;
Lewis et al., 2021).

Predicting species level responses to environmental challenges
requires an understanding of the amount of phenotypic
variation within and among populations, which may reflect
both phenotypic plasticity and heritable differences in
phenotype (Richards et al., 2006; Nicotra et al., 2010; Banta
and Richards, 2018). Several studies have shown that plant
species harbor heritable differences in eco-physiological traits

(Arntz and Delph, 2001; Geber and Griffen, 2003; Caruso et al.,
2005), and variation in plasticity of traits (Sultan, 2001; Matesanz
and Sultan, 2013; Nicotra et al., 2015; Matesanz et al., 2021).
However, the amount of variation in natural populations for
traits that are important for response to future climates is not
well known (Davis and Shaw, 2001; Parmesan, 2006; Lovelock
et al., 2016). Plants that inhabit coastal and intertidal zones
have putative physiological adaptations that enable them to
grow and reproduce in the anoxic and saline conditions that
characterize these habitats. These adaptations include adjustment
of water required by the plant (Antlfinger and Dunn, 1979, 1983;
Glenn and O’Leary, 1984; Donovan et al., 1996; Ball et al.,
1997), adjustment of carbon uptake and nutrient absorption
(Donovan et al., 1997; Lovelock et al., 2006, 2016; Flowers and
Colmer, 2008), and changes in resource allocation (Cavalieri
and Huang, 1979; Glenn and O’Leary, 1984; Donovan et al.,
1996, 1997; Flowers and Colmer, 2008; Lovelock et al., 2016).
In addition, mangrove species can moderate anoxia that results
from flooding via root growth, and altered peat formation has
allowed mangrove communities to keep pace with sea level rise
(McKee et al., 2007). Mangroves have been shown to respond to
changes in nitrogen (N) availability by altering relative growth
rate, photosynthetic rate, and resource allocation (Feller, 1995;
McKee, 1995; Feller et al., 2003), which could be an important
response to anthropogenic activities, such as runoff from
agriculture and other types of land use change (Feller et al., 2003;
Alongi, 2013).

Given spatial differences in salinity, anoxia, and N in the
intertidal habitat, plasticity of traits that allow for tolerating
such conditions may be adaptive. We expect intertidal plants
like mangroves to show plasticity in response to salinity and
N conditions (Antlfinger, 1981; Pennings and Richards, 1998;
Richards et al., 2010b; Vovides et al., 2014; Lovelock et al.,
2016). Proffitt and Travis (2010) found plasticity in growth rate
and reproductive output within and among natural Rhizophora
mangle mangrove populations in the Tampa Bay region of Florida
in the United States. However, they also found both site of
origin and maternal tree of origin affected R. mangle growth
and survival, and that these effects varied by intertidal position
(significant maternal family by elevation interaction; Proffitt and
Travis, 2010). On the other hand, in a study of other Tampa Bay
populations, we found low genetic diversity, and little population
differentiation (Mounger et al., 2021). Although genetic diversity
was low, we discovered high epigenetic diversity based on DNA
methylation polymorphisms (Mounger et al., 2021). This type
of epigenetic diversity has been associated with phenotypic and
functional diversity, and could be a mechanism underlying
phenotypic plasticity (Zhang et al., 2013; Nicotra et al., 2015;
Herrera et al., 2017; Jueterbock et al., 2020). Several studies
have suggested that epigenetic diversity could be particularly
important in genetically depauperate species, providing a non-
genetic source of response to the diverse conditions experienced
by natural populations (Gao et al., 2010; Verhoeven et al.,
2010; Richards et al., 2012; Jueterbock et al., 2020). Further,
some epigenetic differences have been shown to be heritable. In
fact, we discovered that the differences in DNA methylation in
R. mangle propagules were predicted by maternal tree indicating
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a high degree of inheritance of differences in DNA methylation
(Mounger et al., 2021).

In this study, we used plants from the same Tampa Bay
populations to characterize within and among population level
variation in putative adaptive traits in response to combinations
of salinity and N in a full factorial design. Given the dynamic
environment inhabited by R. mangle and the evidence of heritable
non-genetic differences among populations, we hypothesized
that propagules collected from different populations would
respond differently to salinity and N amendment treatments. Our
study was designed to test three predictions. First, R. mangle
seedlings will be plastic in response to salinity and N amendment
in putative adaptive traits that conserve water and adjust
allocation of N. Second, response to salinity and N amendment
will co-vary as plants shift resources to maintain osmotic balance.
Finally, populations will vary in putative adaptive traits, and in
plasticity of these traits, due to population differentiation.

