
ON SUMSETS OF MULTISETS IN Zm
p

KAISA MATOMÄKI

Abstract. For a sequence A of given length n contained in Z2
p we study how

many distinct subsums A must have when A is not “wasteful” by containing
too many elements in same subgroup. Martin, Peilloux and Wong have made

a conjecture for a sharp lower bound and established it when n is not too large

whereas Peng has previously established the conjecture for large n. In this
note we build on these earlier works and add an elementary argument leading

to the conjecture for every n.

Martin, Peilloux and Wong also made a more general conjecture for se-
quences in Zm

p . Here we show that the special case n = mp − 1 of this con-

jecture implies the whole conjecture and that the conjecture is equivalent to
a strong version of the additive basis conjecture of Jaeger, Linial, Payan and

Tarsi.

1. Introduction

For a sequence A contained in an abelian group G we write
∑
A for the set of

all subsums of A, that is, for A = (a1, . . . , an),∑
A =

{∑
i∈I

ai : I ⊆ {1, . . . , n}

}
.

Note that
∑
A always contains 0, the sum of an empty sequence. As the order

of the elements of A is not relevant here, we will from now on think of A as a
multiset. For a set or multiset B, we write |B| for the cardinality of B, counted
with multiplicity, and #B for the cardinality of B counted without multiplicity.

Here we are interested in the relationship between |A| and #
∑
A. As pointed

out for instance in [3, Lemma 1.3], in case G = Zp one gets the following result
easily by multiple applications of the Cauchy-Davenport inequality (see [6, Theorem
5.4]).

Lemma 1. Let p ∈ P and let A be a multiset contained in Z∗p. Then

#
∑

A ≥ min{p, |A|+ 1}.

This lower bound is sharp as A may consist of |A| copies of a single element.
Let us now consider the case G = Z2

p. In this case one might not get a better
lower bound than the above if much of A is contained in a single subgroup. In
particular it is “wasteful” for A to contain more than p − 1 elements from any
subgroup since by Lemma 1 already p − 1 elements guarantee that

∑
A contains

the whole subgroup. In light of this we make the following definition (following [3]).
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Definition 2. A multiset A contained in Z2
p is called valid if 0 6∈ A and every non-

trivial subgroup of Z2
p contains at most p− 1 points of A (counting multiplicity).

For a valid multiset A in Z2
p with at most p−1 elements, one has again the sharp

lower bound #
∑
A ≥ |A|+ 1. On the other hand, for large multisets Peng [4] has

shown the following.

Theorem 3. Let p ∈ P and let A be a valid multiset contained in Z2
p with |A| ≥

2p− 1. Then
∑
A = Z2

p.

Hence we can concentrate on the case p ≤ |A| ≤ 2p − 2. Martin, Peilloux and
Wong [3] have made the following conjecture.

Conjecture 4. Let p ∈ P, let k be a non-negative integer, and let A be a valid
multiset contained in Z2

p with |A| = p+k. If k ≤ p− 3, then #
∑
A ≥ (k+ 2)p and

if k = p− 2, then #
∑
A ≥ p2 − 1.

If true, this conjecture would be sharp as pointed out in [3]: First, for k ≤ p− 3,
the multiset A may consist of p−1 copies of (1, 0) and k+1 copies of (0, 1), so that∑
A = Zp × {0, . . . , k+ 1}. Second, for k = p− 2, A may consist of p− 2 copies of

(1, 0) and one copy of each (i, 1), 0 ≤ i ≤ p− 1, so that
∑
A = Z2

p \ {(p− 1, 0)}.
Martin, Peilloux and Wong [3] proved the conjecture when

k ≤ max{1,
√
p/(2 log p+ 1)− 1}.

Here we will prove the conjecture for every k.

Theorem 5. Conjecture 4 holds.

Martin, Peilloux and Wong [3] also generalised Conjecture 4 to Zm
p for m ≥ 2.

They again want to avoid “wasteful” sets and thus only consider “valid” sets. To
easily define validity in this setting, for a subgroup H of Zm

p , we write dim H = d

where d is the integer for which H is isomorphic to Zd
p.

Definition 6. Let m ≥ 2. A multiset A contained in Zm
p is called valid if 0 6∈ A

and every non-trivial subgroup H of Zm
p contains fewer than p · dim H points of A

(counting multiplicity).

Taking H = Zm
p one sees that every valid multiset has size at most mp−1. On the

other hand, there are valid multisets of this size, see [3, Example 4.2]. Furthermore
in case m = 2 the definition of validity agrees with Definition 2 in the interesting
case |A| ≤ 2p− 1. Martin, Peilloux and Wong [3] made the following conjecture.

