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Abstract: Bone metastasis is a common clinical complication in several cancer types, and it causes
a severe reduction in quality of life as well as lowering survival time. Bone metastases proceed
through a vicious self-reinforcing cycle that can be osteolytic or osteoblastic in nature. The vicious
cycle is characterized by cancer cells residing in bone releasing signal molecules that promote the
differentiation of osteoclasts and osteoblasts either directly or indirectly. The increased activity of
osteoclasts and osteoblasts then increases bone turnover, which releases growth factors that benefit
metastatic cancer cells. In order to improve the prognosis of patients with bone metastases this cycle
must be broken. Radium-223 dichloride (radium-223), the first targeted alpha therapy (TAT) approved,
is an osteomimetic radionuclide that is incorporated into bone metastases where its high-linear energy
transfer alpha radiation disrupts both the activity of bone cells and cancer cells. Therefore, radium-223
treatment has been shown preclinically to directly affect cancer cells in both osteolytic breast cancer
and osteoblastic prostate cancer bone metastases as well as to inhibit the differentiation of osteoblasts
and osteoclasts. Clinical studies have demonstrated an increase in survival in patients with metastatic
castration-resistant prostate cancer. Due to the effectiveness and low toxicity of radium-223, several
novel combination treatment strategies are currently eliciting considerable research interest.

Keywords: targeted alpha therapy; TAT; bone metastasis; osteoclast; osteoblast; prostate cancer;
radium-223

1. Introduction

Bone metastasis is commonly associated with significant clinical complications which cause severe
decrease in quality of life due to pain, skeletal-related events, such as pathologic fractures and spinal
cord compression, and reduced patient mobility [1,2]. Furthermore, the presence of bone metastases
is associated with a poor prognosis and reduced overall survival in both breast cancer and prostate
cancer [3–7]. It is a recurring complication especially in prostate cancer, where bone is the primary site
of metastatic disease [8]. In metastatic castration-resistant prostate cancer (mCRPC), bone metastases
dominate the clinical picture of the disease, and bone metastasis has been shown to affect up to 90% of
patients with mCRPC [8–10]. Bone metastasis is also highly frequent in breast, thyroid, and bladder
cancer, as well as non-small-cell lung cancer and renal cell carcinoma [11,12]. In metastatic breast
cancer, for example, ~71% of patients have been found to develop bone metastases [11]. Additionally,
multiple myeloma is clinically characterized by the infiltration of the bone marrow with differentiated
plasma cells that cause lytic lesions in large bones and vertebrae.
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Bone metastases form as a result of disseminated tumor cells (DTCs) spreading to bone tissue
and persisting there until progressing into metastatic growths. The metastatic process is initiated by
activation of DTCs during bone remodeling and progresses into a vicious cycle of self-amplification.
In the vicious cycle, factors secreted by cancer cells induce the activation of osteoclasts to break down
bone and osteoblasts to form excessive new bone. This ultimately leads to a further release of growth
factors and, consequently, added tumor growth. Breaking this vicious cycle has been proposed as
a central strategy in the treatment of bone metastasis. Bisphosphonates and inhibitors of receptor
activator of nuclear factor kappa-B ligand (RANKL) have been used to prevent bone resorption, but
new strategies are also needed to improve the quality of life and life expectancy of patients with cancers
involving bone metastases.

Radium-223 belongs to the class of TATs. It receives its targeting properties from being an
osteomimetic that homes into bone tissue, not only due to its physical similarity with calcium but also
through active incorporation by osteoblasts [13,14]. It emits high-energy alpha particles that cause
double-stranded DNA breaks (DSBs) eliciting cell death which is confined to the cancer cells and
the surrounding tumor microenvironment due to the short range of the radiation, thus limiting toxic
side effects. As an added benefit, the toxic effects of alpha radiation on the tumor microenvironment
disrupt the activity of both osteoblasts and osteoclasts helping to break the vicious cycle of metastasis
by interrupting the cross talk between cancer cells and osteoblast/osteoclasts [15,16]. New, promising
therapy combination strategies are also emerging in conjunction with radium-223 therapy. Radium-223,
which acts at a molecular level via the induction of difficult-to-repair, clustered DNA double strand
breaks, shows potential of enhanced efficacy in combination with DNA damage repair inhibitors.
Immuno-oncology treatments such as checkpoint inhibitors have provided an immense breakthrough
in cancer therapy. However, widespread adoption of immune checkpoint therapy to treat cancers is
obstructed by the low response rate in some cancer types [17]. In this setting, radium-223 treatment
may enhance the activity of immuno-oncological treatments by various mechanisms.

