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Deep learning to analyse 
microscopy images

Artificial intelligence (AI)-powered algorithms are now influencing many aspects of our day-to-day 
life, from providing movies/music recommendations to controlling self-driving cars. These algorithms 
are also increasingly used in the lab to aid biomedical research. In particular, the ability to analyse 
and process images using AI is slowly revolutionizing the quality and quantity of data we collect from 
microscopy images. In fact, AI-based algorithms can now be applied to perform virtually any high-
performance image analysis tasks such as classifying images, detecting and segmenting objects, 
aligning images or improving image quality by removing noise or increasing image resolution. This 
short feature article briefly underlies the principles behind using AI algorithms to analyse microscopy 
images with a specific focus on segmentation and denoising.

Guillaume Jacquemet 
(University of Turku, 
Finland and Åbo Akademi 
University, Finland)

Data Visualization

Over the last 400  years, microscopes have allowed us 
to observe objects too small to be seen with the naked 
eye. Today, light and electron microscopies are leading 
technologies used worldwide to perform research and 
diagnostics. A recent survey indicated that up to 90% 
of life sciences’ publications utilize microscopy in one 
way or another. Modern microscopes are typically 
connected to digital cameras and a microscopy session 
often leads to the acquisition of hundreds to thousands 
of images. Like any digital image, microscopy images are 
composed of pixels arranged in a two-dimensional grid, 
each with a finite, discrete numerical value. Microscopy 
images are rich in information and, to gain meaningful 
results, images need to be processed and analysed using 
computers. Because of this, image analysis software are 
continuously developed to support life science research. 
Over the last 5  years, software developers have turned 
to artificial intelligence (AI) to revolutionize micros-
copy image analyses. In particular, deep learning (DL), 
a subset of AI capable of learning in an unsuper-
vised manner, often outperforms conventional image 
processing strategies. For instance, DL is increasingly 
employed for image analysis tasks such as detecting 
objects or improving image quality by enhancing resolu-
tion or removing unwanted noise.

Deep learning, how does it work?

One of the reasons DL is now outperforming other 
image analysis strategies is that when using DL, the 
data always comes first. DL-based image analysis 
usually requires using algorithms called artificial neural 
networks (ANNs). One key feature of these algorithms 
is that they learn how to perform a task (for instance, 
removing noise) using example data. Therefore, before 

using an ANN to process images, it first needs to 
be trained. During the training process, the ANN is 
presented with a large set of representative images and 
their corresponding expected results. For instance, in the 
case of denoising, the ANN learns how to remove noise 
by comparing paired high-quality and noisy images 
provided by the user. With this training dataset, the 
ANN builds a model of the transformation that needs to 
be applied to the images to obtain the desired result (e.g., 
removing noise). Once this model has been generated, it 
can be applied to analyse new images. Therefore, using 
DL is a two-step process involving first training a DL 
model and then using this model to analyse images. The 
training is the most challenging part of the process as 
it requires specialized knowledge, access to high-quality 
training datasets and significant computing power 
(typically powerful graphics processing units [GPUs]). 
In contrast, using trained DL models can be relatively 
straightforward and rarely requires access to powerful 
workstations or servers. In fact, various trained models 
capable of processing microscopy images are readily 
available on websites or mobile devices (e.g., https://
www.​cellpose.​org/ or http://www.​nucleaizer.​org/).

While the use of DL for microscopy is currently 
exploding, the underlying technology is not new. The 
first small but functional ANNs were described in the 
mid-1960s. However, due to the computing power 
required to train them, these algorithms became 
practical only after GPUs became widely available, in 
large part due to the booming gaming industry in the 
mid-2000s. The release of AlexNet (2012), an algorithm 
capable of classifying images with great accuracy, was 
then the most influential demonstration that ANNs can 
be powerful algorithms for image processing. Several 
algorithms then demonstrated the enormous potential 
of DL to analyse microscopy images, including U-Net 
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for image segmentation (2015) and CSBDeep CARE to 
restore images (2018).