Conjecture 7. Let p be an odd prime, let m ≥ 2 be a positive integer, and let A be
a valid multiset contained in Zm

p with |A| = qp+ k, where q ≥ 1 and 0 ≤ k ≤ p− 1.

(a) If 0 ≤ k ≤ p− 3, then #
∑
A ≥ (k + 2)pq;

(b) If k = p− 2, then #
∑
A ≥ pq+1 − 1.

(c) If k = p− 1, then #
∑
A ≥ pq+1.

Again the definition of validity is such that, assuming Conjecture 7, it would be
“wasteful” for a multiset to be non-valid. Also, if the conjecture is true, it gives
the best possible lower bounds, see [3, Discussion after Conjecture 4.3].

Notice in particular the following special case of the conjecture.

Conjecture 8. Let p be an odd prime, let m be a positive integer, and let A be a
valid multiset contained in Zm

p with |A| = mp− 1. Then
∑
A = Zm

p .
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In Section 4 we will show that the methods used in the proof of Theorem 5 can
be adapted to show the following theorem.

Theorem 9. Conjecture 8 implies Conjecture 7.

Hence a special case generalising Peng’s result (Theorem 3) implies the whole
conjecture. Peng has actually generalised his result to Zm

p in [5] but he considers
a much wider class of multisets than the valid sets here, so the result in [5] is not
helpful here.

Let us close the introduction by discussing the additive basis conjecture of Jaeger,
Linial, Payan and Tarsi [2]. We need the following definition from [1].

Definition 10. For a prime p and a positive integer m, let f(p,m) denote the
minimal integer t such that, for any t bases B1, . . . , Bt of Zm

p one has

∑(
t⋃

i=1

Bi

)
= Zm

p ,

where the union is let to be a multiset.

For instance by splitting the set A of size 2p − 2 below Conjecture 4 into p − 1
bases of Z2

p, one sees that for p ≥ 3 and m ≥ 2, f(p,m) ≥ p. Jaeger, Linial,
Payan and Tarsi [2] conjectured that f(p,m) can be bounded from above by a
function of p alone and suggested that perhaps even f(p,m) = p. They showed
that the conjecture has implications to group connectivity of graphs. Alon, Linial
and Meshulam [1] showed that f(p,m) ≤ (p − 1) logm + p − 2, a bound which
depends mildly on m.

We make the following related conjecture.

Conjecture 11. If B1, B2, . . . , Bp−1 are bases of Zm
p and A ⊂ Zm

p is a (linearly)
independent set of size m− 1, then∑(

A ∪
p−1⋃
i=1

Bi

)
= Zm

p ,

where these unions are as multisets.

Clearly this conjecture in particular implies f(p,m) ≤ p, so that the following
theorem which we will prove in Section 4 shows that the conjecture of Martin,
Peilloux and Wong actually implies the strongest possible form of the additive
basis conjecture.

Theorem 12. Conjecture 11 is equivalent to Conjecture 8.

2. Auxiliary results

As in [3], we will take advantage of direct sum representations of Zm
p . Recall that

a group G is an internal direct sum of subgroups H and K iff H ∩K = {e} and
H + K = G. As usual, we write in this case G = H⊕K. In particular there exists
a projection homomorphism πH : G→ H that is the identity in H and vanishes in
K.

The following lemma shows that one can deduce information about #
∑
A by

studying a subgroup and a projection.
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Lemma 13. Let G = H ⊕K, and let C be a multiset contained in G. Let D =
C ∩H, let F = C \D, and let E = πK(F ). Then

#
∑

C ≥ #
∑

D ·#
∑

E.

Proof. This is [3, Lemma 2.8], but we give a short proof for completeness. Let
y ∈

∑
E. Then by definition of E, x+ y ∈

∑
F for some x ∈ H. Furthermore

x+ y +
∑

D ⊆ (x+ y + H) ∩
(∑

F +
∑

D
)

= (y + H) ∩
∑

C.

Hence, for each y ∈
∑
E ⊆ K, the coset y + H contains at least #

∑
D points of∑

C, and the claim follows since these cosets are disjoint. �

Let us now cite Theorem 3 as Peng states and proves it (see [4, Theorem 2]) as
it actually tells us something about non-valid sets as well.

Lemma 14. Let p ∈ P and let A be a multiset of size 2p−1 contained in Z2
p. Assume

that 0 6∈ A and each non-trivial subgroup of Z2
p contains at most p elements of A.

