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Abstract: Seawaters exhibit various types of cyclic and trend-like temporal alterations in their
biological, physical, and chemical processes. Surface water dynamics may vary, for instance, when
the timings, durations, or amplitudes of seasonal developments of water properties alter between
years and locations. We introduce a workflow using remote sensing to identify surface waters
undergoing similar dynamics. The method, called ocean surface dynamics partitioning, classifies
pixels based on their temporal change patterns instead of their properties at successive time snapshots.
We apply an efficient parallel computing method to calculate Dynamic Time Warping (DTW) time
series distances of large datasets of Earth Observation MERIS-instrument reflectance data Rrs(510 nm)
and Rrs(620 nm), and produce a matrix of time series distances between 12,252 locations/time series
in the Baltic Sea, for both wavelengths. We define cluster prototypes by hierarchical clustering of
distance matrices and use them as initial prototypes for an iterative process of partitional clustering
in order to identify areas that have similar reflectance dynamics. Lastly, we compute distances from
the time series of the reflectance data to selected physical factors (wind, precipitation, and changes
in sea surface temperature) obtained from Copernicus data archives. The workflow is reproducible
and capable of managing large datasets in reasonable computation times and identifying areas
of distinctive dynamics. The results show spatially coherent and logical areas without a priori
information about the locations of the satellite image time series. The alignments of the reflectance
time series vs. the observational time series of the physical environment clarify the causalities behind
the cluster formation. We conclude that following the changes in an aquatic realm by biogeochemical
observations at certain temporal intervals alone is not sufficient to identify environmental shifts. We
foresee that the changes in dynamics are a sensitive measure of environmental threats and therefore
they will be important to follow in the future.

Keywords: MERIS; Earth Observation; time series; dynamics; dynamic time warping; parallel
computing; coastal waters; the Baltic Sea; ocean color

1. Introduction

Many physical, chemical, and biological processes in oceans and seas proceed in
temporal cycles of different lengths, from diurnal and seasonal [1–5] to longer periods,
such as the El Niño cycle in the Pacific Ocean [6,7]. Compared to trend-like changes,
such as eutrophication [8–10] and seawater acidification [11,12], cyclic processes show
a degree of recurrence, yet they may be difficult to observe if embedded within other
dynamic processes. In shallow coastal seas, for example, multiple factors like seawater
stratification, river outlets, and local geographical features are present. The momentary
state of a given point of the sea surface reflects also recent weather conditions and many
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other transitory variables. Moreover, seawater warming influences a number of processes
from precipitation levels to sea currents and food webs [12–14]. These factors govern the
temporal behavior of seawater properties. Human induced degradation causes trend-like
changes in phytoplankton [10,15] and pollution [16]. When the entire marine system
experiences similar changes, a regime shift may occur [17,18].

A simple examination of Earth Observation (EO) time series shows the main charac-
teristics of remotely sensed water properties from one time step to another. When aiming
to reveal alterations in diverse cyclical processes, simple time snapshots are insufficient.
Instead, the analysis should rather focus to determine dynamically recurring characteristics
within large time series data. In this research, we define dynamics as a pattern of temporal
change of remotely sensed surface layer reflectance. Also, the dynamics may vary, for
instance, when the timings, the durations, or the amplitudes of water properties alter
between years and locations.

Compared to the multitude of remote sensing based phenological studies in terrestrial
environments [19–24] the study of seawater dynamics is less attended to as it requires
methodological modifications due to the differing spatial and temporal scales of the oceanic
environment [25]. Moreover, the availability of ground truth data for seawater properties
is often limited and further, post-analytical accuracy assessment with additional fieldwork
is impossible because water properties are ephemeral. There are no established metrics to
measure dissimilarities in ocean dynamics, although there are multiple measures indicating
differences between time series. However, earlier research has shown that temporal analysis
of EO data provides useful information about phytoplankton phenology [26–28]. We
argue that new approaches are vital to fully utilize the potential of the accumulating EO
resources in the study of marine environmental dynamics and to enable its linking to other
observational datasets.

Krug et al. [29] listed applications of partitioning the ocean surface into functional
units, e.g., designing sampling schemes, providing templates for ecosystem-based manage-
ment actions, and improving the understanding of global biogeochemical cycles, marine
resources, and ecosystem trends under a climate change [30–32]. They divided the tempo-
ral representations into two categories: static (time invariant) and dynamic (time varying).
Boundaries between the functional units of the ocean may move and dynamic approaches
enable the analysis of ocean processes at multiple temporal scales. However, in their
division, partitions based on dynamic representations result from repeated static repre-
sentations over time, like the computation of the spatio-temporal stability of province
boundaries [31,33]. Mélin and Vantrepotte [34] and Trochta et al. [35] studied spatio-
temporal features of water bodies by dividing them according to their optical water type
classes and by studying the class memberships over a period of time. They found that
both the most turbid and the oligotrophic waters showed low optical diversity, whereas
the intermediate waters between the open ocean and coastal domains were optically more
diverse [34]. According to Trochta et al. [35], the most optically complex water types were
connected to local runoffs and mixing events and secondarily to larger river plumes, up-
welling and turnovers. Gregr et al. [36] classified marine partitioning approaches by their
analytical method, the type of data used (i.e., physical, biological or ecological synthesis),
and the ocean realm under study (shelf, high seas, or ocean floor). Although physical data
may offer suitable proxies for biology at certain scales [37], the obtained classes may remain
disconnected from biology, particularly beyond plankton [36].

The novelty of our approach lies in the use of long-term dynamics as a whole to identify
the diversity of temporal behaviors of a sea area. In many earlier studies concerning the
dynamics of the sea, the water properties have been pre-classified into classes like optical
water types, or the reflectance values have been converted into biogeochemical features
like chlorophyll-a or suspended particulate matter. The dynamics of the ocean surface
have been partitioned by analyzing their changes from one time step to another. We rely
only on the reflectance data as we want to study divergent dynamics, not any particular
bio-geophysical feature. An observation at a single location is not compared to another
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observation at another location at the same time step. The units to be classified are the time
series where the observations lie, not the observations themselves. We argue that if areas
share similar dynamics, the factors behind the changes of the water properties are the same.
We also consider that the changes in sea surface layer dynamics are gradual, as are most of
the properties and phenomena in the sea.

This approach has been applied earlier by Suominen [38] and by Mantas et al. [39].
For this research we develop computational methods to perform k-means clustering of
large amounts of time series efficiently, enabling the use of the presented method up to a
global scale. Secondly, after differentiating areas of distinctive dynamics we go further and
study how physical factors are linked to the reflectance dynamics—annually regular or not.

Alternative approaches are available for assessing similarities between time series data
of different origins [21,40,41]. The mining of long time series data is typically computation-
ally demanding because of the massive and occasionally multi-dimensional characteristics
of the observations. The datasets can be noisy and include spatial and temporal gaps
and temporal shifts, or the time series may have varying lengths. Dynamic time warp-
ing (DTW) [42] is widely applied in land use classifications and studies of terrestrial
cycles [19,24,43], and in recent years it has been used in the aquatic realm by Suominen [38]
and Mantas et al. [39]. A crucial step in our approach is the forming of a prototype of a set
of time series. These prototypes are used for the time series k-means clustering but also to
differentiate and visualize the areas of distinctive dynamics. DTW barycentric averaging
(DBA) [44] is a competitive method for prototyping time series and we selected it together
with DTW as the distance measure to our k-means clustering algorithm.