In addition to the use of drug combination strategies to improve antitumor efficacy and increase
survival, the use of the bone supportive agents such as denosumab and bisphosphonates, which are
approved in mCRPC and other cancers that frequently result in the development of bone metastases, may
also help improve the bone health safety profile of treatment strategies containing radium-223 [18,19].
The aim of this review is first, to elucidate the mode of action of radium-223 in breaking the vicious
cycle of bone metastasis and second, to discuss how to utilize this unique feature in combination with
novel emerging cancer treatments.

2. Disseminated Tumor Cells and Dormancy in Bone Metastasis

Bone metastases originate from DTCs that have left the primary tumor and entered the circulation,
reaching the bone marrow and persisting in the new environment, with some of them eventually
progressing to develop metastases. DTCs are known to harbor stem cell-like properties, such as low
proliferative activity, resistance to apoptosis, unlimited ability for self-renewal, and differentiation [20].
The presence of DTCs is an independent factor of poor prognosis [21–23], and DTCs are often found in
the bone marrow of patients with breast and prostate cancer at a very early phase [21,22,24]. Thus, it is
vital to understand what makes tumor cells dormant, what wakes them up and induces their growth
into metastases, and how cancer treatments affect this process.

It has been demonstrated that increased bone remodeling increases the number of bone metastases
in both breast and prostate cancer mouse models [25,26]. It seems that the prevalence of bone metastases
can be explained by the increased activation of the DTCs present, rather than by an increased number
of cancer cells homing to bone tissues. Quite interestingly, the longest clinical tumor recurrence
times, a decade and more, also coincide with the cycle of renewal of all bone in the skeleton, taking
10–20 years [27], underlining the relevance of remodeling in the formation of metastases.

One of the early events in a new bone remodeling cycle is the formation of new blood vessels
in the remodeling site. Angiogenesis is necessary for normal bone remodeling, bone growth, and
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fracture repair, and it has been demonstrated that while stable endothelium supports tumor dormancy,
activated sprouting endothelium in fact induces tumor growth [28]. Thrombospondin 1 binding on
the stable endothelium has been described to be crucial for dormancy, whereas transforming growth
factor β1 (TGF-β1) and periostin expression induces tumor growth near the sprouting vessels [29].
Accelerated bone turnover by parathyroid hormone (PTH) is also known to induce expansion of
the hematopoietic stem cell (HSC) niche [30] which offers a safe haven for dormant tumor cells [31].
Thus, suppressing the level of bone turnover, that is, suppressing the activity of the bone-resorbing
osteoclasts and the bone-forming osteoblasts, should be a viable strategy for keeping the DTCs in a
dormant state, resulting in the prevention of bone metastases.

3. The Tumor Microenvironment in Bone Metastasis

The bone microenvironment is intricately involved in the formation of metastases, being involved
in the process even before tumor cells leave the primary tumor. Facilitators of metastasis, including
monocytes (macrophages), mesenchymal stem cells, and immature myeloid cells, are expanded in
and mobilized from the bone marrow and guided to the primary tumor by cytokines secreted by the
tumor [32,33]. Subsequently, through education by tumor cells, these cells become tumor-associated
macrophages (TAMs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells
(MDSCs), respectively. These in turn assist in tumor growth and the metastatic process by inducing
immune evasion, angiogenesis, epithelial-to-mesenchymal transition, and invasion [34,35]. In bone,
the invading tumor cells induce changes in both osteoclasts and osteoblasts as well as their precursors.
Depending on the activated cell types, tumor growth in bone results in either an osteolytic (bone
resorbing), osteoblastic (bone forming), or a mixed bone lesion. In breast cancer, these lesions are
mostly osteolytic (~75%), while the majority of prostate cancer bone metastases are osteoblastic [36].
It should be noted, however, that in most patients both lesion types are present, and at the cellular
level, both bone resorption and formation is induced by tumor cells [37].