Then
∑
A = Z2

p.

Actually Lemma 14 is no stronger than Theorem 3 but follows from it, see
Lemma 18.

Lemma 14 lets us prove the case k = p− 2 of Conjecture 4 easily.

Lemma 15. Let p ∈ P and let A be a valid multiset contained in Z2
p with |A| =

2p− 2. Then #
∑
A ≥ p2 − 1.

Proof. Assume, contrary to the claim, that there are two distinct points z, w ∈
Z2
p \
∑
A. Let B be the multiset A joined by z − w. This multiset satisfies the

hypothesis of Lemma 14 but z 6∈
∑
A+ {0, z − w} =

∑
B, a contradiction. �

The following simple lemma will be the main tool in our inductive argument.

Lemma 16. Let G be an abelian group and let A ⊆ G. Then for every m ≥ 2,

#(A+ {0, z, 2z, . . . ,mz})−#(A+ {0, z}) ≤ (m− 1)(#(A+ {0, z})−#A).

Proof. Here

#(A+ {0, z, 2z, . . . ,mz}) = #

(
m⋃
i=0

(A+ iz)

)

= #

(
A ∪

m⋃
i=1

((A+ iz) \ (A+ (i− 1)z))

)

≤ #A+

m∑
i=1

#((A+ iz) \ (A+ (i− 1)z))

= #A+m ·#((A+ z) \A),

and the claim follows after a rearrangement. �

For the proof of Theorem 12 we need the following direct consequence of the
matroid union theorem (see for instance [7, Theorem 2 in Section 8.4]).

Lemma 17. Let V be a vector space and let A be a multiset contained in V . If
|U ∩ A| ≤ k · dimU for every subspace U ≤ V , then A may be partitioned into k
sets A1, . . . , Ak where every Ai is linearly independent.
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3. Proof of Theorem 5

Let A be a valid multiset of size p + k contained in Z2
p. As the case k = p − 2

was handled in Lemma 15, we can assume that 0 ≤ k ≤ p − 3. For z ∈ A, write
Az = A∩ 〈z〉 and Ac

z = A \Az. We will induct on k but let us first handle the case
|Az| ≥ k + 1 for some z ∈ A as in [3]. In this case |Ac

z| = |A| − |Az| ≤ p − 1, and
by Lemmas 13 and 1

#
∑

A ≥ (|Az|+1)(|Ac
z|+1) = (|Az|+1)(|A|−|Az|+1) = |Az|(|A|−|Az|)+ |A|+1

which attains its minimum when |Az| is minimal or maximal. For both |Az| = k+1
and |Az| = p− 1, the right hand side is (k + 2)p and the claim follows.

Hence we can assume from now on that, for every z ∈ A, |Az| ≤ k. Notice that
as in [3] this in particular resolves the case k = 0.

At this point our proof diverges from that in [3], where the authors modified the
set A to contain more elements in some subgroup by replacing 2l points xi, z−xi ∈
A, i = 1, . . . , l by l copies of z. Here we instead set up an induction on k (recall
that |A| = p + k). As we already handled the case k = 0, we can proceed directly
to the induction step.

Assume, contrary to the claim, that #
∑
A ≤ (k+2)p−1. Notice that, for every

z ∈ A, ∑
A =

∑
(A \ {z}) + {0, z},

and here by the induction hypothesis #
∑

(A \ {z}) ≥ (k + 1)p. Hence

(1) #
(∑

(A \ {z}) + {0, z}
)
−#

∑
(A \ {z}) ≤ (k+ 2)p− 1− (k+ 1)p = p− 1.

Let B be the multiset which consists of A and p − k − 2 additional copies of
z, so that |B| = 2p − 2. Since |A ∩ 〈z〉| ≤ k, B is valid, so that by Lemma 15,
#
∑
B ≥ p2 − 1. On the other hand, applying Lemma 16 and recalling (1), one

gets

#
∑

B = #
(∑

(A \ {z}) + {0, z, 2z, . . . , (p− k − 1)z}
)

≤
(

#
∑

(A \ {z}) + {0, z}
)

+ (p− k − 2)
(

#
(∑

(A \ {z}) + {0, z}
)
−#

∑
(A \ {z})

)
≤ #

∑
A+ (p− k − 2)(p− 1) ≤ (k + 2)p− 1 + (p− k − 2)(p− 1)

= p2 − p+ k + 1 ≤ p2 − 2

since k ≤ p− 3. Hence we have arrived to a contradiction so one must indeed have
#
∑
A ≥ (k + 2)p. �

4. Proofs of Theorems 9 and 12

To prove Theorem 9, we need a few lemmas. The first lemma shows that a
stronger statement follows from Conjecture 8, in particular Lemma 14 follows from
Theorem 3.