The Baltic Sea was chosen for our approach as it contains several known nontrivial
spatial and temporal features and therefore forms a suitable area for the testing of an
unsupervised method, such as k-means clustering. We use DTW to define (dis)similarity
of satellite observation time series at the level of individual bins, i.e., over 12,000 point
locations, and apply cluster partitioning to group the series. Typical dynamics in different
parts of the Baltic Sea were defined as the prototypes of the time series clusters. The areas
where each dynamics prevails were visualized in cartographic form. The raw data consists
of the MERIS-instrument observations from an 8-year study period (open water periods 1
June–15 September in 2004–2011). This period is practical as it is used also in many status
assessments of the Baltic Sea and is therefore of high interest. We perform the procedure
equally in two different spectral bands, Rrs(510) and Rrs(620), and expect to see spatially
coherent groups of bins with analogous dynamics. In order to analyze the causalities
behind the cluster formation, we also compute distances from the time series of selected
physical factors (wind, precipitation, and changes in sea surface temperature) to the time
series of Rrs(λ).

2. Material
2.1. Study Area

The Baltic Sea (Figure 1) is a semi-closed marginal sea of the North Sea. As a shallow
and brackish water sea (mean depth 54 m), it is ecologically sensitive [45,46]. The northern
location (approx. 53–66 ◦N) induces strong seasonality in the physical, chemical, and
biological properties of the Baltic Sea surface waters.

Horizontally, the surface layer salinity gradually decreases from the oceanic level
at the inlet to almost zero in the distal parts of the northernmost basin. Due to high
freshwater input from land and highly saline but low in volume input of oceanic waters,
the Baltic Sea has a strong halocline at the depth of 40–70 m. The northernmost areas
freeze by mid-January and the ice cover may last until May. In the summer months,
temperatures in the open sea rise to 15–20 ◦C, creating a thermocline at the depth of 15–20 m.
Vertical mixing of waters takes place again in autumn. There is a relatively persistent
counter-clockwise upper layer circulation pattern in the Baltic Sea with an average speed
of approximately 5 cm s−1 [47]. Climate models suggest increasing precipitation and
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discharges, which can lead to decreased salinity, increased nutrient loads, and consequent
changes in biogeochemical cycles in the Baltic Sea [48–50].

Annual successions of phytoplankton and cyanobacteria follow the same pattern each
year. A spring bloom of diatoms and dinoflagellates follows increased light and rising
temperatures in April–May. Another bloom, dominated by cyanobacteria, takes place in
late summer in July–August [51–53], and these blooms notably affect the optical properties
of the seawater. In calm weather cyanobacteria accumulate on the surface, but at higher
winds they mix with the water column above the thermocline.

In addition to cyanobacteria and abundant phytoplankton, the optical properties of the
Baltic Sea waters are driven by colored dissolved organic matter (CDOM) and suspended
particulate matter (SPM) [54,55]. High concentrations of SPM occur near the river mouths,
but the inorganic fraction of SPM travels a relatively short distance from the shore [56]. In
the open sea, SPM mainly consists of phytoplankton and cyanobacteria [57]. The bottom
shear stress in the SW Baltic Sea is dominated by the wave contribution in the shallower
areas due to the lack of tides [56]. Transport of fine sand was modeled to occur at wind
speed > 15 m s−1, whereas finer materials are rapidly eroded from shallower areas already
at wind speeds of 10 m s−1.

Figure 1. The areal distinction and bathymetry of the Baltic Sea in northern Europe.

2.2. Rrs(λ) Time Series

EO imagery possesses a particularly high potential for the study of seawater change.
The Copernicus Marine Environment Monitoring Service [58] of the European Union
Earth Observation Program provides global and regional data for oceanic bio-geochemical
monitoring and modelling. Its archives facilitate long-term time series analysis without
the laborious stage of compiling data from multiple EO sources. Yet it is a demanding
task to transform remote sensing and in situ observational data into useful forms sup-
porting practical decision-making like ecosystem-based management or marine spatial
planning [59,60].

In the semi-enclosed Baltic Sea in northern Europe, sea surface waters are optically
complex [54,56,61,62] and varying concentrations of CDOM hinder the retrieval of informa-
tion on other water properties [54,55,63]. Accordingly, instead of utilizing biogeochemical
data products, we concentrate on analyzing reflectance data and thereby avoid the poten-
tial error sources identified in bio-geochemical products and consequent artificial spatial
patterns. We use the same daily MERIS instrument normalized remote sensing reflectance
Rrs(λ) data as in Suominen [38], the wavelengths λ being 510 nm and 620 nm in this
study. The rationale for selecting these wavelengths is further justified in Section 3.2. The
data originate from MERIS 3rd data reprocessing with MERIS Ground Segment (MEGS)
Processor Version 8.0. The reflectance data was produced to correspond to Level-2 for-
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mat with Case 2 Regional CoastColour processor (C2RCC, v0.15) [64–66]. The chosen
reflectance processor is the same as the one provided by CMEMS for the MERIS timeline in
the Baltic Sea [67]. During winter months, seasonal ice covers and low sun angles prohibit
a year-round analysis of water reflectance changes.

2.3. Sampling of Rrs(λ) Data

We binned the data using the level 3 binning operator tool [68] in Sentinel Application
Platform [69] software into bins of size 1.25′ by 1.25′, that is, 2315 m in the north-south
direction and from 950 m to 1350 m in the east-west direction. Each bin consisted of approx.
24–32 original pixels for which the median value was computed. Every second bin in the
north-south direction and every fourth bin in the east-west direction were removed. Bins
that were located nearer than 3300 m from a land object were removed to avoid so called
mixed pixels containing partially water and land. As a result, the data contained 12,827
bins/time series. In the northernmost parts of the study area, the last annual sea ice often
does not melt until May. Towards autumn, in turn, the shortening days with frequent
cloud covers diminish the amount of qualified imagery. In order to obtain comparable data
throughout the area, the study period was limited to the summer season between 1 June
and 15 September. During the analyzed period, the temporal coverage of the imagery was
15–25% in the southern parts of the Baltic Sea and, due to more frequent overflights and
clearer skies, 25–40% in the northern parts (Figure 2). A small number of images with too
few cloud-free observations were excluded from the final dataset. As a result, the final
number of included bins in the times series data was 12,252.

Figure 2. The mean of the normalized reflectance Rrs(λ) over the years 2004–2011 during the open water period 1 June–15
September. Temporal coverage of the observations of the time series during the same period (right).