Deep learning to identify and segment 
objects in microscopy images

One common, yet complex, image analysis task is 
to detect and identify specific objects present in 
microscopy images. In computer vision, segmentation 
separates objects of interest from the background, while 
instance segmentation separates these objects from 
the background and each other. This can be used, for 
instance, for detecting cells, nuclei or other organelles 
from microscopy images. Once segmented, objects can 
then be counted and their shapes (e.g., perimeter, area, 
aspect ratio) and properties (e.g., intensity, texture) 
measured.

Manual segmentation is time-consuming, 
requires expert knowledge and is often a bottleneck 
when analysing large datasets. Therefore training 
computer algorithms to do the work automatically is 
a very attractive process. DL algorithms have proven 
powerful tools to aid with segmentation tasks. Indeed 
they combine expert-level performance with high-
throughput analysis. Popular segmentation algorithms 
include U-Net, StarDist (segmentation of nuclei) or 
CellPose (cell segmentation). These algorithms typically 
use a U-Net-based architecture that aims to classify 
each pixel within an input image as background or as 
an object of interest by learning from large amounts of 
annotated data.

Therefore, to use such algorithms, users need first to 
provide examples of images and matching results to teach 
the DL algorithm to segment their data. The generation 
of such training datasets can be quite cumbersome as 
it often involves manually annotating 30–100 images 
before having enough data to train a DL model. In some 
contexts, the production of suitable training datasets is 
so time-consuming that citizen science projects have 
been created. For instance, with the ‘Etch a Cell’ project 
(https://​etchacell.​crick.​ac.​uk/), anyone can help scientists 
segment the nuclear envelope or find mitochondria from 
electron microscopy images.

For regular segmentation tasks, such as cell or 
nuclei segmentation, one powerful approach is to 
produce general models with high reusability potential 
using an extensive and diverse training dataset. 
For example, popular nuclei (StarDist, nucleAIzer, 
CellPose) or cell segmentation models (CellPose) have 
been released (Figure 1). When possible, this approach 
greatly facilitates the adoption of DL for image 
segmentation as users can directly test these models 
on their images.

Deep learning to restore and improve 
microscopy images

Fluorescence microscopy is a common microscopy 
strategy utilized in life science research. By labelling 
specific molecules (e.g., proteins) with fluorescent tags, 
biologists can use lasers to observe cellular components 
in samples selectively. However, due to the nature of light 
and the imaging system used, images acquired using 
fluorescence microscopy have an intrinsic resolution 
limit (the amount of detail that can be resolved) and are 
prone to noise. DL has shown great potential to address 
both of these challenges.

The amount of light collected when performing 
fluorescence microscopy experiments is defined by 
the amount and nature of the fluorescent molecules 
observed as well as by the laser intensities used during 
the imaging session. As high laser intensities damage 
biological samples, it is crucial to apply low laser 
intensities when imaging live samples, which results 
in noisy images. Therefore denoising strategies can be 
beneficial to improve microscopy image quality. Because 
of this, several DL-based denoising tools have been 
developed (Figure 2). These include popular open-source 
tools (e.g., CSBDeep CARE, Noise2Void, 3D RCAN) 
and commercial software (e.g., Denoise.AI, the Apeer 
platform or Aivia). As described earlier, most DL-based 
denoising methods require corresponding noisy input 
images and their noise-free counterparts to train DL 
models. As denoising models tend to be specific to a 
particular experiment, this places a burden on the users 
who need to generate dedicated training datasets to 
restore their images. However, innovative strategies such 
as Noise2Void now also allow training DL models directly 
from noisy images by predicting the intensity of every 
pixel using the surrounding pixels. This can considerably 
simplify the use of DL methods to denoise images.

One of the limitations of light microscopy is that the 
diffraction of light precludes the visualization of details 
below ∼200  nm. Over the last two decades, multiple 
methods have been developed to bypass this limit. Due 
to the interest in improving the resolution of microscopy 
images, DL-based strategies have also been developed. 
For instance, algorithms such as PSSR or DFCAN can 
increase the number of pixels in an image and predict 
missing details. Other DL algorithms can aid the post-
processing analysis of images that are required for most 
super-resolution techniques. This is the case, for instance, 
for DeepSTORM or DECODE, two algorithms dedicated 
to the reconstruction of single-molecule microscopy data.

