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On k-abelian equivalence and generalized Lagrange spectra
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1. Introduction. The critical exponent of an infinite word w is the
supremum of exponents of fractional powers occurring in w. Famously, Thue
[30] showed in 1906 that the fixed point of the substitution 0 7→ 01, 1 7→ 10,
now known as the Thue–Morse word due to Morse’s independent contri-
bution [21], has critical exponent 2, meaning that it avoids powers with
exponent at least 3. The notion of critical exponent is central in the study
of powers and their avoidance, which have since Thue been a central theme
in combinatorics on words.

Another important subject in combinatorics on words is the theory of
Sturmian words. These are a large class of extensively studied words with
strong connections to number theory, particularly to continued fractions (see,
e.g., [2], [17, Ch. 2], [25, Ch. 6] and the references therein). The powers oc-
curring in Sturmian words are well-understood, and a formula for the critical
exponent of a Sturmian word was determined by Damanik and Lenz [7] and
Justin and Pirillo [13]. For example, the critical exponent of the Fibonacci
word, the fixed point of the substitution 0 7→ 01, 1 7→ 0, is (5 +

√
5)/2, as

was already derived in [20]. The critical exponent of the Fibonacci word is
minimal among all Sturmian words.

In recent years, there has been a substantial amount of research in gen-
eralizations of the concept of a power. A popular generalization is that of an
abelian power; other generalizations are k-abelian powers (see below) and
those based on k-binomial equivalence [27]. Two words u and v are abelian
equivalent, written u ∼1 v, if one is obtained from the other by permuting let-
ters. If u0, u1, . . . , un−1 are abelian equivalent words of length m, then their
concatenation u0u1 · · ·un−1 is an abelian power of exponent n and period m
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(only integer exponents are considered). Thus an abelian power is a general-
ization of the usual notion of a power: the abelian equality relation is used in
place of the usual equality relation. Questions regarding abelian powers were
already raised by Erdős [8] in 1957. More recently there has been a burst
of activity on the subject starting, perhaps, with the 2011 paper [26] by Ri-
chomme, Saari, and Zamboni. See, e.g., the references of [9] and especially
the papers [24, 28, 9, 10] related to Sturmian words.

Fici et al. [9] studied the abelian critical exponents of Sturmian words and
showed that there are abelian powers of arbitrarily high exponent starting at
each position of a Sturmian word, a result also obtained in [26]. This means
that directly generalizing the notion of a critical exponent to the abelian
setting only in terms of the exponent does not produce a quantity of interest
(at least for Sturmian words). Thus an alternative definition was adopted
in [9]. The abelian critical exponent of an infinite word w is defined as the
quantity

(1) lim sup
m→∞

{n/m : u is an abelian power of exponent n and period m
occurring in w},

measuring the maximal ratio between the exponents and periods of abelian
powers in w. This alternative definition does lead to an interesting quantity.
The abelian critical exponent of a Sturmian word can be finite or infinite,
and again the Fibonacci word has minimal exponent, this time the value
being

√
5.

Surprisingly, the set of abelian critical exponents of all Sturmian words
turns out to coincide with the Lagrange spectrum. The Lagrange constant
of an irrational α is the infimum of the real numbers λ such that for every
c > λ the inequality |α − n/m| < 1/cm2 has only finitely many rational
solutions n/m. The Lagrange constant λ(α) of α is computed as follows:

λ(α) = lim sup
t→∞

(qt‖qtα‖)−1 = lim sup
t→∞

([at+1; at+2, . . .] + [0; at, at−1, . . . , a1]),

where [a0; a1, a2, . . .] is the continued fraction expansion of α, and (qk) is the
sequence of denominators of its convergents (‖x‖ measures the distance of
x to the nearest integer). The connection here is that for a fixed Sturmian
word, the number n in (1), when maximal, equals the integer part of 1/‖mα‖
for a certain irrational α (for details, see Section 2 and Lemma 3.8).

The Lagrange spectrum is the set of finite Lagrange constants of irra-
tional numbers. The Lagrange spectrum has been studied extensively, but
many of its properties still remain a mystery. The spectrum has a curious
structure: its initial part inside the interval [

√
5, 3) is discrete as shown by

Markov already in late 19th century [18, 19], but it contains a half-line as
was famously proven by Hall [12] in 1947. Good sources of information on
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the Lagrange spectrum are the monograph of Cusick and Flahive [6] and
Aigner’s book [1].