Missing values in the time series were filled in by using linear interpolation between
preceding and subsequent values to make the dataset consistent for the DTW computations.
The point-wise reflectance Rrs(λ) time series were standardized (Equation (1)) to ensure
that the (dis)similarity measure and clustering are based on the shape of temporal patterns
and that the analysis ignores the effect of the absolute reflectance level,

Rz(λ) =
Rrs(λ)− µR(λ)

σR(λ)
(1)

where Rrs(λ) is the reflectance at wavelength λ (nm), µ and σ are the annual mean and
the standard deviation of the observed Rrs(λ), and Rz(λ) is the standardized Rrs(λ). As a
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result, the linearly interpolated, standardized reflectance datasets over the 8-year period
2004–2001 for 1 June–15 September compose a general view of reflectance dynamics in the
study area.

2.4. Time Series of Physical Factors

Data about precipitation, wind direction and wind speed 10 m above the ground
(UERRA regional reanalysis for Europe on single levels from 1961 to 2019 re-analysis
MESCAN-SURFEX) [70] were obtained from Copernicus Atmosphere Monitoring Ser-
vice [71]. The spatial resolution of the gridded precipitation and the wind data was 5.5 km.
The NetCDF data was sampled and further processed using R software.

Zonal and meridional wind components were computed from daily wind speeds and
direction data at 06:00. They were further divided into four wind component time series
(eastward, southward, westward, and northward), where a positive value is the wind
speed (m/s) towards the cardinal point, the lowest value being zero. Daily precipitation
data consist of the accumulated amount of water falling onto the ground/water surface
over 24 h. A pointwise precipitation was not considered to represent adequately the
precipitation affecting the discharges and reflectance dynamics of the sea area, instead we
used the mean precipitation within a 50 km radius around the locations of reflectance time
series. Data on sea surface temperature (ESA SST CCI reprocessed sea surface temperature
analyses) [72,73] were downloaded from Copernicus Marine Environment Monitoring
Service [74]. The spatial resolution of daily gridded SST data was 0.05◦ × 0.05◦. SST change
was computed by subtracting the median of SST of the preceding five days from the daily
SST. By this, we wanted to identify rapid changes in SST but ignore seasonal changes
(∆SST).

To make the precipitation, wind components and SST comparable with the Rrs(λ) time
series they were standardized (Equation (2)) in a manner similar to the Rrs(λ) data, with
the exception that the standardization was done over all years, not annually,

Pz =
P− µP
σP

(2)

where P is the observed value of the physical factor, µP and σP are the mean and the
standard deviation of the observed P over all annual periods, and Pz is the standardized P.

3. Analysis Methods
3.1. Description of Dynamic Time Warping DTW

Let X and Y, called query and reference, be two time series having lengths n and
m: X = x1, x2,...xi...xn and Y = y1,y2...yi...ym (Figure 3 left). Dynamic time warping is an
algorithm that finds the optimal alignment of the two time series. An alignment is given by
a collection of assignments xi ~ yj such that x1 ~ y1 and xn ~ ym, any xi must be assigned
to one or multiple yj and vice versa, and fulfilling the constraint of monotonicity: if xi
~ yj then xi+1 must be assigned to either yj or yj+1 and vice versa for y with respect to x.
Optimality is established by finding the alignment for which an objective function attains
its minimum, e.g., the sum of the dissimilarity or absolute distance of the aligned time
series values |xi – yj|.

To find the optimal alignment, a local cost matrix LCM is formed (Figure 3 middle).
The distance between observations xi and yj are shown in the elements LCMij. The algo-
rithm finds the least cumulative cost path from (x1,y1) to (xn,ym) using a predefined step
pattern through the LCM. The step pattern determines the step directions, step lengths,
and how the different directions are weighted. The cumulative cost matrix, Figure 3 right,
illustrates the aggregation of the dissimilarity measure of the optimally aligned time series.
A window constraint determines the longest possible time distance |i – j| between two
observations xi,yj that are allowed to align. Descriptions of DTW, constraints, and step pat-
terns are given e.g. by Giorgino [75], Keogh and Ratanamahatana [76], Petitjean et al. [44]
and Suominen [38]. The workflow presented in Sections 2 and 3 is summarized in Figure 4.
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Figure 3. Optimal alignment of query and reference time series (left). Local cost matrix (LCM) and the optimal least cost
path through it according to the step pattern symmetricP1 and +-2 time units window constraint. The numbers and the
corresponding colors indicate the cost of the alignments (middle). Cumulative cost matrix (CCM) and visualization of
window constraint (right) (from Suominen [38]).

Figure 4. Summary of the workflow presented in the Sections 2 and 3.

3.2. Rationale for Selecting the Wavelengths Rrs(510) and Rrs(620)

In Suominen [38] the wavelengths Rrs(443), Rrs(560) and Rrs(665) were used as they are
more closely connected to CDOM, phytoplankton and SPM. In addition, the algorithm for
the k-means clustering of time series was essentially the same as here, with the difference
that the algorithm was implemented in another software platform, R. The R implementation
was not efficient enough to handle the number of time series used in this study within a
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reasonable computation time. This limitation restricted the spatial coverage of the previous
study to the northernmost areas of the Baltic Sea. Likewise, it was not possible to form
the DTW distance matrix for the preliminary hierarchical clustering, as we have done
in this study. Therefore, this present study provides new insights both spatially and
methodologically.

It is essential to note that we are not clustering or classifying a remote sensing re-
flectance value of a certain time step in relation to another reflectance observation at the
same time. Instead, the units to be clustered are time series, which are clustered together
according to the similarities in their shapes. The selection of the wavelengths is thus
mainly based on their ability to differentiate temporal patterns and changes in time and to
a lesser extent on their ability to observe bio-geophysical characteristics of water surface in
a conventional manner.

When selecting the wavelengths for this study we emphasized how well the reflectance
time series were clustered. In Suominen [38] repeated k-means clusterings were done with
random initial cluster prototypes. This way we determined which window constraints,
DTW step patterns, and wavelengths ended up with the most valid results, in other words,
by which preliminary selections the clusters were internally most coherent and by which
selections the repetitions of the non-deterministic k-means method produced mostly labile
clusters on a map.

The time series clustering produced mostly labile clusters for Rz(560), while Rz(443)
and Rz(665) performed worse. Clusters based on Rz(443) were internally less coherent
than the clusters based on Rz(560) and Rz(665). In order to select the bands for the present
study, we also computed the correlation coefficients between simultaneous observations at
the chosen wavelengths (Rrs(443), Rrs(510), Rrs(620), and Rrs(665)) and their standardized
counterparts (Table 1). Between the observations of Rrs(443) and Rrs(510) the coefficient
was high r = 0.92, and between Rrs(620) and Rrs(665) the coefficient was even higher,
r = 0.99. Between Rrs(510) and Rrs(620) the coefficient was lower, r = 0.68. The high
mutual correspondence of the two analyzed shorter wavelengths are the result of their
very similar reflectance signals: they are more influenced by atmospheric disturbance [65,
77,78]. Furthermore, the time series distance measures are susceptible to noise in the
observational data and in the atmospheric correction phase [65,66,79]. Since the temporal
pattern of Rrs(443) and Rrs(510) had similarities in their dynamics, we chose the wavelength
from the green part of the spectrum Rrs(510). Rrs(510) and Rrs(620) did not share similar
dynamics, whereas Rrs(620) and Rrs(665) did, although their levels differed. However, we
standardized the reflectance data, and ended up with the time series Rz(620) and Rz(665),
which had very similar shapes. Thus, the wavelength Rrs(620) was chosen as a second
band.