MATERIALS AND METHODS

Study Species
The red mangrove, Rhizophora mangle L. 1753 (Malpighiales,
Rhizophoraceae), is an evergreen shrub or tree found along
tropical and subtropical coastlines across the Americas, East
Africa, Bermuda, and on a number of outlying islands across the
South Pacific (Proffitt and Travis, 2014; Tomlinson, 2016; DeYoe
et al., 2020) that can grow to heights of 24 m (Bowman, 1917).
Poleward expansion of the species is limited by freezing events
(its current northern range limit is roughly 29◦N latitude; Proffitt
and Travis, 2014; Kennedy et al., 2017). Rhizophora mangle is
considered a self-compatible species, with selfing rates in Tampa
Bay estimated to be as high as 80–100% (Proffitt and Travis,
2005; Nadia and Machado, 2014). However, colder temperatures
and contaminants from anthropogenic sources correspond with
increased flowering and outcrossing, potentially resulting in
higher genetic diversity particularly in the smaller populations
at range limits from 28 to 30◦N (Proffitt and Travis, 2005,
2014). Rhizophora mangle stands in our study area have a mean
number of about 600 reproducing trees per kilometer of estuary
(Proffitt and Travis, 2014). Pollinated R. mangle flowers mature
in approximately 95 days, producing the buoyant hypocotyl
also known as a propagule (Raju Aluri, 2013). The viviparous
propagule germinates and matures on the maternal tree before
it drops off, is dispersed pelagically, and becomes established
as a seedling (McKee, 1995). Rhizophora mangle excludes salt
in the root system through selective uptake of potassium (K+)
to sodium (Na+) ions (Wise and Juncosa, 1989; Flowers and
Colmer, 2008; Krauss et al., 2008; Medina et al., 2015), and
allocates resources to manage osmotic potential (Bowman, 1917;
Flowers and Colmer, 2008).

Sampling Design
We collected propagules from six populations of R. mangle
between June 9 and June 26 of 2015, on the west coast of
central Florida (USA) within the following county and state
parks: Anclote Key Preserve State Park (AC), Fort De Soto Park

(FD), Honeymoon Island State Park (HI), Upper Tampa Bay
Conservation Park (UTB), Weedon Island Preserve (WI), and
Werner-Boyce Salt Springs State Park (WB) (Figure 1). The sites
varied in salinity, mean tidal range, and neighboring species.
We measured salinity at each site with a refractometer finding
that salinity ranged from 20 to 40 parts per thousand (ppt)
across the sites at the time of collection. This area has a humid
subtropical climate with mean monthly temperatures ranging
from 15.6◦C in January to 28.5◦C in August (1991–2020 monthly
normals, U.S. NOAA National Centers for Environmental
Information, station GHCND:USC00088824, Tarpon Springs,
FL, USA), and annual precipitation of 1379 mm (annual mean
1991–2020, Tarpon Springs station). Precipitation falls as rain,
with 60% falling during June through September, and 40%
evenly distributed among other months. Monthly mean relative
humidity ranges from 67% in April and May to 76% in August
and September (1948–2018, U.S. NOAA Comparative Climate
Data for the USA through 2018, station GHCND:USW00012842,
Tampa International Airport). Tides are semi-diurnal, with
0.57 m median amplitudes (U.S. NOAA National Ocean Service,
Clearwater Beach, Florida, station 8726724). Sea-level rise is
4.0± 0.6 mm per year (1973–2020 trend, mean± 95% confidence
interval, NOAA NOS Clearwater Beach station).

Honeymoon Island had a near monoculture of R. mangle while
the remaining sites contained mixtures of two other mangrove
species that are common in Florida: Laguncularia racemosa L.
and Avicennia germinans L. We refer to plants from different
sites as members of different populations based on our previous
work which found differences among sites based on molecular
markers (Mounger et al., 2021). At each population, we collected
20 propagules directly from each of 10 maternal trees separated
by at least 10 m from each other to maximize the range of genetic
variation sampled within each population (Albrecht et al., 2013).
Propagules from each maternal tree were at least half-siblings but
they could be more closely related due to the high selfing rate in
the study area (Proffitt and Travis, 2005).

We refrigerated the propagules at 4◦C for up to 14 days
until we planted them in the greenhouse at the University of
South Florida Botanical Gardens. The greenhouse temperature
was maintained between 18 and 29◦C. In the greenhouse,
propagules from four of the maternal trees at AC and nine of the
maternal trees at FD failed to establish, so we returned to sample
propagules from eight new maternal trees at FD on August 12 and
29, and from the same original maternal trees at AC on October
17. Hence, while most of the propagules were in the greenhouse
from the end of June until mid-October before they were exposed
to treatments, some propagules from these FD and AC maternal
families had less acclimation time before treatments began.