Bone metastases progress as a result of a vicious cycle of self-amplification, where factors secreted
by the cancer cells induce the breakdown of bone or the formation of new bone, leading to a release
of growth factors, further supporting tumor growth. Here, the osteolytic and osteoblastic cycles are
presented separately for clarity, despite the fact that in a clinical setting both processes often co-exist in
the same patient and even in the same metastatic site.

3.1. The Vicious Cycle of Osteolytic Bone Metastasis

In healthy bone tissue, bone formation and bone resorption are in homeostasis. In osteolytic
metastases, resorption and formation become uncoupled due to factors secreted by cancer cells.
These factors are able to induce osteoclast formation both directly and indirectly through osteoblasts
(Figure 1). Parathyroid hormone related peptide (PTHrP), which leads to increased local bone
resorption, and TGF-β1, which is a ubiquitous growth factor in the bone microenvironment, were the
first molecular players identified in cancer-induced osteolysis. Breast cancer cells produce and secrete
PTHrP, which increases bone resorption indirectly by binding to the PTH receptor in osteoblasts [38].
Osteoblasts in turn secrete less osteoprotegerin (OPG), which reduces bone resorption, as well as more
RANKL, which binds to the RANK on osteoclasts and induces differentiation and subsequently bone
resorption. This results in an imbalance with excessive resorption-inducing signal molecules compared
to formation-inducing molecules. Additional factors secreted by cancer cells, such as hypoxia-induced
lysyl oxidase (LOX), colony stimulating factor 1 (CSF-1), tumor necrosis factor α (TNFα), vascular cell
adhesion molecule 1 (VCAM-1), matrix metalloproteinase 1 (MMP1), Jagged 1, and interleukins 8 and
11, also induce the activation of osteoclasts, some of them directly, independently of RANK, enhancing
the imbalance [27,32,39–41].
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tumor growth and further secretion of osteoclastogenic factors. Abbreviations: PTHrP: parathyroid 
hormone-related protein, CSF-1: colony stimulating factor 1, TNFα: tumor necrosis factor α, VCAM-1: 
vascular cell adhesion molecule 1, MMP1: matrix metalloproteinase 1, TGF-β: transforming growth 
factor β, IGF: insulin-like growth factor, IL-8 and IL-11: interleukins 8 and 11, LOX: lysyl oxidase. 
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While most breast cancers are primarily osteolytic, prostate cancers tend to be osteoblastic, forming 
new, unorganized, and weak bone, or a clear mixture of the two types (Figure 2). One constitutive factor 
behind the osteoblastic reaction seems to be prostate-specific antigen (PSA). PSA is a serine protease 
and cleaves many proteins important in bone metabolism, releasing, e.g., IGF-1 and TGF-β2 from their 
binding proteins to stimulate osteoblasts [47], as well as osteoblast-inactivating PTHrP [48]. 
Additionally, the induction of PSA through a transgene in a PSA-negative prostate cancer cell line has 
been shown to shift the bone reaction from osteolytic to osteoblastic [49]. However, in osteoblastic 
metastasis of prostate cancer, strong osteoclastic resorption is also typical, and bone resorption marker 
levels in patients with prostate cancer can be even higher than in patients with osteolytic breast cancer 
[50,51]. Osteoblasts need a resorbed bone surface onto which new bone can be formed and thus require 
an increased number of bone multicellular units, in addition to increased osteoblast number and activity 
within one bone multicellular unit, in order to achieve the vast amount of new, pathological bone 
observed in osteoblastic metastases. 

Prostate cancer cells stimulate mesenchymal stem cells (MSCs) toward osteoblastic differentiation 
by secreting endothelin 1 (ET-1), wingless and Int1 proteins (Wnts), BMPs, TGFs, fibroblast growth 
factors (FGFs), and platelet-derived growth factors (PDGFs), leading to an increased number of 
osteoblasts. These factors also induce angiogenesis, expanding the HSC niche that prostate cancer cells 
can inhabit [27]. Interestingly, ET-1 has been found to be secreted also from breast cancer cells that 
produce osteoblastic lesions, underlining its overall significance in the osteoblastic lesion type [52]. 