Lemma 18. Conjecture 8 implies the following: Let p be an odd prime and let m
be a positive integer. Let A be a multiset contained in Zm

p for which

(2) |A ∩H| ≤ p dim H
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for every subgroup H ≤ Zm
p . If |A| ≥ mp− 1, then

∑
A = Zm

p .

Proof. Let us induct on m. Case m = 1 follows from Lemma 1, so we can move
to the induction step. We can clearly assume that |A| = mp − 1. Let H be a
maximal subgroup of Zm

p for which equality holds in (2) (possibly H = {0}), and
write Zm

p = H ⊕K. If πK(A \H) were not a valid multiset, there would exist a
non-trivial subgroup K1 ≤ K such that |(A \ H) ∩ (H ⊕ K1)| ≥ p · dim K1 and
consequently

A ∩ (H⊕K1) = |A ∩H|+ |(A \H) ∩ (H⊕K1)|
≥ p · (dim H + dim K1) = p · (dim H⊕K1)

which contradicts the maximality of H.
Hence πK(A \H) is a valid multiset contained in K with size

|A| − |A ∩H| = mp− 1− p · dim H = p · dim K− 1,

so that
∑
πK(A \H) = K by the assumed Conjecture 8. Furthermore A ∩H has

size p · dim H and dimension smaller than m, and thus by induction hypothesis∑
(A ∩H) = H, and the claim follows from Lemma 13. �

Theorem 12 follows now immediately:

Proof of Theorem 12. Conjecture 8 implies Conjecture 11 by Lemma 18 and Con-
jecture 11 implies Conjecture 8 by Lemma 17. �

The following lemma follows from the previous lemma as Lemma 15 follows from
Lemma 14.

Lemma 19. Conjecture 8 implies the following: Let p be an odd prime, let m be a
positive integer, and let A be a valid multiset contained in Zm

p with |A| = mp − 2.
Then #

∑
A ≥ pm − 1.

The third and fourth lemmas will let us show that we can assume that our
multiset A is not too concentrated in any subgroup (recall that also in the proof of
Theorem 5 we first showed that we can assume that |A∩ 〈z〉| ≤ k for every z ∈ A).

Lemma 20. Let m ≥ 2 and Zm
p = H⊕K, where 0 < dim H < m. If A is a valid

multiset contained in Zm
p with

(3) |A \H| ≤ p · dim K− 1,

then there exists a non-trivial subgroup K′ � Zm
p such that, writing Zm

p = H′⊕K′,
πK′(A \H′) is a valid multiset contained in K′.

Proof. If πK(A \H) is valid, the claim follows immediately. Otherwise there is a
non-trivial subgroup K1 ≤ K such that

(4) |(A \H) ∩ (H⊕K1)| ≥ p · dim K1.

Let K1 be maximal such subgroup and K = K1 ⊕K2. The bounds (4) and (3)
together imply that K1 � K so that K2 6= {0}.

If πK2(A\ (H⊕K1)) is valid, the claim follows with K′ = K2 and H′ = H⊕K1.
Otherwise there exists a non-trivial subgroup K3 ≤ K2 such that

|(A \ (H⊕K1)) ∩ (H⊕K1 ⊕K3)| ≥ p · dim K3.

Combining with (4) gives

|(A \H) ∩ (H⊕K1 ⊕K3)| ≥ p · (dim K1 + dim K3) = p · dim(K1 ⊕K3)
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which contradicts the maximality of K1. �

Lemma 21. Let p be an odd prime and define f : Z≥0 → N by putting for each
q ≥ 0 and 0 ≤ k ≤ p− 1,

f(qp+ k) =


k + 1 if q = 0 and 0 ≤ k ≤ p− 1;

(k + 2)pq if q ≥ 1 and 0 ≤ k ≤ p− 3;

pq+1 − 1 if q ≥ 0 and k = p− 2;

pq+1 if q ≥ 0 and k = p− 1;.

Then for every n1, n2 ∈ Z≥0 one has f(n1) · f(n2) ≥ f(n1 + n2).