Table 1. Correlation coefficients between simultaneous observations of Rrs(443), Rrs(510), Rrs(620),
and Rrs(665) (right) and their standardized counterparts Rz(443), Rz(510), Rz(620) and Rz(665) (left).

Rrs(443) Rrs(510) Rrs(620) Rz(443) Rz(510) Rz(620)

Rrs(510) 0.92 Rz(510) 0.94
Rrs(620) 0.45 0.68 Rz(620) 0.46 0.67
Rrs(665) 0.38 0.61 0.99 Rz(665) 0.36 0.58 0.99

3.3. Constructing Cost Matrix between Two Rrs(λ) Time Series by Applying DTW

There are several available implementations of DTW computations and time series
clustering, e.g., in R, but some of these implementations quickly become time consuming if
there is a large number of time series and we have many clusters to compare against. In
k-means clustering, for p clusters of length m and N time series of length n and no time
window constraint, one k-means iteration step requires O(pmNn) floating point operations.
A closer inspection of the calculations reveals that DTW can be performed in parallel for
each time series and each cluster. Also, in order to maximize computer memory cache
behavior, it is advantageous to use two loops, an outer loop for the time series, and an
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inner loop for the cluster prototypes. We decided to implement DTW in C using Advanced
Vector Extensions (AVX) vector instructions in order to fully utilize the parallelism of the
task. The AVX registers are 256 bits wide, accommodating 8 single precision values. On a
machine with N cores running OpenMP we can perform 8N DTW calculations in parallel.

To perform k-means and hierarchical clustering of the satellite time series we use
dynamic time warping as the metric to measure the distance between two time series X =
{x1, x2 . . . xi . . . xn} and Y = {y1, y2 . . . yj . . . yn}. We do not align time values from different
years, but instead the full alignment over 2004–2011 is the sum of the alignments over
the individual years. The similarity measure is now the alignment, which has either the
smallest sum of the absolute difference (L1 norm) or, as in our case, the square root of the
sum of the squared differences (L2 norm) of the aligned points xi, yj. This alignment process
is similar to the Needleman–Wunsch global alignment algorithm [80] but possibly with
different step patterns. In our case we supplemented the algorithm with a time window
constraint T, such that the indices of aligned points xi, yj may differ at most by T: |i-j| <= T.
Any alignment beyond T days receives a very large, essentially infinite, cost. The impact
of different values of the window constraint T was studied in Suominen [38] and in the
present study T is kept relatively short at +-10 days. For N time series {Xi}, the N2 cost
values may be calculated once and stored as a distance matrix Dij between the time series
Xi, Xj. In our case with N = 12,252, this was feasible as symmetry Dji = Dij allows us to
store only N2/2 values, requiring roughly 1 GB of storage. For substantially larger sets of
time series storing distances becomes rapidly infeasible, and the DTW distance must be
calculated online. The calculation of the Dijs can be done in parallel as the evaluation of
any Dij can be performed independently of other distances.

3.4. Clustering of Rz(λ) Time Series

Time series clustering is an intermediate phase while searching for areas of divergent
Rrs(λ) dynamics. The ultimate objective of clustering is to define a set of typical dynamics,
i.e., prototypes for the clusters. We analyze similarities and dissimilarities between Rz(λ)
time series using unsupervised k-means clustering and dynamic time warping. K-means
clustering is an iterative procedure where each cluster is represented by a prototype time
series, and in our case dynamic time warping is used to determine which cluster any given
bin time series belongs to by comparing the bin time series against the cluster prototypes.
Once all bins have been assigned to a cluster, the cluster prototype is updated using the
time series belonging to that cluster, and the iterative process is repeated until very few
bins, say less than one per mille, move between the clusters during one iteration.

K-means clustering of the time series starts with the choice of k initial cluster pro-
totypes, where k is the number of clusters sought. If the initial prototypes were selected
randomly, the results of the partitions varied, although the overall picture of the geographi-
cal borders of different clusters remained alike. The distinctions between the dynamics in
the Baltic Sea area are small and cluster validity indices did not show clear evidence of how
to select the initial prototypes [38]. In order to make the k-means clustering deterministic,
the DTW distance matrix, which was computed in the earlier step, was first clustered by
agglomerative hierarchical clustering (complete linkage) in order to form 6–12 clusters. The
prototypes of these clusters were computed in our case with DTW barycentric averaging
(DBA) [44], in which each time value of the cluster prototype is updated according to the
barycenter of the values of the time series belonging to the cluster. The satellite image time
series having the shortest DTW distance to the cluster prototypes were identified and these
time series were used as initial prototypes in k-means clustering. Hierarchical clustering of
the distance matrix and computing the prototypes were conducted in R software with the
dtwclust package [81].

The DTW distances between each bin time series and the initial prototypes were then
computed. Each time series is associated to the closest prototype as based on the DTW
distance and then a new, refined cluster prototype is computed by applying DBA. For each
iteration the k-means clustering calculates the DTW distance to the cluster prototypes and
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reassigns the time series among the clusters, according to the DTW similarity measure.
Again, this calculation can be performed in a highly parallel manner as all DTW calculations
are independent of each other. The updating of the DBAs, however, requires atomic
operations due to data races when adding the contribution from each time series to the
DBA. The parallelization and the associated atomic operations were implemented in C
using OpenMP for parallelization and OpenMP reduction clauses for the updating of the
DBAs.

3.5. Selecting the Value of k

The clusterwise mean and total mean Silhouette Indices [82] for k clusters of Rz(510)
and Rz(620) illustrate the cluster characteristics (Table 2). For each observation bin i, the
Silhouette index s(i) is defined as

s(i) = b(i)− a(i)/max{a(i), b(i)} (3)

where a(i) is the average distance between i and all other points in the same cluster C to
which bin i belongs, and b(i) is given by b(i) = minC̃ 6=C d(i,C̃), where d(i,C̃) is the average

distance of i to all observations in cluster C̃, where C̃ runs over all clusters other than C.
Higher values of the clusterwise mean indicate that the cluster is internally more coherent
and better separated from other clusters.

Table 2. Silhouette indices for Rz(510) (top) and Rz(620) (below) for different values of k. The clusters
located in the Gulf of Riga, on the eastern coast of the Gotland Basin and occasionally on the Gulf of
Finland are bolded.