Figure 1. The vicious cycle of osteolytic bone metastasis. In the vicious cycle of osteolytic bone metastasis,
cancer cells secrete factors that enhance osteoclast differentiation either directly or indirectly through
pre-osteoblasts and osteoblasts. TGF-β, IGF-1, and calcium released by resorbing osteoclasts induce
tumor growth and further secretion of osteoclastogenic factors. Abbreviations: PTHrP: parathyroid
hormone-related protein, CSF-1: colony stimulating factor 1, TNFα: tumor necrosis factor α, VCAM-1:
vascular cell adhesion molecule 1, MMP1: matrix metalloproteinase 1, TGF-β: transforming growth
factor β, IGF: insulin-like growth factor, IL-8 and IL-11: interleukins 8 and 11, LOX: lysyl oxidase.

As the newly activated osteoclasts resorb bone, growth factors such as TGF-β, insulin-like growth
factor 1 (IGF-1), and bone morphogenetic proteins (BMPs) that have been deposited in bone are released.
They enhance the growth of cancer cells and the subsequent secretion of osteoclast activation factors.
In addition to its effects in bone, TGF-β is also important in a plethora of cellular functions that can
promote tumor formation, such as epithelial-to-mesenchymal transition, invasion, angiogenesis, and
immune tolerance [42]. Moreover, the calcium released from bone as a result of resorption can act as a
growth factor in cancer cells that express the calcium-sensing receptor [43,44]. Furthermore, immune
cells are known to play an important part in the vicious cycle. Activated T cells express RANKL and
are able to induce the differentiation of osteoclasts in vitro without any supporting chemokines [45].
TGF-β in turn inhibits the proliferation of T cells, helping tumor cells to evade their effects [46].

3.2. The Vicious Cycle of Osteoblastic Bone Metastasis

While most breast cancers are primarily osteolytic, prostate cancers tend to be osteoblastic, forming
new, unorganized, and weak bone, or a clear mixture of the two types (Figure 2). One constitutive
factor behind the osteoblastic reaction seems to be prostate-specific antigen (PSA). PSA is a serine
protease and cleaves many proteins important in bone metabolism, releasing, e.g., IGF-1 and TGF-β2
from their binding proteins to stimulate osteoblasts [47], as well as osteoblast-inactivating PTHrP [48].
Additionally, the induction of PSA through a transgene in a PSA-negative prostate cancer cell line has
been shown to shift the bone reaction from osteolytic to osteoblastic [49]. However, in osteoblastic
metastasis of prostate cancer, strong osteoclastic resorption is also typical, and bone resorption marker
levels in patients with prostate cancer can be even higher than in patients with osteolytic breast
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cancer [50,51]. Osteoblasts need a resorbed bone surface onto which new bone can be formed and
thus require an increased number of bone multicellular units, in addition to increased osteoblast
number and activity within one bone multicellular unit, in order to achieve the vast amount of new,
pathological bone observed in osteoblastic metastases.
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Figure 2. The vicious cycle of osteoblastic bone metastasis. In the vicious cycle of osteoblastic
bone metastasis, cancer cells secrete factors that induce angiogenesis and differentiation of MSCs
to osteoblasts. Cancer cells utilize the perivascular niches offered by the sprouting endothelium.
Osteoblasts induce differentiation and activation of osteoclasts, and growth factors released by bone
resorption support the growth of tumor cells. Abbreviations: BMPs: bone morphogenetic proteins,
FGFs: fibroblast growth factors, MSC: mesenchymal stem cell, PDGF: platelet-derived growth factor,
ET-1: endothelin 1, TGF-β: transforming growth factor β, IGF: insulin-like growth factor.

Prostate cancer cells stimulate mesenchymal stem cells (MSCs) toward osteoblastic differentiation
by secreting endothelin 1 (ET-1), wingless and Int1 proteins (Wnts), BMPs, TGFs, fibroblast growth
factors (FGFs), and platelet-derived growth factors (PDGFs), leading to an increased number of
osteoblasts. These factors also induce angiogenesis, expanding the HSC niche that prostate cancer cells
can inhabit [27]. Interestingly, ET-1 has been found to be secreted also from breast cancer cells that
produce osteoblastic lesions, underlining its overall significance in the osteoblastic lesion type [52].

The osteoblasts, in addition to forming new bone tissue, secrete RANKL, which induces osteoclast
differentiation and bone resorption. This, as described above in the context of osteolytic metastasis,
releases TGF-β, IGF-1, and BMPs, as well as calcium, which enhances the growth of cancer cells and
drives the cycle forward.