Experimental Treatments
We measured the length of each propagule and planted each
in a 0.5-L pot with a 50:50 mixture of sand and peat soil. We
watered the plants each day with tap water until we started
applying the salinity and N amendment in mid-October. We
set up the experiment in five spatial blocks. Within each block
we randomized the position of plants such that each block had
one replicate of each family for each treatment combination [i.e.,
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FIGURE 1 | We collected Rhizophora mangle propagules from the following sites in the Tampa Bay area on the west coast of Florida, USA: Werner-Boyce Salt
Springs State Park, Anclote Key Preserves State Park, Honeymoon Island State Park, Upper Tampa Bay Hillsborough County Park, and Weedon Island Preserve
Pinellas County Park. Salinity levels (ppt) on the date of collection for each site are indicated within the site location markers.

a full factorial randomized complete block design with N = 6
populations× 10 maternal families× 4 environmental treatment
combinations (2 salinity × 2 N fertilization) × 5 blocks × 1
replicate/block = 1200 plants]. The treatments were a factorial
combination of low and high salinity with either no addition or
addition of N. The salinity treatments were made with Morton
solar salt (NaCl). The low salinity treatment was 15 ppt and
the high salinity was 45 ppt, reflecting a slightly wider range of
salinity than we measured in the field sites considering that we
only measured salinity in the field at one time point and we expect
the range to be slightly greater. The N treatments were made from
equal amounts (in moles N) of urea and ammonium nitrate in
tap water approximating 3 mg N per pot each week. This level
is similar to a rate of 75 kg N per hectare per year, based on
an estimated rate of loss by soil erosion and water runoff from
corn crop residue in the USA (Pimentel et al., 1989). The source
water for our irrigation solution meets drinking water standards,
and thus has low mineral N and phosphorous (P) concentrations,
with mineral N (nitrate-N plus ammonium-N) less than 1 mg
N/L and P (phosphate) less than 0.1 mg P/L (Penuela Useche,
2015). Furthermore, the aquifer that provides our water had a
median sulfate concentration of 8.2 mg/L per liter (interquartile
range 2.3–17.8) (Berndt et al., 2015). This sulfur (S) would not be
targeted for removal via water treatment, as the Environmental
Protection Agency recommended S level is <250 mg S (as SO4)/L.
This level of S would avoid plant S limitation since plants need
about 1 mol S per 15–20 mol N.

At the start of treatments, we recorded seedling initial height
from the soil to end of any growth. To avoid osmotic shock,
the salinity treatment was applied twice a week and gradually
increased by five ppt each treatment. The low salinity level
(15 ppt) was reached in 2 weeks and the high salinity level (45 ppt)
in 6 weeks. We started N treatments after the first week (when
salinity treatments were 10 ppt), and applied N once per week
from October 15, 2015 to May 1, 2016. We watered on non-
treatment days with enough water to saturate the soil, but not
flow through. Once per week, we watered with sufficient water
to flow through the soil to prevent salt buildup. To determine
if the N amendment was lost between treatments, we collected
the flow-through leachate for a subset of eight plants, two of each
combination of salinity and N treatment. We analyzed leachate
for total dissolved N via combustion and luminescent detection
(Skalar Formacs TN analyzer, Breda, Netherlands).

Traits Measured
We characterized each plant as alive, dormant, or dead at the
end of the experimental treatments. We assigned plants that
showed no growth and no desiccation to the dormant category.
We measured five traits related to salt tolerance and overall
performance for alive plants: change in height from beginning to
end of treatments (cm) (hereafter, height growth), leaf mass per
area or LMA (dry leaf mass in g/total leaf area cm2), succulence
(grams of water in all leaves/total leaf area cm2), root to shoot
ratio based on dry biomass, and total dry biomass (g) at harvest.
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We only used healthy leaves for succulence and LMA. We defined
healthy leaves as attached, a minimum of 50% green, and fully
developed. For dry above ground biomass, we included leaves
that were attached, but not 50% green or fully developed. We
measured the biomass of above and below ground tissues of
all harvested plants after the tissues were dried at 60◦C until
they maintained constant mass. Finally, we measured the total
dry mass of leaves after drying in silica desiccant beads for a
minimum of 7 days to constant mass.

In addition, we used a LI-COR 6400 to measure maximum
photosynthetic rate (micromoles CO2/m2 s) for a subset of the
plants just prior to harvest. We determined that the appropriate
photosynthetically active radiation (PAR) for saturation in these
plants was 1000 micromoles PAR/m2 s based on light curves
generated from six data points from each of two plants (one
low salinity – no N and one high salinity – high N). We then
measured maximum photosynthetic rate on one plant with at
least two healthy leaves for each surviving maternal line for each
treatment (n = 29 low salinity – no N; n = 31 high salinity – no
N; n = 26 low salinity – high N; and n = 32 high salinity – high N,
for total N = 118 total plants). We took maximum photosynthetic
rate measurements at a CO2 rate of 400 micromoles/(m2 s) and
a flow rate of 500 micromoles/s. We took the measurements on
a healthy leaf from the second node of each plant after the leaf
had been clamped in the LI-COR for 1 min to ensure conditions
had stabilized. We measured maximum photosynthetic rate for
the 118 plants in random order by block over six consecutive days
from April 23 to 28, 2016, between 8:30 and 11:30 in the morning.