Cluster ID k = 12 k = 11 k = 10 k = 9 k = 8 k = 7 k = 6

Total mean 0.11 0.10 0.10 0.11 0.11 0.13 0.11

C1 0.1 0.17 0.11 0.12 0.18 0.09 0.18
C2 0.08 0.18 0.18 0.08 0.10 0.16 0.11
C3 0.13 0.08 0.03 0.08 0.12 0.12 0.01
C4 0.15 0.11 0.10 0.12 0.05 0.02 0.11
C5 0.08 0.08 0.22 0.22 0.10 0.06 0.10
C6 0.21 0.22 0.16 0.15 0.13 0.16 0.12
C7 0.13 0.15 0.08 0.09 0.02 0.15
C8 0.11 0.07 0.10 0.13 0.09
C9 0.17 0.07 0.08 0.03

C10 0.06 0.02 0.08
C11 0.11 0.10
C12 0.03

Cluster ID k = 12 k = 11 k = 10 k = 9 k = 8 k = 7 k = 6

Total mean 0.13 0.14 0.14 0.14 0.14 0.18 0.20

C1 0.16 0.16 0.14 0.11 0.19 0.19 0.16
C2 0.20 0.18 0.10 0.20 0.09 0.13 0.11
C3 0.18 0.18 0.20 0.17 0.25 0.19 0.24
C4 0.12 0.26 0.25 0.25 0.14 0.23 0.26
C5 0.22 0.11 0.13 0.15 0.06 0.11 0.07
C6 0.13 0.07 0.13 0.06 0.18 0.07 0.07
C7 0.13 0.15 −0.01 0.05 0.07 0.00
C8 0.13 −0.03 0.07 0.17 0.10
C9 0.09 0.10 0.19 0.09

C10 0.05 0.13 0.11
C11 0.11 0.18
C12 −0.01
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In all partitions with k = 6–12 and for both Rz(λ) the clusters located in the Gulf of
Riga, in the eastern coast of the Gotland Basin and the Gulf of Finland were among the
weakest clusters (Table 2). According to the Silhouette index, the optimal value of k was
7 for Rz(510), although the indices for other values of k were close to it. For Rz(620) the
optimal value of k would be 6 or 7, whereas the index value dropped with higher values of
k. In case the aforementioned weakest clusters are neglected, the rest of the clusters are
relatively cohesive also for higher values of k. A higher k was considered to give better
insight to spatial divergences of dynamism and k = 11 was chosen to be the best option.

A number of cluster validity indices (CVI) are available to define the proper number
of clusters for analysis. The selection of k is typically made by applying multiple cluster
validity indices and the majority rule is used to select the appropriate number of clusters.
CVIs give preliminary information about the proper number of k, but the differences can
be negligible and therefore their interpretation may end up being artificial. In our study
area and with the aforementioned time series similarity measures, the distinctions between
the clusters are small, i.e., the clusters are not clearly deviating from each other (see also
Suominen [38]). Still, the time series form spatially distinctive pixel group distributions
without any information about the locations of the time series.

3.6. Areas of Distinctive Rrs(λ) Dynamics

Based on the calculated distance, clustering methods assign objects to the nearest
cluster prototype giving the impression that an object clearly belongs to one specific cluster
while being far away from other clusters. However, such hard partitions between clusters
may be the result of only marginal differences in distances to neighboring cluster proto-
types. Clusters with hard partitions do not describe the nature of open and coastal seas
adequately [38,39]. Spatially bio-geophysical and optical properties are typically chang-
ing gradually and the borders of the partitions are changing over time. Moreover, hard
partitions give a black-and-white impression about the major groups of dynamics without
essential information about the cohesion of the clusters. To avoid visual misinterpretations
on the spatiality of reflectance dynamics, we computed DTW distances from each cluster
prototype to all other point-wise Rz(λ) time series. This way we visualize the cluster mem-
berships on a continuous scale that facilitates a two-sided evaluation of the interlinkages of
dynamics: areas having the most similar dynamics and areas where the dynamics differ
most. This approach also diminishes the importance of selecting the optimal value of k
when interpreting the results.

3.7. Relations between Physical Factors and Rz(λ)

The distances between the time series of the chosen physical factors (four wind
components, precipitation, ∆SST) against Rz(λ) were computed for each year separately
(107 observations per year) and the annual distances were summed. In the Rz(λ) clustering,
the alignments were allowed within a +-10 day time window. In the cases of physical
factors and Rz(λ), only forward-looking alignments were allowed, i.e., a time step in the
physical factor time series was allowed to be aligned only with time steps in the future in
the Rz(λ) time series. The wind components and the precipitation were allowed to align
with Rz(λ) observations within the next 10 days and ∆SST with Rz(λ) observations within
the next 5 days. The DTW distances were normalized by dividing them by the sum of
the time series lengths (i.e., by 856+856). The relations between the physical factors and
the Rz(λ) were studied with the R software packages sf [83], geosphere [84], raster [85],
ncdf4 [86], rgdal [87] and dtw [75].

The relations between the reflectance time series and the physical factors are demon-
strated in Figures 5 and 6. At the earlier date there are cyanobacterial blooms in the Gotland
Basins inside the ellipses in Figure 5. Blooms are not extensively occurring in the Bothnian
Sea but there is resuspended material in the seawater within a narrow coastal zone of the
eastern side of the Bothnian Sea (A) around the red dot in Figure 5. Resuspension is a
consequence of preceding rainy and windy periods (Figure 6). Also, the SST has changed to
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colder at the same time with the elevated resuspension. A week later, calm and dry weather
prevails in the Baltic Sea region and a cyanobacterial bloom forms clear spatial patterns
in the Gotland Basins (B). Cyanobacteria has also accumulated on the sea surface in the
eastern Gulf of Finland (C) and in the open Bothnian Sea (D), due to lower winds. The
resuspension has faded in the coastal zone of the eastern side of the Bothnian Sea around
the red dot. SST has changed to warmer and the reflectance has decreased (Figure 6).
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Figure 5. MERIS RGB composition on 24 July 2008 (left) and 31 July 2008 (right). On the left, inside the blue ellipse, the
cyanobacteria is mixed in the water column and inside the yellow ellipse it is accumulated on the surface in calm conditions.
There are no cyanobacterial blooms in the northern basins (A). A week later new blooms have emerged (C,D) and under
calm conditions the blooms form clear spatial patterns on the surface (B). The red dot on the Bothnian Sea coast refers to the
Rz(620) time series in Figure 5. Figures contain modified Copernicus data, SYKE (2020).
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Figure 6. Examples of DTW alignments of standardized northward wind component, precipitation and –(∆SSTz) with
Rz(620) during 2006–2008 on the eastern coast of the Bothnian Sea (for location, See Figures 1 and 5). Note that –(∆SST) is the
opposite of SST change, i.e., a positive value means a change to the colder. The scales are displaced for clearer presentation.
The missing values of Rrs(λ) time series (open dots) are interpolated according to neighboring observations in time (red
dots). Missing values are seen especially in the late summer of 2008. The blue vertical lines in 2008 refer to MERIS RGB
imagery at 24 July 2008 and 31 July 2008 in Figure 5.