Another relatively recent development in combinatorics on words is the
systematic study of a generalization of abelian equivalence called k-abelian
equivalence initiated by Karhumäki, Saarela, and Zamboni [15]. This gener-
alization originally appears in a 1980 paper of Karhumäki [14]. Two words
u and v are said to be k-abelian equivalent, written u ∼k v, if |u|w = |v|w
for each nonempty word w of length at most k (here |u|w stands for the
number of occurrences of w as a factor of u). Thus 1-abelian equivalence is
simply the abelian equivalence discussed above. The k-abelian equivalence
relation is clearly an equivalence relation, but it is also a congruence rela-
tion. For k = 1, 2, . . . , the corresponding k-abelian equivalence relations can
be seen as refinements of the abelian equivalence relation approaching the
usual equality relation. The k-abelian equivalence has been studied espe-
cially from the points of view of factor complexity and power avoidance; for
more information, see the recent paper [4] and its references.

The purpose of the current paper is to generalize the research of [9] on
abelian critical exponents of Sturmian words to the k-abelian setting. That
is, we use the general k-abelian equivalence in place of abelian equivalence
to obtain the notion of k-abelian critical exponent, and study the set Lk
of k-abelian critical exponents of Sturmian words. As L1 is the Lagrange
spectrum, the sets Lk for k > 1 can be seen as combinatorial generalizations
of the Lagrange spectrum.

Our main contribution is the characterization of the k-Lagrange spectrum
Lk in terms of L1. Our result, Theorem 3.12, states that the k-abelian critical
exponent of a Sturmian word s with abelian critical exponent K equals cK
for a particular constant c, 0 < c < 1, which depends on k and s. The relation
between L1 and Lk is thus quite simple. However, the sets Lk inherit the
complicated structure of the Lagrange spectrum L1. We show that for k > 1
we have Lk ⊆ (

√
5/(2k − 1),∞), the number

√
5/(2k − 1) being the least

accumulation point of Lk (Theorem 3.14). Moreover, we prove that the set
Lk is dense in (

√
5/(2k − 1),∞) (Theorem 3.15). This contrasts the case

k = 1 where the initial part of L1 is discrete. The set L1 is known to contain
a half-line. We do not know if Lk contains an analogous half-line for k > 1;
we leave this problem open.

Our approach is to first give an arithmetical and geometric interpretation
for what it means for two factors of a Sturmian word to be k-abelian equiv-
alent, and then to employ continued fractions to derive our results. This ap-
proach is similar to that of [9] where the usage of continued fractions was cru-
cial. The arithmetical interpretation complements the combinatorial meth-
ods of [15]: we make some results of [15] on Sturmian words more precise.
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Our approach also makes it possible to efficiently find the possible exponents
and locations of k-abelian powers occurring in a given Sturmian word.

The paper is organized as follows. In Section 2, we give the necessary def-
initions and background information on Sturmian words and number theory.
After this we present the main results and their proofs in Section 3. Section 4
provides further discussion on some matters raised in Section 3. Finally, Sec-
tion 5 concludes the paper with open problems.

2. Preliminaries. We use standard terminology from combinatorics on
words; we refer the reader to the book [17] for any undefined terms. The
words considered in this paper are finite or infinite binary words over the
alphabet {0, 1}. We distinguish infinite words from finite words by referring
to the former with boldface symbols. By |w| we mean the length of the finite
word w. The nth power of a finite word w is the word obtained by repeating
it consecutively n times, and it is denoted by wn. For the infinite repetition
of w, we use the notation wω. An infinite word is ultimately periodic if it
can be written in the form uvω for some finite words u and v; otherwise it
is aperiodic.

We denote by |w|u the number of occurrences of the nonempty word u
as a factor of w. If u and v are finite words over an alphabet A, then u
and v are abelian equivalent, written u ∼1 v, if |u|a = |v|a for each letter
a of A. Let then k be a fixed positive integer. We say that u and v are
k-abelian equivalent, written u ∼k v, if |u|w = |u|w for each word w of length
at most k. Notice that if k = 1, then k-abelian equivalence is simply abelian
equivalence. For words of length at least k− 1 we can alternatively say that
u ∼k v if and only if u and v have a common prefix and a common suffix of
length k − 1 and |u|w = |u|w for each word w of length k [15, Lemma 2.3].
Thus, for words of length at most 2k−1, the k-abelian equivalence is in fact
the equality relation [15, Lemma 2.4]. The k-abelian equivalence relation
is a congruence relation. If u0, u1, . . . , un−1 are k-abelian equivalent words
of length m, then their concatenation u0u1 · · ·un−1 is a k-abelian power of
exponent n and period m. In this paper, we consider only nondegenerate
powers, that is, we assume that n ≥ 2.