Statistical Analysis
We performed all statistical analyses in R, version 4.0.3 (R
Core Team, 2020). All analyses reported here used either the
General Linear Model (GLM) or Generalized Linear-Mixed-
Model (GLMM) frameworks. GLMs are a generalization of the
familiar analysis of variance framework, which allow one to use
error distributions other than the restrictive Gaussian used in
ANOVA. Moreover, the GLM link function allows one to fit a
linear model to a dependent variable that has an essentially non-
linear relationship with the predictors. For example, using a log
link, one can model the log of the expected value of the data as a
linear function; this is distinct from ANOVA on log-transformed
data, which models the expected value of the log. GLMMs are
a further generalization that allow one to model the variances,
rather than expected values, of some predictors. These predictors
are sometimes (incorrectly) assumed to be sampled randomly;
conceptually the real distinction between these predictors and
the others is whether one is interested in the mean values
or variances. We fit all models as GLMMs because we were
interested in the variance among the maternal families, rather
than in their particular means (Bolker, 2015). However, we also
fit GLMs that excluded the family terms, to determine whether
maternal family contributed to improved model fits. We also
treated Block as a “random” term where possible, but when such
models failed to converge numerically (due to the small number
of blocks) we fit the analogous model with Block as a fixed term
(Bolker, 2015).

We checked the residuals to assess normality on traits
as appropriate; we did not transform height growth or
photosynthesis (lmer and glm), but we used the log link function
(glmer) for analysis of succulence, LMA, root to shoot ratio, and
total biomass. We used the function lmer or glmer implemented
within the lme4 package (Bates et al., 2015) to fit a series of
models and identify the best fit model for survival and for each
trait (Table 1).

For survival and each trait, we began with a saturated
model that included as fixed factors salinity, N, and their
interaction as well as the random effects of block, population and
maternal family nested within population. We ran subsequent
models removing individual terms from the model (see details
in the Supplementary Material file “Rhizophora mangle data
analysis code and annotated results”). In several cases, models
with random terms for block or population failed to converge
(Table 1), most likely because there were relatively few blocks
and populations. In these cases, we proceeded by treating these
as fixed effects. We used AIC to evaluate the fit among all of the
models that we ran for survival and for each trait. The model
with the lowest AIC was considered to have the best fit. We
used ANOVA (type III) in the package car (Fox and Weisberg,
2019) to evaluate the significance of fixed effects when they
were included in the best model. When the random terms were
found to be significant, we provided graphics of the relative
differences among the maternal families, populations or blocks
in the Supplementary Material file “Rhizophora mangle data
analysis code and annotated results” to visualize the relative
differences among these groups.

For survival, we assessed three states that were coded as
0 for live plants, 1 for dormant plants, and 2 for plants that
died during the experiment. We modeled survival using random
effects logistic regression. In one set of models, we included
dormant plants as alive, and in another we excluded them. The
results were qualitatively similar, so we report only the case where
dormant plants were treated as alive (see results for both in
Supplementary Material file “Rhizophora mangle data analysis
code and annotated results”). For change in height, we included
the covariate of height at the beginning of treatments in October.

To gain insight about variance explained by models, we
calculated the R2 approximations proposed by Nakagawa and
Schielzeth (2013). As these authors explained, in the context of
GLMMs this leads to two different sorts of R2, a marginal R2 that
reflects variance explained by fixed factors only, and a conditional
R2 that reflects variance explained by both fixed and random
factors. We reported each of these as appropriate, e.g., where
the best model included only fixed factors we reported only the
marginal R2.

RESULTS

We found that some combination of salinity and N treatments
were included in the best models for three of the six traits we
measured: succulence, root to shoot biomass ratio, and maximum
photosynthetic rate (Table 1). In addition, maternal families and
populations were significantly different for survival and all traits
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TABLE 1 | Model selection based on a series of models using the General Linear
Model (GLM) or Generalized Linear-Mixed-Model (GLMM) framework.

df AIC 1AIC

Survival (N = 1149)

SNG ∼ Salt + Pop + (1| Fam) + (1| Block) 9 561.32 0

SNG ∼ Salt + Pop + (1| Fam) 8 559.32 −2

SNG ∼ N + Pop + (1| Fam) + (1| Block) 9 562.19 0.86

SNG ∼ N + Pop + (1| Fam) 8 560.19 −1.14

SNG ∼ Pop + (1| Fam) + (1| Block) 8 560.28 −1.04

SNG ∼ Pop + (1| Fam) 7 558.28 −3.04

SNG ∼ (1| Fam) 2 560.56 −0.76

Height (N = 907)