4. Results
4.1. Areas of Distinctive Rrs(λ) Dynamics in Two Spectral Channels

The k-means clustering of reflectance times series based on their DTW distances
resulted in spatially coherent clusters, i.e., only a few bins were not spatially connected to
some larger cluster entity. Sharply edged clusters are desirable compared to diffuse clusters
as this reflects the method’s ability to aggregate areas with similar dynamics without any
information about the bin locations. According to the binwise time series distances from
the prototypes of the cluster in which the bin is located, the binwise time series distances
to the cluster prototypes in question are typically shorter in the northern sea areas than in
the southern and eastern basins.

The Bothnian Bay and the Bothnian Sea (Figure 1, locations 1 and 2) had similar
spatial clusters with normalized reflectance of Rrs(510) and Rrs(620), although with Rrs(620)
the eastern coasts formed two separate clusters whereas in Rrs(510) they belonged to the
same cluster (Figures 7–10). In the next characterization of the areas of distinctive Rrs(λ)
dynamics in Figures 7 and 9, we use the signs (-) for values less than the average, (o) for
values near the average, and (+) for values higher than the average for the most typical
temporal patterns during the early, mid, and late summer.

The eastern coasts of the Bothnian Sea and the Bothnian Bay did not show clear
annually repeated temporal patterns neither with Rz(510) nor with Rrs(620). The reflectance
dynamics of the open and western Bothnian Bay clearly deviated from the Bothnian Bay
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eastern coast. The dynamics of Rz(510) in the western and open Bothnian Bay showed
weak annually repeated temporal patterns (oo-). The Rrs(620) in the open and western
Bothnian Bay was declining through the summer, resulting in the temporal pattern (+o-).
The dynamics of Rrs(510) and Rrs(620) in the open Bothnian Sea followed the pattern (-+-).
The levels of Rz(510) and Rz(620) were lower in the western Bothnian Sea (Figure 2) and
there were no recognizable temporal patterns neither with Rz(510) nor with Rz(620).

Figure 7. Areas of distinctive Rrs(510) dynamics Cn where n = 1 to 7 based on Rz(510) and the binwise
time series DTW distances from the prototypes of the clusters. The clustering result is given in the
image “C1–C7” for each cluster.
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Figure 8. The Rz(510) prototypes of the clusters, with the colors from the image “C1–C7” in Figure 7.
A moving average of ten days was used for a clearer presentation.

The pelagic and western areas of the Baltic Sea main basin (Figure 1, locations 3, 4, and
5) share similar dynamics (-+-). The temporal pattern is more obvious with Rrs(620), but it
is also seen with Rrs(510). The main basin is divided into three clusters with Rrs(620), but
all cluster prototypes resemble each other. The reflectance peak in the main basin occurred
a few weeks earlier than in the open Bothnian Sea. In computations of DTW alignments
the time window was set to +-10 days, so despite the concurrences of the prototypes, some
temporal divergence might still occur.

The near coast areas in the coastal zone of Eastern Gotland Basin (Figure 1, location
5), the coasts of Gulf of Riga (location 7), and the eastern Gulf of Finland (location 6) were
clustered together with both spectral bands. The weak temporal pattern of the Rrs(510) on
the coasts of Gulf of Riga and in the eastern Gulf of Finland was (-oo). Internal cohesion
and separation from other clusters were the weakest (Table 2) and the cluster was not
clearly separated from surrounding areas. The cluster was however repeatedly formed
also with other values of k, indicating that it forms a functional area. Also for Rrs(620) the
prototype showed a relatively even variation through the summer period (-oo).The outer
zone of the coasts of Eastern Gotland Basin (Figure 1, location 5) and central parts of the
Gulf of Riga (location 7) formed a cluster with Rrs(620). With Rrs(510) the Gulf of Finland
(location 6) belonged to the same cluster, whereas with Rrs(620) the Gulf of Finland was
separated to a cluster of its own. The distances from the cluster prototypes to the time series
of the main basin and the Gulf of Finland are short in both spectral bands, indicating that
these areas share common features in their dynamics. The dynamics of Rrs(510) followed
the temporal pattern (-+-). Despite the annually repeated temporal pattern, the cluster was
relatively weak (Table 2). Also with Rrs(620) the cluster had the temporal pattern (-+-), but
it was the least cohesive (Table 2). According to the prototype, the peak in midsummer was
not as clear as in the open sea. The temporal pattern of the Gulf of Finland was (-+-). With
Rrs(620) the period of elevated reflectance is longer than in the southern and central parts
of the main basin.
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Figure 9. Areas of distinctive Rrs(620) dynamics Cn where n = 1 to 11 based on Rz(620) and the
binwise time series DTW distances from the prototypes of the clusters. The color coding of the DTW
distances in C1 to C11 is the same as in Figure 7. The clustering result is given in the image “C1–C11”
with a specific color for each cluster.
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Figure 10. The Rz(620) prototypes of the clusters, with the colors from the image “C1–C11”. A
moving average of ten days was used for a clearer presentation.

4.2. Relations between Physical Factors and Reflectance

East- and northward winds raised the reflectance of both spectral bands on the eastern
sides of the basins (Figure 11A,B and Figure 12A,B). The effects of south- and westward
winds were less evident or sharp-edged although they were followed by increased re-
flectance in large open sea areas in the western side of the basins (Figure 11C,D and
Figure 12C,D). Precipitation had minor local effects on reflectance dynamics in some near-
coast areas (Figure 13A,B). Precipitation had no effect on reflectance dynamics in the open
sea, only in the Bothnian Sea there was a slight link between precipitation and Rrs(620)
(Figure 13B). An elevated sea surface temperature was followed by elevated reflectance
and vice versa in the open sea and western parts of the basins (Figure 14A,B). An opposite
case where a change in SST to colder was followed by elevated reflectance (and vice versa)
was typical in the coastal zones on the eastern sides of the basins (Figure 14C,D).
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Figure 11. Time series distances from (standardized) wind components to Rz(510). In reddish areas
stronger winds were more closely followed by elevated reflectance than in blueish areas. (A) north
wind, (B) east wind, (C) south wind, (D) west wind.
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Figure 12. Time series distances from (standardized) wind components to Rz(620). In reddish areas
stronger winds were more closely followed by elevated reflectance than in blueish areas. (A) north
wind, (B) east wind, (C) south wind, (D) west wind.

Figure 13. Time series distances from (standardized) precipitation with 50 km radius to Rz(λ). In
reddish areas precipitation was more closely followed by elevated reflectance than in blueish areas.
(A) north wind, (B) east wind.
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Figure 14. Upper: Time series distances from (standardized) SST change ∆SSTz to Rz(λ). In reddish
areas a change towards warmer SST was more closely followed by an elevated reflectance than
in blueish areas. Lower: Time series distances from (standardized) opposite SST change -(∆SSTz)
to Rz(λ). In reddish areas a change towards colder SST was more closely followed by elevated
reflectance than in blueish areas. (A) north wind, (B) east wind, (C) south wind, (D) west wind.