Recall that every irrational real number α has a unique infinite continued
fraction expansion:

(2) α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
with a0 ∈ Z and at ∈ Z+ for t ≥ 1. The numbers ai are called the partial
quotients of α. By cutting the expansion after t+1 terms, we obtain a rational
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number [a0; a1, a2, a3, . . . , at], which we denote by pt/qt. These rationals pt/qt
are the convergents of α. The convergents of α satisfy the best approximation
property, that is,

‖qtα‖ = min
0<m<qt+1

‖mα‖

for all t ≥ 1. Here ‖x‖ measures the distance from x to the nearest integer.
In other words, ‖x‖ = min{{x}, 1− {x}}, where {x} denotes the fractional
part of x. Two numbers with continued fraction expansions [a0; a1, . . .] and
[b0; b1, . . .] are equivalent if there exist integers N and M such that aN+i =
bM+i for all i ≥ 0. As we shall see later, continued fractions are useful in
studying Sturmian words (defined below). More details on the connection
with Sturmian words can be found, e.g., in [22, Ch. 4].

Let α be an irrational number, and define the Lagrange constant λ(α)
of α as the infimum of real numbers λ such that for every c > λ the inequality

(3)
∣∣∣∣α− p

q

∣∣∣∣ < 1

cq2

has only finitely many rational solutions p/q. Famously Hurwitz’s Theorem
states that λ(α) ≥

√
5 for any irrational α, and there exist numbers with

λ(α) =
√
5. The numbers with finite Lagrange constant are often called badly

approximable in the literature. The Lagrange constant of α with continued
fraction expansion as in (2) is computed as follows:

(4) λ(α) = lim sup
t→∞

([at+1; at+2, . . .] + [0; at, at−1, . . . , a1]).

From this formula, it is clear that two equivalent numbers have the same
Lagrange constant. The Lagrange spectrum is the set of finite Lagrange con-
stants. This set has many curious properties, and we shall return to them
at the end of Subsection 3.2. For details on the Lagrange spectrum, see [6]
or [1].

Sturmian words are defined as the codings of orbits of points in an irra-
tional circle rotation with two intervals. This understanding is sufficient for
our purposes, but many other viewpoints exist; see, e.g., [25, 17]. Identify
the unit interval [0, 1) with the unit circle T, and let α be a fixed irrational.
The mapping R : T→ T, x 7→ {x+α}, defines a rotation on T. Partition the
circle T into two intervals I0 and I1 defined by the points 0 and {1−α}. Let
ν be the coding function defined by setting ν(x) = 0 if x ∈ I0 and ν(x) = 1
if x ∈ I1. Define sx,α as the infinite word obtained by setting its nth letter,
n ≥ 0, to equal ν(Rn(x)). Then sx,α is called the Sturmian word of slope α
and intercept x.

The above definition is not complete because we did not specify how ν
behaves at the endpoints 0 and {1− α}. There is some choice here, and we
take either I0 = [0, {1− α}) and I1 = [{1− α}, 1), or I0 = (0, {1− α}] and



6 J. Peltomäki and M. A. Whiteland

I1 = ({1 − α}, 1]. These options are determined by whether or not 0 ∈ I0.
This little detail makes no difference to us: only interior points of intervals
are considered. Let x, y ∈ T with x < y. Then by both I(x, y) and I(y, x)
we mean the interval [x, y) if 0 ∈ I0 and the interval (x, y] if 0 /∈ I0.

One particular example of a Sturmian word is the Fibonacci word f . Its
slope is 1/ϕ2, where ϕ is the golden ratio, and its intercept equals its slope.
We have

f = 01001010010010100101001001010010 · · · .
This word is also the fixed point of the substitution 0 7→ 01, 1 7→ 0.

The sequence ({nα})n≥0 is dense in [0, 1) by Kronecker’s Theorem, so
Sturmian words of slope α have a common language L (the set of factors).
Let w denote a word a0a1 · · · an−1 of length n in L. Then there exists a
unique subinterval [w] of T such that the Sturmian word sx,α begins with w
if and only if x ∈ [w]. Clearly [w] = Ia0 ∩ R−1(Ia1) ∩ · · · ∩ R−(n−1)(Ian−1)
(here the choice of endpoints matters, but we only consider interior points
of these intervals). The points 0, {−α}, {−2α}, . . . , {−nα} partition the cir-
cle into n + 1 subintervals which are exactly the intervals [w] for factors of
length n. We call these n + 1 intervals the level n intervals, and we denote
the set consisting of them by L(n). We abuse notation and write maxL(n)
(resp. minL(n)) for the maximum (resp. minimum) length of a level n in-
terval.

In the rest of this paper, we keep the slope α with continued fraction
expansion [a0; a1, a2, . . .] fixed. Whenever we talk about the convergents qt,
the level n intervals L(n), the rotation R, etc., we implicitly understand that
they relate to this fixed α.