The pitfall of using deep learning

The ability to learn how to perform an analysis from 
example data is both the principal strength and the 
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main weakness of DL. By learning directly from the 
data, the algorithms identify the most suitable way to 
perform the analysis, leading to excellent performances. 
However, trained DL models are only as good as the 
data used to train them. Suppose the training dataset 
is inadequate due to bias (e.g., images acquired using 
only one instrument) or simply too small (not enough 
data to learn from). In that case, the resulting model 
may produce unwanted results (e.g., poor performance 
and artefacts) when new images are analysed. This 
is especially the case if the images to process are too 
different from those used during the training. Because 
of this, a high-quality and diverse training dataset is 

crucial when using DL, something which can be very 
difficult to generate. Because of these issues, researchers 
are developing tools to increase the size of training 
datasets artificially, a process classically referred to as 
data augmentation, via various image manipulation 
(rotations, mirroring, adding noise, shear, etc.).

Getting started with deep learning for 
microscopy

As DL is revolutionizing the way we analyse images, 
you may wonder how you could get started with using 

Figure 1.  Example illustrating how DL can be used to detect cancer cells from microscopy images. Left picture: Original 
microscopy image. Right picture: Image where each detected cancer cell has a different colour. In this case, the CellPose 
segmentation algorithm was used via the ZeroCostDL4Mic platform. The original images are of breast cancer cells labelled 
with SiR-DNA (magenta) to visualize their nuclei and with lifeact-RFP (green) to visualize their actin cytoskeleton. Images were 
acquired using a spinning disk confocal microscope.
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DL at home. The vast majority of DL-based software are 
distributed as Python packages and therefore require the 
ability to code in Python. Often the easiest way to test 
DL tools with your images is to test the models provided 
as web interfaces (e.g., https://www.​cellpose.​org/ or 
http://www.​nucleaizer.​org/). However, these platforms 
remain limited and do not typically allow users to 
train their own models. More flexible tools that do not 
require programming skills are also becoming available; 
these include, for instance, plugins for Fiji/ImageJ (e.g., 
DeepImageJ or CSBDeep), ImJoy, DeepMIB, ilastik or 
Cell Profiler.

In collaboration with Dr Ricardo Henriques 
(Instituto Gulbenkian de Ciência, PT) and several other 
laboratories, we recently developed ZeroCostDL4Mic. 
ZeroCostDL4Mic is an entry-level teaching and 
deployment DL platform for microscopy images. In 
practice, ZeroCostDL4Mic is a collection of Python 
notebooks featuring a simple graphical interface. 
ZeroCostDL4Mic takes advantage of Google Colab, 
a free platform that allows running Python code on 
Google’s cloud servers and provides the computational 
resources needed to train and deploy DL networks. 
While the underlying code is hidden by default, it 

Figure 2.  Example illustrating how DL can be used to remove noise from microscopy images. Left picture: Original 
microscopy image. Right picture: Denoised image. In this case, the CSBDeep CARE algorithm was used via the 
ZeroCostDL4Mic platform. The images displayed are breast cancer cells labelled with SiR-DNA, to visualize nuclei, taken using 
a spinning disk confocal microscope. A region of interest (ROI) is magnified.
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remains easily accessible, allowing users to explore and 
modify it at their leisure. Importantly, ZeroCostDL4Mic 
is freely available online and is fully open access (https://​
github.​com/​HenriquesLab/​ZeroCostDL4Mic).

Outlook

DL now allows researchers to perform increasingly 
complex image analysis tasks, and the future will surely 
bring more powerful methods. DL algorithms are also 
being incorporated as part of the software controlling 
microscopes. In the future, this will enable self-driving 
microscopes. One advantage will be the design of reactive 
microscopy experiments. For instance, the microscopy 

software can learn to recognize specific events and 
trigger a particular response, such as moving the stage 
to follow cells over time or using different acquisition 
parameters.

Despite its incredible potential, using DL 
appropriately can remain challenging and requires skill 
and know-how not yet typically taught during biology 
studies. Therefore one challenge ahead is to educate 
the next generation of microscopists to adequately 
and responsibly utilize these powerful technologies. 
Another challenge is avoiding falling into the AI hype 
and remembering that other techniques may be more 
appropriate, more robust and sometimes quicker to 
analyse images.■
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