April ht ∼ Oct ht + Salt × N + Block + (1| Pop/Fam) 9 4303.1 0

April ht ∼ Oct ht + Salt + N + Block + (1| Pop/Fam) 8 4301.8 −1.4

April ht ∼ Oct ht + Salt + N + (1| Pop/Fam) 8 4301.5 −1.6

April ht ∼ Oct ht + Salt + (1| Pop/Fam) 6 4298.2 −4.9

April ht ∼ Oct ht + (1| Pop/Fam) 5 4297.4 −5.7

Succulence (N = 818)

Succulence ∼ Salt × N + (1| Pop/Fam) 7 −6534 0

Succulence ∼ Salt + N + (1| Pop/Fam) 6 −6533.5 0.5

Succulence ∼ Salt + (1| Pop/Fam) 5 −6534.5 −0.5

LMA (N = 818)

LMA ∼ Salt × N + (1| Pop/Fam) + (1| Block) 8 −8041.9 0

LMA ∼ Salt + N + (1| Pop/Fam) + (1| Block) 7 −8043.9 −2

LMA ∼ Salt + (1| Pop/Fam) 6 −8045.9 −4

LMA ∼ (1| Pop/Fam) + (1| Block) 5 −8041.8 0.1

Root to shoot biomass ratio (N = 899)

RTS ∼ Salt × N + (1| Pop/Fam) + (1| Block) 8 1255.1 0

Total biomass (N = 899)

Total biomass ∼ Salt × N + Block + (1| Pop/Fam) 8 4869.7 0

Total biomass ∼ Salt × N + (1| Pop/Fam) 7 4867.8 −0.1

Total biomass ∼ (1| Pop/Fam) 4 4864.5 −5.2

Maximum photosynthetic rate (N = 118)

Photosynthesis ∼ Salt × N + Pop + Block + (1| Fam) 14 592.9 0

Photosynthesis ∼ Salt × N + Site + (1| Fam) 10 587.7 −5.1

Photosynthesis ∼ Salt × N + Block + (1| Fam) 10 585.4 −7.4

Photosynthesis ∼ Salt × N + (1| Fam) 6 580.4 −12.4

Photosynthesis ∼ Salt × N 4 578.4 −14.5

We started with a saturated model that included salinity, N, and their interaction
as fixed factors as well as the random effects of block, population and maternal
family nested within population. We ran subsequent models after removing
individual terms from the model (see details in Supplementary Material file
“Rhizophora mangle data analysis code and annotated results”). Fam, maternal
family; ht, height; LMA, leaf mass per area (dry mass/area); Pop, population;
Pop/Fam, maternal families nested within source populations; RTS, root to shoot
biomass ratio; SNG, number of survivors in April. Terms in parentheses are random
terms; (1| term) indicates that a random intercept is estimated for each term. For
some models, Block or Pop were fit as fixed effects if estimation as random effects
failed (generally due to the small numbers of blocks and source populations).
1AIC is the difference between the saturated model (or closest model to it when
saturated model was singular) and the AIC for the given model.

measured with the exception of photosynthesis (Table 1). Below
we report the results of model selection and assess significance of
effects retained in the best model.

Treatment Validation
To ensure that our N amendment treatments were not flushed out
during the once weekly flow through watering we measured the

total dissolved N in leachate from a subsample of the seedlings.
We found that N was not significantly different between the low
salinity – no N and the high salinity – high N amended plants, and
therefore, confirmed that we did not lose the N due to watering
between treatments [Mean Square = 0.11, F ndf 3/ddf 48 = 0.23,
Pr(>F) = 0.88].

Survival
Of 1,149 plants, 76 were unequivocally dead in April, 907
unequivocally alive, and 166 dormant. The number of plants
that showed active growth ranged from 63% in HI to 92% in
FD (Figure 2). The number of plants that did not grow, but
also did not appear to be dead ranged from 3% in WB and
WI to 10% in HI. We modeled survival by including these
dormant plants alternatively as either alive or dead. In both cases,
the best-supported model was one including a fixed effect for
population and a random effect for maternal family (Table 1;
Supplementary Figure 1). The model treating dormant plants
as alive had conditional R2 = 0.11 and marginal R2 = 0.08. The
model with dormant plants as dead had conditional R2 = 0.28 and
marginal R2 = 0.13. Because there is no residual in the equation
defining logistic regression, no variance component for a random
residual is calculated, and thus it is not possible to calculate a
meaningful scaled variance component for family here.