5. Discussion
5.1. Areas of Distinctive Rrs(λ) Dynamics and Their Relations to Physical Factors

The primary factor behind the open water season reflectance dynamics of the open
Baltic Sea is the abundance of phytoplankton. In the near coast areas, the rivers and
other point sources carry varying amounts of natural and anthropogenic optically active
substances, which disturb the regular dynamics. Other factors changing the dynamics
include the waves, the resuspension of bottom material, and the exchange of waters with
diverging optical properties between major basins. The anti-clockwise circulation pattern
of the basins can be identified from the shapes of the clusters. According to the binwise
time series DTW distances from the prototypes of the clusters, the edges of diverging
dynamics are relatively sharp in the northernmost basin, whereas in the main basin and
in the basins on the eastern side, the change in dynamics is more gradual. The proper
methodological choices and the dynamics of the northernmost basins were studied with
different DTW algorithms and partitioning methods in Suominen [38], and on a general
level the spatial patterns were similar to the patterns observed in this study.

In addition to abundant CDOM [88], the optical characteristics of the Baltic Sea
are strongly influenced by SPM, particularly in close proximity to the coast where SPM
originates from river discharges and coastal erosion [56]. After the deposition of inorganic
particles near the shore, the open sea SPM consists almost solely of phytoplankton and/or
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cyanobacteria [57]. Thus, there are two different water types in the Baltic Sea, open sea
vs. coastal waters, indicating distinct optical regimes that may require different ocean
color parametrization. This is needed not only when utilizing MERIS archives but also to
improve the retrieval from Sentinel-3 OLCI data [88].

The optical characteristics of the Bothnian Bay (Figure 15 right, brown and light brown)
are primarily caused by the large rivers of the northern and western coasts. Inflows of
the large rivers of the northern Bothnian Bay coasts are humic [89,90] but they carry less
suspended matter. Towards south along the coast, the rivers flow through flat agricultural
landscapes and the suspended matter is more abundant. The reflectance in the open sea
(dark brown) decreases from the early summer towards the autumn. The waters are rela-
tively oligotrophic compared to the other regions of the Baltic Sea and the phytoplankton
does not form extensive blooms. The eastern coast of the Bothnian Bay (light brown) is shal-
low, resulting in resuspension of sediments and elevated reflectance when northward and
eastward winds prevail (Figure 11A,B and Figure 12A,B). On the western coasts, westward
winds elevate reflectance in places, but resuspension is lower than on the eastern coasts
(Figures 11D and 12D). Precipitation affects especially Rrs(510) on both sides of the Bay of
Bothnia (Figure 13A). The anti-clockwise surface layer circulation of the basin circulates the
river inflows and the resuspended matter. In the open sea and western coasts the positive
change in SST is followed by elevated reflectance and vice versa (Figure 14A,B). Again, the
eastern coast behaves differently and a positive change in SST is followed by decreasing
reflectance, while a change to colder is followed by increased reflectance (Figure 14C,D). In
the former case the elevated reflectance may be caused by increased primary production
during sunny periods whereas on the eastern coast the elevated reflectance may follow
from a vertical circulation of waters during storm events, resulting in colder surface layer
waters and the occurrence of resuspended seabed material.

A dominant feature of the Bothnian Sea (Figure 15 right, blue) reflectance dynamics
is the divergence of the eastern coasts and the pelagic. The open Bothnian Sea (mid-
blue) originates from the northward surface layer water exchange with the Baltic Sea
main basin in the south. The northern Baltic Proper suffers from higher concentrations
of inorganic nutrients and excessive phytoplankton blooms in late summers. The open
Bothnian Sea cluster reflects the inflow of waters with divergent optical properties, the
drifting of phytoplankton towards north, and autochthonous primary production under
favorable conditions in the open Bothnian Sea. The increased primary production in mid
and late summer is seen in the temporal pattern (-+-). The western Bothnian Sea (light
blue) is affected by the water exchange with the Bothnian Bay in the north, which is
seen especially in Rrs(510) (Figure 2). The region is characterized by clearer waters than
the pelagic and the eastern coast, and there are no recognizable temporal patterns in the
region. Eastward and northward winds are followed by elevated reflectance on the eastern
coasts (Figure 11A,B and Figure 12A,B). According to Kratzer et al. [56], there are elevated
concentrations of inorganic suspended particulate matter in the near shore zone of the
eastern Bothnian Sea. After westward and southward winds an elevated reflectance occurs
in the open and western side of the Bothnian Sea (Figure 11C,D and Figure 12C,D). It may
indicate the drifting of more turbid coastal waters towards west, increased sun glint due
to waves or a resuspension of seabed material of shallower regions on the western side
of the Bothnian Sea, but they are not connected to coastal processes as they seem to be
on the eastern side. An SST change to colder is followed by elevated reflectance on the
eastern coast (Figure 14C,D). Upwelling may cause a phosphate enrichment of the surficial
waters and intensify the cyanobacterial bloom [91,92]. In this research the SST was allowed
to align with reflectance observations within the next 5 days, which is a short response
time for elevated primary production, due to upwelled waters. On shorter time scales the
upwelling decreases the amount of cyanobacteria as it removes the surface waters [92],
but this was not seen in our data. The biological responses are probably too slow to be
identified with reflectance data only before they are buried under other coastal processes,
and the change to lower temperature/elevated reflectance is caused by the vertical mixing
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and resuspension during storm events. Precipitation is followed by elevated Rrs(510) in
some limited coastal areas, but interestingly precipitation is followed by increased Rrs(620)
also in the open Bothnian Sea (Figure 13B). The linkages are relatively weak, but one factor
behind the increased Rrs(620) may be the atmospheric deposition of inorganic nutrients.
Although atmospheric deposition alone is not sufficient to initiate a bloom [93], it may
cause a slight increase in primary production.

Figure 15. Schematic representation of distinctive surface layer reflectance dynamics in the Baltic Sea. The rows marked
green are characterized by higher reflectance in mid-summer, whereas rows marked grey show other types of annually
repeated dynamics. In the rows with no color there were no annually repeated dynamics, although their dynamics were
internally more or less coherent.

The principal factor behind the reflectance dynamics of both spectral bands in the open
and western areas of the Baltic Sea main basin (Figure 15 right, light green) is the annual
succession of abundant phytoplankton, and these dynamics remain on the western and
southern coast of the basin. Wind components do not dominate the Rrs(510) and Rrs(620)
in near coast areas of the western main basin. The west- and southward winds tend to be
followed by increased reflectance in the open sea on the western and southern sides of
the basin (Figure 11C,D and Figure 12C,D). There are shallower regions (Figure 2) within
the area, enabling resuspension of seabed material, but other explanations may be long
fetches, wave crests and sun glint. In the northern parts of the main basin the increased
SST is followed by increased Rrs(510) and Rrs(620) and vice versa (Figure 14A,B), which is
probably connected to the accumulation of cyanobacteria to the surface layer during and
after less windy and sunny periods.