Proof. Write ni = qip+ ki. First note that

f(q1p+p−2)f(p−2) = (pq1+1−1)(p−1) ≥ (p−2)(pq1+1−1) = f(q1p+p−2+p−2),

so we can assume that if k1 = k2 = p− 2 then q2 6= 0. One has

f(qp+ k)

f(qp+ k − 1)
=


k+1
k = 1 + 1

k if q = 0 and 0 < k ≤ p− 1;
k+2
k+1 = 1 + 1

k+1 if q ≥ 1 and 0 ≤ k ≤ p− 3;
pq+1−1
pq(p−1) = 1 + pq−1

pq(p−1) if q ≥ 1 and k = p− 2;
pq+1

pq+1−1 = 1 + 1
pq+1−1 if q ≥ 0 and k = p− 1.

From this we see that for every q1, q2 ≥ 0 and 0 ≤ k1 ≤ k2 ≤ p−2 (with q1p+k1 > 0
and not (k1, k2, q2) = (p− 2, p− 2, 0)) one has

f(q1p+ k1)

f(q1p+ k1 − 1)
≥ f(q2p+ k2 + 1)

f(q2p+ k2)

⇐⇒ f(q1p+ k1)f(q2p+ k2) ≥ f(q1p+ k1 − 1)f(q2p+ k2 + 1).(5)

Applying (5) repeatedly to f(n1)f(n2), we can assume that either k1 = p− 1 or
k2 = p − 1, and consequently, by symmetry, that k1 = p − 1. The proof can then
be completed by an easy case-by-case check according to the value of k2. �

Proof of Theorem 9. Let f be as in Lemma 21. Conjecture 7 is equivalent to the
claim that for every m ≥ 1 and any valid multiset A contained in Zm

p one has
#
∑
A ≥ f(|A|) (since the latter claim holds if m = 1 or if |A| < p by Lemmas 1

and 13).
Let us induct on m. Lemma 1 takes care of the case m = 1, so we can move to the

induction step. Let |A| = qp+k. We will induct also on k but let us first consider the
case that for some non-trivial subgroup H � Zm

p one has |A\H| ≤ p·(m−dim H)−1.
In this case Lemma 20 implies that there exists a non-trivial subgroup K′ � Zm

p

such that, writing Zm
p = H′ ⊕K′, πK′(A \H′) is a valid multiset contained in K′.

Since dim H′,dim K′ < m, by the induction hypothesis

#
∑

πK′(A \H′) ≥ f(|A \H′|) and #
∑

(A ∩H′) ≥ f(|A ∩H′|).

Hence by Lemmas 13 and 21

#
∑

A ≥ f(|A \H′|) · f(|A ∩H′|) ≥ f(|A|)

and the claim follows.
Thus we can assume that

(6) |A \H| ≥ p · (m− dim H)
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for every non-trivial subgroup H � Zm
p . In particular taking H = 〈z〉 for some

z ∈ Zm
p , we see that we can assume that q = m− 1, so that |A| = (m− 1)p+ k. By

this and (6) we can thus assume that for every subgroup H ≤ Zm
p one has

(7) |A∩H| = |A|− |A \H| ≤ (m− 1)p+k− p · (m−dim H) = p · (dim H− 1) +k.

Taking here H = 〈z〉 for some z ∈ A, we see that we can assume that k > 0. On
the other hand, Lemma 19 lets us assume that k ≤ p− 3.

From now on the proof proceeds almost exactly as the proof of Theorem 5, so let
us induct also on k and assume, contrary to the claim, that #

∑
A ≤ (k+2)pm−1−1.

Recall that, for every z ∈ A,∑
A =

∑
(A \ {z}) + {0, z},

and here by the induction hypothesis #
∑

(A \ {z}) ≥ (k + 1)pm−1. Hence
(8)

#
(∑

(A \ {z}) + {0, z}
)
−#

∑
(A\{z}) ≤ (k+2)pm−1−1−(k+1)pm−1 = pm−1−1.

Let B be the multiset which consists of A and p− k − 2 additional copies of z,
so that |B| = mp− 2. Since (7) holds for every non-trivial subgroup H, B is valid,
so that, by Lemma 19, #

∑
B ≥ pm − 1. On the other hand, applying Lemma 16

recalling (8), one gets

#
∑

B = #
(∑

(A \ {z}) + {0, z, 2z, . . . , (p− k − 1)z}
)

≤ #
∑

A+ (p− k − 2)
(

#
∑

A−#
∑

(A \ {z})
)

≤ (k + 2)pm−1 − 1 + (p− k − 2)(pm−1 − 1) = pm − p+ k + 1 ≤ pm − 2

since k ≤ p− 3. �

The proof actually tells us that if, for some M ≥ 2, Conjecture 8 holds for
every m ≤ M , then so does Conjecture 7. In particular, as was shown already in
Section 3, Theorem 3 implies Theorem 5.
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