Trait Responses to Treatment
The only useful predictor among the fixed effects for the
change in height was the height at the start of treatments in
October (Table 1; marginal R2 = 0.82; ANOVA chisq = 4432.67;
p < 0.0001). The conditional R2 was 0.92, and the marginal
R2 was 0.82, indicating that 82% of the variance in change in
height was explained by a positive relationship with the fixed
effect of height at the beginning of the experimental treatments
(estimate = 0.9009). The variance components (scaled to sum to
1) for population and maternal family within population were
23 and 37% of the random variance, respectively. A plot of
the random effects suggested that the populations were largely
similar, with the exception of FD which was very different
(Supplementary Figure 2). It is not obvious that any population
had more among-family variability, but our design was limited
to determine this.

For LMA (log link), the best model included only the
random effects of block, population and maternal family within
population. The conditional R2 was 0.99. In this model,
maternal family explained 51% of the variance, population
explained 30% of the variance and block explained 17%
(Supplementary Figure 3).

For succulence (log link) the best model included the
fixed effect of salinity and the random effects of population
and maternal family nested within population. The marginal
R2 = 0.39, while the conditional R2 = 0.99. The scaled variance
components for maternal family within population and
population were, respectively, 0.91 and 0; in other words
there was very large variance among maternal families within
populations, but not among populations (Supplementary
Figure 3). While increased salinity resulted in a statistically
meaningful reduction in succulence, it was only when
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FIGURE 2 | Absolute numbers of plants in each growth state at harvest by population of origin. Dormant plants (light gray) showed no signs of desiccation or
growth. Seedlings from the HI population had the lowest survival overall, while WI seedlings had the highest survival. Plants alive at harvest are medium gray, plants
that had died by harvest are dark gray.

conditioned on family that it added to the explanatory
power of the model.

Root to shoot biomass ratio (log link) was the only variable
for which the data supported the saturated model as the best
model (Figure 3). The conditional R2 = 0.206, while the marginal
R2 = 0.017. An ANOVA to evaluate the fixed effects revealed
that the main effect of salinity was significant (chisq = 7.38;
p = 0.007) indicating increased root to shoot allocation in
response to salinity, but not the main effect of N. In addition,
the interaction of salinity × N was significant (chisq = 6.19;
p = 0.01). At ambient N levels (no N added), root to shoot
ratio was not affected by increasing salt concentration. With the
addition of N fertilizer, root to shoot ratio increased in response
to high salinity (Figure 3B). However, the small size of the
marginal R2 suggested that these effects were mainly meaningful
when conditioned on the random terms. The random terms
population, maternal family nested within population, and block
account for 13, 24, and 6% of the random variance, respectively
(Supplementary Figure 5).

The best model for total biomass (log link) included only
the random effects of population and maternal family within
population. The conditional R2 = 0.12. The terms for population
and family nested within population accounted for 13 and 21% of
the random variance, respectively (Supplementary Figure 6).

The photosynthesis data were the most limited in sample size
since we were only able to assess one individual with at least two
healthy leaves for each surviving maternal line for each treatment

(N = 118). The best model was one including the fixed effects
salinity, N, and their interaction, but no random effects (Table 1).
An ANOVA to evaluate these fixed effects showed the main
effects of salinity and N were not significant but the interaction
was (chisq = 4.46; p = 0.035). At ambient N levels (no N
added), maximum photosynthetic rate declined with increasing
salt concentration, but this negative impact of salinity was absent
or reversed upon the addition of N fertilizer (Figure 3C).

In summary, we found plasticity to our treatments for
three of the six traits we measured. Succulence decreased in
response to higher salinity (Figure 3A), but this response varied
largely by family (Supplementary Figure 3). For root to shoot
biomass ratio and maximum photosynthetic rate the responses
to experimental treatments depended on changes in both salinity
and N (Figures 3B,C). Root to shoot ratio also varied overall
in response to salinity as well as by family and population
(Supplementary Figure 4).

DISCUSSION

We assessed the growth and survival of R. mangle propagules to
full factorial combinations of two salt and two N levels because
these are two important abiotic properties that potentially have
important impacts on mangrove survival and traits, and by
extension, on the biodiversity and ecosystem function of coastal
wetlands. In addition to natural variation in these conditions,
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FIGURE 3 | (A) Succulence response to salt across populations with no N effect, including the random effects of maternal families within populations and
populations (N = 818). Interaction effect for (B) root to shoot biomass allocation and (C) photosynthetic rate where response to N depends on salt treatment across
all mangrove propagules. The best model for root to shoot biomass allocation (N = 899) also includes the fixed effect of salt and random effects of population,
maternal family within population and block. The best model for photosynthetic rate (N = 118) does not include any of the random effects.