The coastal zone of Eastern Gotland Basin, the coasts of Gulf of Riga and the eastern
Gulf of Finland (Figure 15 right, yellow) are influenced by large rivers. Shallow and sandy
coasts are extensive in the S and SE part of the Baltic Sea. They are unstable environments
due to, e.g., erosion during winter and deposition of sand on the beaches in the summer,
and to the constant shifting of the substrate by winds and currents [94]. Although the
annual succession of phytoplankton inevitably affects the optical properties of the waters,
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the reflectance dynamics is governed by coastal processes like seabed resuspension after
east and northward winds (Figure 11A,B and Figure 12A,B). A removal of turbid (resus-
pension, primary production) coastal waters after southward winds with the consequent
upwelling and the cooling of the surface layer [95] was not recognized from reflectance
data. Reflectance was increased in a narrow coastal zone of western Latvia and Lithuania,
and in the shallow sea areas in northern Gulf of Riga and eastern Gulf of Finland after a
cooling of the surface layer (Figure 14C,D), which is probably linked to a resuspension of
fine material [96] and a vertical mixing of waters during periods of strong winds. Also
strong precipitation increases the level of Rrs(510) and Rrs(620) in narrow coastal strips of
western Latvia and Lithuania (Figure 13A,B) due to discharges and washed out material
from land, as reported also in [56]. In this sense the eastern coasts of the main basin and
the Gulf of Finland have characteristics similar to the eastern coasts of the Bothnian Bay
and the Bothnian Sea.

The reflectance dynamics (-+-) in the outer zone of the coasts of Eastern Gotland Basin,
the central parts of the Gulf of Riga (Figure 15 right, red) and the Gulf of Finland (Table 2
chart, dark green) is typical to areas where the annual succession of phytoplankton domi-
nates the temporal pattern. The harmful algae blooms are frequent both in the main basin
of the Baltic Sea and the Gulf of Finland. In the Gulf of Riga and in the zone immediately
outside the influence of coastal processes, a continuous flow of nutrients and reduced water
exchange maintain eutrophication and excessive primary production through the summer,
whereas in the less altered regions the inorganic nutrients are consumed more rapidly.

Comparing the dynamics of the reflectance data and the selected physical factors
reveals linkages between the physical environment and the EO data. Especially the wind
has a clear effect on reflectance, mainly because it regulates the surface layer mixing. In
water areas near the coastline, this was seen as increased resuspended material. Also the
linkage between SST and reflectance was connected to both the vertical mixing of colder
waters and the behavior of phytoplankton under different weather conditions.

5.2. Applicability of the Proposed Workflow to Define Areas of Distinctive Rrs(λ) Dynamics

Although the clusters were not clearly distinctive according to the selected cluster
validity index, they formed spatially coherent and logical entities. This was achieved
without a priori information about the locations of the time series. In our approach the
clustering is a preprocessing step which helps to determine prototype time series and areas
of distinctive reflectance dynamics as gradually changing surfaces. Clusters with hard
borders do not provide an objective or illustrative view on the gradual nature of the sea
environment.

We used hierarchical clustering to predetermine the initial prototypes for partitional
clustering since the results of the partitional clustering were not fully deterministic if the
initial prototypes were selected randomly. In general, the shapes and the locations of
the clusters remained alike also with random initial prototypes. In addition the clusters
were divided logically even if the value of k was changed. The method is able to manage
large datasets in reasonable computation times (minutes and hours, not days) if k-means
clustering alone is used. Hierarchical clustering may still be used to predetermine initial
prototypes. However, in order to limit the dimensions of the DTW distance matrix it might
be necessary to sample the full data set first.

Dynamic time warping, and other techniques that allow flexible alignments between
non-simultaneous observations of time series, has a clear advantage in dynamic marine
environments compared to techniques in which the lag between the aligned observations
is rigid. Regardless of the partition method, defining areas of distinctive dynamics requires
good quality EO data and long enough time series. In our case the data consisted of eight
years, but the annual periods were limited to three and a half months. The compiled EO
data products originating from multiple EO sensors offer an interesting source for future
research also on a global scale.
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6. Conclusions

We define our approach as ocean surface dynamics partitioning as the unit of par-
titioning is dynamics as a whole. The surface layer dynamics partitioning succeeded to
identify diversity in a marginal sea, where the dynamics is unclear at times. Although we
found areas with regularly repeated temporal patterns, random and annually unrepeated
dynamics prevail in some areas. The reasons behind their seemingly stochastic variations
are multifold (e.g., currents, discharges, resuspension, upwelling), but they are still re-
garded in this study as functional areas of their own together with spatially coherent areas
having more traceable causalities. Functional areas are affected by the same dominant
environmental factors even if the cycles of the water properties are not annually repetitive
or the value of the observed parameter is not on the same level throughout the group [38].
Thus, identifying areas with similar dynamics offers important new insights to practical
water management. The importance of partitioning oceans by their dynamics or aligning
different time series (e.g., EO, atmospheric, marine) in order to study their causalities may
be emphasized when biological and ecological information is needed as background data
for models. They may work as an aid to interpret the interlinkages between biological
processes and environmental forcing [29]. This may be especially useful in boreal environ-
ments where the seasonal changes of physical factors are large. EO data and partitioning
by dynamics offer a more holistic view of environmental forcing than sparsely observed in
situ data, mainly obtained during the most intensive periods of primary production. We
applied our approach to a marginal sea in northern Europe, but any area with temporally
changing dynamics or processes on different scales can be analyzed using the approach
demonstrated here.

Typically the cycles indicate the natural state of the system as seasonal climatic con-
ditions are reflected in the properties of ocean water. The degradation of the aquatic
environment is frequently seen as a trend as an anthropogenic influence is gradually
changing the aquatic environment. Sometimes the water properties may alter seemingly
randomly since they are outcomes of multiple simultaneous processes. This contingency
may result from natural causes (e.g., the effect of a river at a given point in the sea is
dependent on the discharge and the sea currents of the day), but sometimes a natural cycle
may be disturbed by some external factor which makes the system unstable. We conclude
that following the changes in aquatic realms by biogeochemical observations at certain
temporal intervals alone is not sufficient for identifying environmental shifts. We foresee
that the changes in dynamics are sensitive measure of environmental threats and therefore
they will be important to follow in the future.
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Abbreviations

AVX Advanced Vector Extensions
CCM Cumulative Cost Matrix
CDOM Colored Dissolved Organic Matter
CVI Cluster Validity Index
CMEMS Copernicus Marine Environment Monitoring Service
Dij DTW distance matrix between time series at i and j
DBA Dynamic time warping Barycentric Average
DTW Dynamic Time Warping
EOHC Earth ObservationHierarchical Clustering
k Number of clusters
LCM Local Cost Matrix
MERIS Medium Resolution Imaging Spectrometer
NetCDF Network Common Data Form
P Observed value of the physical factor
PzPC Standardized PPartional Clustering
µp Mean of P
σp Standard deviation of P
Rrs(λ) MERIS reflectance value at wavelength λ

Rz(λ) Standardized Rrs(λ)
µR(λ) Annual mean of Rrs(λ)
σR(λ) Annual standard deviation of Rrs(λ)
s(i) Silhouette index for time series at i
SPM Suspended Particulate Matter
SST Sea Surface Temperature
∆SST SST minus the median SST of five preceding days
∆SSTz Standardized ∆SST
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