4. Bone Supportive Agents

4.1. Bisphosphonates

Bisphosphonates are pyrophosphate analogs that bind to hydroxyapatite and inhibit bone
resorption. Their mode of action is the inhibition of the mevalonate pathway in osteoclasts which
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disrupts the intracellular enzymatic functions needed for bone resorption [53]. Bisphosphonates are
currently used as the main treatment for osteoporosis, and also for patients with bone metastases.
Bisphosphonates have very few side-effects and are efficient in decreasing pain and protecting
bone, thus preventing skeletal-related events [54]. In combination with radium-223, abiraterone, and
prednisone/prednisolone, a lower fracture rate has been observed in patients receiving bisphosphonates
or the RANKL inhibitor denosumab [55].

Two large clinical trials, AZURE and ABCSG-12, have been performed to study the efficacy of
zoledronic acid in preventing breast cancer bone metastasis. The studies concluded that zoledronic
acid increases disease-free survival in postmenopausal women and in women over 40 but not in
premenopausal women [56,57]. Interestingly, patients with estrogen receptor-positive (ER+) cancer
treated with goserelin, a bone resorption-inducing gonadotropin-releasing hormone agonist, benefitted
from zoledronic acid treatment in ABCSG-12 [58], while ER+ patients that were not given goserelin in
AZURE did not [56]. Thus, these results suggest that inhibiting increased bone resorption can benefit
patients in risk of developing bone metastasis, namely by disrupting the osteolytic metastasis cycle or
by preventing cancer cells either from finding refuge in the bone metastatic niche or awakening from
dormancy. This is supported by a recent study demonstrating increased distant disease-free survival
in postmenopausal patients with breast cancer on aromatase inhibitor therapy with oral osteoporosis
treatment [59].

4.2. RANKL Inhibitor

The critical importance of the RANK/RANKL/OPG pathway in bone resorption led to the
development of the fully human RANKL antibody denosumab, which is approved for the treatment of
both osteoporosis and bone support of breast and prostate cancer. It has proven to be very effective in
inhibiting bone resorption and preventing skeletal-related events in patients with breast and prostate
cancer with bone metastases [60,61]. Similarly, RANKL inhibition has been shown to prevent the
occurrence of bone metastases in patients with prostate cancer [62]. When used as an adjuvant
supportive treatment in patients with breast cancer receiving aromatase inhibition therapy, denosumab
seems to increase time to first fracture as well as improving disease-free survival [63,64]. Thus, the
inhibition of the vicious metastasis cycle in bone tissue at a single point, such as RANKL signaling
in the case of denosumab, seems to be an effective strategy in reducing the deleterious effects of
bone metastases.

5. Mechanism of Action and Combination Potential of Radium-223

Radium-223 is a targeted alpha therapy (TAT) compound. TAT refers to a class of radioactive
alpha emitting isotopes with short-range, high linear energy transfer (LET) of radiation with the
potential of carrying vector conjugates [65,66]. TATs induce complex, difficult to repair DSBs that
result in cytotoxicity [67,68], and there are no known resistance mechanisms towards alpha particles.
Although TATs are delivered systemically, the short range (less than 100 µm/10 cell diameters) [69]
and high LET delivers an end-organ scatter of alpha particles limited to cancer cells and the tumor
microenvironment with less damage to surrounding normal tissues outside the alpha emission path
range [65,70,71].

The biochemical properties of specific TAT compounds determine the feasibility of conjugation
to a vector, as well as determining which of three possible targeting strategies the TAT compound
exhibits: 1. self-targeting (physiologic integration by mimicking a natural essential ion); 2. passive
targeting (accumulation in tumor areas with leaky vasculature); 3. active-induced targeting (specific
ligand-receptor interactions between small molecule/peptide/antibody-labeled radionuclide and target
cells) [72].