anthropogenic activities may result in more extreme levels of
these conditions from runoff and flooding (Ellison et al., 2005;
Krauss et al., 2006; Gedan et al., 2009; Kirwan and Megonigal,
2013; Lewis et al., 2014). We predicted that R. mangle seedlings
would be plastic in response to salinity and N amendment in
putative adaptive traits that conserve water and adjust allocation
of N. Our study showed that only succulence and root to
shoot ratio were plastic in response to salt, regardless of N
treatment. Allocation to root and shoot biomass and maximum
photosynthetic rate were also plastic, but response of both traits
to N amendment depended on the level of salt. This supported
our second prediction that response to salinity and N amendment
will co-vary as plants shift resources to maintain osmotic balance.
We also found support for our third prediction that populations
would vary in putative adaptive traits, and in plasticity of these
traits, due to population differentiation. Importantly, every trait
except for photosynthesis varied among population and maternal
families within populations. This was also true of survival. In
fact, maternal family and population were the most consistent
predictors for variation in traits and survival.

Phenotypic Plasticity in Response to
Treatments
We expected that R. mangle propagule survival and growth
would decrease in response to high salinity and increase in
response to N fertilization. We also expected that N could
alleviate some of the effects of salinity as indicated by an
interaction of the two conditions. However, we found no
response to treatments in survival, height growth, LMA or
total dry biomass. This may be because the propagules were
supported by resources provided by the maternal tree, which in
R. mangle can support growth for at least a year (Ball, 2002;
Proffitt and Travis, 2010). If the seedlings were supported by
these maternal reserves, height growth would likely be more
correlated to propagule length at collection which would be
corrected for in the start-of-experiment (time zero) height
measurements that we included as a covariate. Because our
treatment duration was only 6 months, the lack of growth

response to treatments was consistent with dependence on
maternal reserves. However, we did see seedling response to
treatment in succulence, allocation to root and shoot biomass and
maximum photosynthetic rate.

Increased succulence is a common response to water
deficiency under high salinity conditions (Rosenthal et al., 2002;
Vendramini et al., 2002; Ottow et al., 2005; Karrenberg et al.,
2006; Richards et al., 2008, 2010a), but in our experiment
we detected reduced succulence in response to high salt.
However, this could be because R. mangle excludes salt. Many
halophytes absorb high concentrations of salt for osmotic
adjustment that would normally be toxic. One strategy is to
compartmentalize these ions along with increased succulence
(Flowers and Colmer, 2008). On the other hand, many plants
avoid this toxicity by excluding salt at the roots (Cavalieri
and Huang, 1979; Donovan et al., 1996; Tester and Davenport,
2003). For example, several other halophytes that are salt
excluders, including the succulent plant Salicornia europaea
L., and another member of Rhizophoraceae, Kandelia candel
(L.) Druce, do not increase succulence or leaf thickness in
response to high salinity (Glenn and O’Leary, 1984; Kao et al.,
2001). In fact, with N fertilization K. candel decreased leaf
thickness when salinity was increased (Kao et al., 2001). Thus,
one possible explanation for our results is that the N fertilized
seedlings were able to reallocate resources (e.g., increased N)
to salt tolerance mechanisms like compatible solutes, and still
maintain positive water balance in the high salt condition without
increased succulence.

Although we saw a statistically significant response to our
treatments in three of the six traits, the interaction between
salt and N fertilization only effected R:S and maximum
photosynthetic rate. We expected maximum photosynthetic rate
to increase in response to N fertilization because the enzyme
RuBisCO, which catalyzes the dark reactions in photosynthesis,
requires a large amount of N (Sage et al., 1987; Andersson, 2008).
Further, a meta-analysis across 356 diverse species representing
most biomes and growth forms showed increased maximum
photosynthetic rate with increased N is a general phenomenon
(Walker et al., 2014). This could lead to increased biomass
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allocation to shoots relative to roots. Despite this expectation,
there was no overall response to high N level independent of
salt treatment. One reason might be that photosynthesis overall
was limited by other nutrients, not just N, and thus increasing
N alone might not have been enough to elicit a response (see
e.g., Lovelock et al., 2006). In a field study, dwarf R. mangle did
not respond to N alone, presumably because other nutrients were
limiting (Feller, 1995; Lovelock et al., 2006). Dwarf mangroves
did increase biomass in response to fertilization with all three
nutrients: N, phosphorus (P), and potassium ions (K+) (Feller,
1995), and in response to P addition alone (Lovelock et al.,
2006). We also expected that response to N amendment would
depend on salinity. We found that in plants treated with high
salt, maximum photosynthetic rate was slightly enhanced by high
N. Possibly, the additional N enabled the plants to synthesize
N-rich compatible solutes for osmotic regulation and continued
photosynthetic gain of carbon (Flowers and Colmer, 2008). Plants
in high salt also responded differently in allocation of biomass
with increased N; instead of increasing shoot biomass, they
increased root biomass on average.