Radium-223 is a calcium-mimetic isotope that has been shown to incorporate into sites of increased
bone turnover and osteoblastic activity due to both physical properties and active incorporation by
osteoblasts, making it a self-targeting TAT [13,14,16,70,73]. Compared to beta radiation, for example,
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alpha radiation has a significantly shorter range and higher linear energy transfer which allows the
treatment of metastatic tumors with minimal toxic effects to surrounding noncancerous tissue [74]. The
shorter range of radiation results in milder myelotoxicity [13,75], and the higher LET leads to stronger
induction of DSBs in tumor cells [76]. Therefore, radium-223 has become an appealing choice for the
treatment of bone metastasis. For a summary of the most important nonclinical studies reviewed here,
please see Table 1.

Table 1. The main findings of radium-223 in nonclinical cancer studies.

Authors Year Nonclinical Model Main Findings Ref

Henriksen et al. 2002 MT-1 human breast cancer
bone metastasis model in
rats

Radium-223 increases symptom-free survival. [13]

Larsen et al. 2006 BALB/c mice Doses ten-fold higher than therapeutic doses do
not cause complete bone marrow suppression.

[77]

Suominen et al. 2013 MDA-MB-231 human breast
cancer bone metastasis
model in mice

Radium-223 prevents tumor-induced cachexia,
decreases osteolysis, induces DNA DSBs, and
extends survival alone and in combination with
zoledronic acid or doxorubicin.

[15]

Malamas et al. 2016 In vitro Radium-223 significantly enhances T
cell-mediated lysis of prostate, breast, and lung
carcinoma tumor cells by CD8+ cytotoxic T
lymphocytes.

[78]

Suominen et al. 2017 5TGM1 mouse myeloma
model

Combination of radium-223 with bortezomib
could constitute a novel, effective therapy for
multiple myeloma.

[79]

Suominen et al. 2017 LNCaP, LuCaP 58 prostate
cancer bone growth models
in mice

Radium-223 inhibits tumor growth,
tumor-induced osteoblastic bone growth, and
protects normal bone architecture.
Radium-223 shows a preferential uptake in bone
lesions compared to normal bone and deposits in
newly formed intratumoral bone matrix.
Radium-223 induces DBS in local tumor cells,
OBs and OCs.

[16]

Wengner et al. 2018 LNCaP human prostate
cancer bone growth model
in mice

Treatment with ATR inhibitor BAY 1895344 and
radium-223 exhibits synergistic antitumor
activity.

[80]

Wickstroem et al. 2018 OVCAR-3 ovarian cancer
model in mice

MSLN-TTC increases the antitumor efficacy of
ATR and PARP inhibitors.

[81]

Dondossola et al. 2019 PC3 and C4–2B human PCa
cell lines in mouse bones

Micro-tumors showed good response to
radium-223. Larger tumor areas were not as
efficiently controlled by radium-223.

[82]

Bannik et al. 2019 In vitro Synergistic in vitro effects were observed when
radium-223 was combined with the ATR
inhibitor BAY 1895344.

[83]

Hagemann et al. 2019 In vitro MSLN-TTC is able to induce immunogenic cell
death and secretion of pro-inflammatory
cytokines in vitro.

[84]

Radium-223 is the first-in-class commercially available TAT approved for the treatment of patients
with mCRPC with bone metastases. In addition to increasing overall survival in patients with mCRPC,
radium-223 increases time to first symptomatic skeletal related event (SSE) and decreases the number
of SSEs [85,86]. While radium-223 has shown signs of biological activity in advanced breast cancer
patients with bone-dominant disease in early clinical trials [87,88], it remains unclear if this could
ultimately translate into a survival advantage.

Preclinical studies have recently demonstrated that radium-223 is indeed incorporated into the
bone matrix where it inhibits the proliferation of breast cancer cells and the differentiation of osteoblasts
and osteoclasts. In an established osteolytic breast cancer bone metastasis setting, radium-223 prevented
tumor-induced cachexia and decreased osteolysis by 56% and tumor growth by 43% [15]. Radium-223
also induced DSBs in cancer cells in vivo and extended survival as a monotherapy and in combination
with zoledronic acid. Similar positive results have been demonstrated in the syngeneic 5TGM1 mouse
multiple myeloma model, where radium-223 decreased osteolytic lesion area [79], and in the MX-1



Int. J. Mol. Sci. 2019, 20, 3899 8 of 16

osteolytic breast cancer bone metastasis model in rats, where radium-223 increased symptom-free
survival [13].

The binding of radium-223 to bone tissue has been demonstrated to occur due to active
incorporation by osteoblasts in addition to the passive binding of radium-223 as a calcium mimetic
to hydroxyapatite [15]. Additionally, the differentiation of osteoclasts was shown to be inhibited
dose-dependently by radium-233. This effect is driven either by direct disruption of osteoclast function
by high energy alpha particles emitted by radium-223 deposited near them in areas of active bone
remodeling or by inhibiting RANKL secretion by osteoblasts, or the combination of both of these
mechanisms. Interestingly, radium-223 has been found to be deposited in the midst of prostate cancer
growths in mice xenograft models [16], suggesting a direct effect on tumor metastasis. However, the
extent and nature of co-localization with tumor cells remains to be elucidated.

Radium-223 also inhibits the vicious cycle of osteoblastic metastasis. In the LuCaP 58 patient-
derived prostate cancer xenograft model, radium-223 was deposited in the intratumoral bone matrix and
DNA DSBs were induced in cancer cells within 24 h after treatment [16]. This resulted in the inhibition
of tumor-induced osteoblastic bone growth and the preservation of normal bone architecture, leading
to reduced bone volume. These effects in tumor-bearing bone occurred through radium-223-induced
suppression of abnormal bone metabolic activity as evidenced by a decreased number of osteoblasts
and osteoclasts and a reduced level of the bone formation marker PINP. Furthermore, the treatment
with radium-223 resulted in lower PSA values and reduced total tissue and tumor areas compared
to the vehicle control, indicating that radium-223 constrains prostate cancer growth in bone. Similar
findings were also obtained in the LNCaP prostate cancer xenograft model. Preclinical data, however,
indicate that radium-223 may need to be combined with other agents to affect larger bone metastasis
areas, especially in tumor types with weaker osteoblastic reactions [82].

The mode of action of radium-223 results in a very favorable risk-benefit profile, especially in
terms of limited hematotoxicity. After intravenous injection, radium-223 is rapidly cleared from
the bloodstream. Thereafter, radium-223 homes into bone tissue where the short range of emitted
alpha particles largely limits the effects of radium-223 to the cells of the bone microenvironment,
while excess radium-223 is excreted via the gut. In animal studies, no signs of bone marrow toxicity
or body weight loss have been observed with therapeutic doses of radium-223 [13], and even high
doses have not been shown to inactivate hematopoietic cells [77]. In good agreement with this, the
favorable safety profile in clinical trials [89,90] is likely the result of its targeting properties, its mode of
excretion, and the short range of the alpha particles, minimizing unwanted radiation to cells beyond
the bone microenvironment, the bone marrow cells surrounding bone metastases, and the cells of
the gastrointestinal epithelial layer [82,91]. In a retrospective analysis of 1021 patients treated with
radium-223 dichloride alone, less than 10% of patients showed one of the most frequently observed
adverse events related to radium-223 treatment, such as anemia, thrombocytopenia, fatigue, diarrhea,
vomiting, and bone pain. Notably, most of these adverse events were also observed in placebo-treated
patients in a randomized phase 3 trial [92]. The risk of hematological side effects may increase in
combination with hematotoxic chemotherapeutics [55,93,94]. The potentially negative effects on bone
health which may occur especially in certain combination regimens with 2nd generation anti-androgens
in patients with disease mediated impairment of general bone health can be diminished by concomitant
treatment with bisphosphonates or denosumab [19,55]. Specifically, the combination of radium-223
with abiraterone and prednisone/prednisolone is currently contraindicated in the European Union due
to an increased fracture risk. In general, however, combination therapies with radium-223 are broadly
feasible in the clinical setting.