Variation Within and Among Sites
Phenotypic variation that is maintained in common garden
from within and among populations would indicate R. mangle
has heritable trait diversity which could allow for response to
changing environmental conditions. Seedling survival depended
on population and varied among maternal families within the six
populations. We found variation in height growth, succulence,
LMA, root to shoot allocation, and total dry biomass was largely
determined by maternal families within populations. Proffitt and
Travis (2010) also found seedling survival varied among maternal
families, as well as by location in the intertidal zone. But in
their study after 3 years, growth and survival did not reflect
initial propagule size (Proffitt and Travis, 2010). Our results
support these previous findings that propagule length is positively
correlated to short term performance. This findings suggests
that maternal reserves in the R. mangle propagule can help the
seedling survive, and larger propagules contain more maternal
reserves than smaller propagules (Ball, 2002; Proffitt and Travis,
2010). Because our study was a short-term, controlled greenhouse
study, maximum photosynthetic rate might be the best indicator
as an immediate response. Variation in maximum photosynthetic
rate can ultimately manifest as variation in growth and allocation
of resources, particularly once the seedling has depleted maternal
reserves. The seedlings did not show significant differences in
height growth or total dry biomass in response to treatments.
But given the plasticity we saw in maximum photosynthetic rate,
and the 1-year and 3-year growth results found in a previous
study of nearby populations (Proffitt and Travis, 2010), we might
have found a more dramatic response to these treatments with
more time (Ball and Farquhar, 1984). However, previous work
in several different systems have argued that greenhouse studies
are often unable to recreate relevant field conditions, so such
responses may only be registered in the field (Schittko et al., 2016;
Rinella and Reinhart, 2017; Forero et al., 2019; Dostál et al., 2020).

The amount of heritable phenotypic diversity and
differentiation we discovered in this study is an important

indicator of the potential for this species to respond to changing
conditions. The high level of diversity in response among
populations and maternal families within populations may be
surprising since we previously reported low genetic diversity
among these plants based on molecular markers. Low genetic
diversity is expected to limit the potential for different responses
among individuals. On the other hand, we discovered high
epigenetic diversity (Mounger et al., 2021), which could
contribute to phenotypic and functional diversity, and could
be a mechanism underlying the type of phenotypic differences
and plasticity we found here (Zhang et al., 2013; Nicotra et al.,
2015; Herrera et al., 2017; Jueterbock et al., 2020). In addition,
we know very little about the interactions with the microbiome
in the species, but microbes have been highlighted as important
symbionts in these and other challenging environments (Bowen
et al., 2017; Angermeyer et al., 2018; Jung et al., 2021). Soil
microbial activity could have dramatic impacts on the future
nutrient availability and stability of these coastal sediments
(Deegan et al., 2012; Bowen et al., 2017; Hughes et al., 2020;
Lewis et al., 2021). In fact, a recent study suggested that bacterial
community composition differed among R. mangle maternal
genotypes but not with genetic diversity (Craig et al., 2020).

CONCLUSION

Previous work suggested that R. mangle growth and survival
depended on an interaction of intertidal elevation and maternal
genotype, suggesting variation in response to flooding conditions
(Proffitt and Travis, 2010). However, in addition to changes
in flooding, anthropogenic activities are causing changes in
salinity and N level in R. mangle ecosystems (McKee et al.,
2007). The interacting effects of salinity, N level, and elevation
are complex and potentially non-additive (McKee et al., 2007).
Our experimental findings suggest that the important traits of
succulence, root to shoot biomass allocation and photosynthetic
rate respond to salinity, N level, or the combination of these
conditions. We also discovered that seedling survival and the
magnitude of almost all responses varied among populations and
even maternal families within populations.

This variation in survival and important traits among families
and among populations is particularly interesting considering
the importance of this foundation species for the functioning
of the coastal ecosystem. Our previous work showed a lack
of genetic diversity, which might be alarming considering the
expected limitations of low genetic variation (Allendorf et al.,
2010; Estoup et al., 2016). However, accumulating studies
provide important evidence that genetic variation must be
interpreted with caution (Hufford and Mazer, 2003; Estoup
et al., 2016) and that the emphasis on only variation in DNA
sequence can be misguided (Keller, 2002, 2014; Sultan, 2015;
Bonduriansky and Day, 2018). Non-genetic sources of response
may contribute to the phenotypic diversity we report here that
is particularly relevant under different salinity and N conditions.
This may provide another source of resilience for R. mangle
and other critical species to changing environmental conditions
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and contribute to future adaptation to a complex mosaic of
environmental conditions.
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