5.1. Radium-223 Therapy in Combination with DNA Damage Repair Inhibitors

The ability of radium-223 to home into bone tissue and cause DNA DSBs to disrupt the function
of both cancer and bone cells has led to considerable interest in using radium-233 in combination
with DNA damage repair (DDR) inhibitors. The DDR is the name used collectively for a series of
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complex signaling pathways that secure the integrity of the genome in eukaryotic cells [95]. This
combination is hypothesized to provide clinically relevant synergy in the induction of cancer cell
death due to the mode of action of the two therapies—radium-223 treatment induces DSBs in the
bone microenvironment which are then not repaired due to DDR treatment. Recent results with
the inhibition of ATR (ataxia telangiectasia and Rad3-related) kinase, which is activated by a broad
spectrum of DNA damages, including DSBs, in combination with radium-223 treatment have been
promising. In the LNCaP intratibially injected prostate cancer model mimicking CRPC with bone
metastases, combination treatment with radium-223 and an ATR inhibitor increased intratumoral
levels of DNA damage and decreased total tumor lesion area and PSA values suggesting the potential
of disrupting the vicious cycle of bone metastasis [80]. A recent in vitro study has additionally shown
that ATR inhibition potentiates the inhibitory effect of radium-223 radiation on cell survival [83].
Radium-223 treatment has also been used together with the inhibition of poly (ADP-ribose) polymerase
(PARP), which has been shown as monotherapy to be an effective strategy to treat cancers with certain
types of DNA repair deficiencies [96]. This concept is further supported by an increase in antitumor
efficacy observed when combining either ATR or PARP inhibition with actively-targeted TAT in the
form of a mesothelin (MSLN)-targeted thorium conjugate (MSLN-TTC) [81]. Currently, a combination
treatment with radium-223 and niraparib, an orally active small molecule PARP inhibitor, is also under
evaluation in patients with CRPC with bone metastases (NCT03076203).

5.2. Radium-223 Therapy in Combination with Immuno-Oncological Treatments

Radium-223 may also provide benefits when combined with immuno-oncological treatments.
A recent preclinical study has demonstrated that radium-223 treatment enhances the sensitivity of
various carcinomas to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated
immunogenic modulation [78]. This mode of action may well also inhibit the formation of bone
metastases. Radiotherapy in general has been demonstrated to induce the release of danger-associated
molecular patterns (DAMPs), such as CRT, HMGB1, and secreted ATP, which elicit antigen-presenting
cells to activate CD8+ T cells to induce immunogenic cell death [97,98]. Radiotherapy is also known to
upregulate major histocompatibility complex class I (MHC-I) expression [99,100], which is commonly
downregulated in cancerous tissue [101] and associated with poor survival [102,103]. The increase in
MHC-I expression together with novel proteins produced by immune cells in response to radiation [104]
ultimately leads to the expansion of the T cell repertoire. Actively-targeted TAT in the form of mesothelin
(MSLN)-targeted thorium conjugate MSLN-TTC has also been shown to induce immunogenic cell
death and secretion of pro-inflammatory cytokines in vitro [84]. In addition to directly enhancing the
function of the immune system, osteomimetic radionuclides, such as radium-223, target osteoclasts,
which have recently been shown to have immunosuppressive properties [105]. With this in mind,
the safety and tolerability of the immune checkpoint inhibitor atezolizumab, a fully humanized and
monoclonal PD-L1 antibody, is currently being studied in combination with radium-223 in patients with
mCRPC which has progressed following treatment with an androgen pathway inhibitor (NCT02814669).
The combination of radium-223 treatment with immune checkpoint blockade may also give rise to
additional benefits outside the tumor microenvironment, as recent reports have called attention to the
abscopal effect of combining immune checkpoint inhibition and irradiation, that is, the occurrence of
systemic antitumor effects resulting in the regression of tumors outside of the irradiated area [106].
As PSA appears to be a constitutive factor in the osteoblastic reaction in bone metastatic prostate cancer,
this abscopal effect may bring an added benefit to breaking the vicious cycle of metastasis.

6. Conclusions

Targeted alpha therapy with radium-223 provides a two-pronged approach to disrupting the
vicious cycle of bone metastasis regardless of its type or tissue of origin, according to preclinical studies.
Due to its bone-homing characteristics, radium-223 disrupts not only the activity of cancer cells by
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eliciting cancer cell death through DNA DSBs, but also the function of both osteoblasts and osteoclasts,
thereby simultaneously breaking at least two links of the metastasis cycle.

The targeted nature of radium-223 and its short alpha radiation range cause relatively few side
effects, providing a strong rationale for its use in combination treatments. Accordingly, studies
related to combining radium-223 treatment with therapies of various modes of action, such as DNA
damage repair inhibitors and immune checkpoint inhibitors, are currently under way. These therapy
combinations have the potential to significantly improve on the current effectiveness of the treatment
of bone metastatic CRPC and bone metastasis from additional tumor types.
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