3. Main results

3.1. k-abelian equivalence in Sturmian words. Our first aim is to
show that the k-abelian equivalence classes of factors of a Sturmian word
correspond to certain intervals on the circle T and to characterize the end-
points of these intervals. We begin by recalling the following result of [15]
(specialized to Sturmian words).

Proposition 3.1 ([15, Proposition 2.8]). Let u and v be two factors of
the same length occurring in some Sturmian word. Then u ∼k v if and only
if they share a common prefix and a common suffix of length min{|u|, k− 1}
and u ∼1 v.

This result is interesting as it shows that rather weak conditions are
enough for k-abelian equivalence in Sturmian words. This is not unique to
Sturmian words: it holds for episturmian words [15, Proposition 2.8], and in
[5, Theorem 1] it is shown that Proposition 3.1 also holds for factors of the
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Cantor word, the fixed point of the substitution 0 7→ 000, 1 7→ 101. We will
return to this matter in Section 4.

Let us also recall the following result which gives an arithmetical char-
acterization of abelian equivalence in Sturmian words.

Proposition 3.2 ([9, Proposition 3.3], [28, Theorem 19]). Let u and v
be two factors of the same length occurring in a Sturmian word of slope α.
Then u ∼1 v if and only if [u], [v] ⊆ I(0, {−|u|α}) or [u], [v] ⊆ I({−|u|α}, 1).

In other words, the two possible abelian equivalence classes for factors of
length m correspond to two intervals on the circle marked by the points 0
and {−mα}. Next we generalize Proposition 3.2 to k-abelian equivalence.

By Proposition 3.1, we need at least consider the prefixes and suffixes of
length up to k − 1. Let m ≥ 1, and define

Dk,m = {0, {−α}, {−2α}, . . . , {−min{m, k − 1}α}}.

These points divide the circle into min{m + 1, k} intervals (which are the
level min{m, k − 1} intervals), and if points x and y belong to the same
interval, then the prefixes of sx,α and sy,α of length min{m, k−1} are equal.
Now if m ≥ k − 1, then

R−(m−(k−1))(Dk,m) = {{−(m− (k − 1))α}, . . . , {−mα}},

and these points also divide the circle into k intervals. If x and y belong
to the same interval, then the prefixes of sx,α and sy,α of length m have
a common suffix of length k − 1. Set Pk,m = Dk,m ∪R−(m−(k−1))(Dk,m) if
m ≥ k − 1; otherwise set Pk,m = Dk,m.

Definition 3.3. Ik,m is the set of subintervals of T determined by the
points of Pk,m.

What me mean precisely is that to define the intervals Ii of Ik,m, we
order the points xi of Pk,m: 0 = x0 < x1 < · · · < x`−1 < x` = 1, ` = |Pk,m|,
and set Ii = [xi, xi+1) if 0 ∈ I0 and Ii = (xi, xi+1] if 0 /∈ I0 for 0 ≤ i < `.
Observe that for m < k − 1, the intervals Ik,m coincide with the level m
intervals.

As before, for the levelm intervals in L(m), by writing max Ik,m we mean
the maximum length of an interval in Ik,m. We claim that the intervals in
Ik,m determine the k-abelian equivalence classes.

Theorem 3.4. Let u and v be two factors of length m occurring in a
Sturmian word of slope α. Then u ∼k v if and only if there exists J ∈ Ik,m
such that [u], [v] ⊆ J .

Proof. Assume that m < k − 1. Then u ∼k v if and only if u = v. This
means that [u] and [v] equal one of the level m intervals. When m < k − 1,
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the intervals in Ik,m are precisely the level m intervals, so we are done. We
may thus assume that m ≥ k − 1.

Suppose first that there exists J ∈ Ik,m such that [u], [v] ⊆ J . By the
definition of the intervals in Ik,m, the words u and v share a common prefix
and a common suffix of length k − 1. Moreover, they are abelian equivalent
by Proposition 3.2 because the point {−mα} separating the two abelian
equivalence classes is among the points of Pk,m. Therefore Proposition 3.1
implies that u ∼k v.

Suppose that u ∼k v. Then u and v share a common prefix and a com-
mon suffix of length k − 1. Assume for a contradiction that [u] and [v] are
contained in distinct intervals of Ik,m. Without loss of generality, we assume
that sup [u] ≤ inf [v]. Let K be the interval containing exactly the points z
for which sup [u] ≤ z ≤ inf [v]. (If sup [u] = inf [v], then we let K be the
set containing the common endpoint of [u] and [v].) Since [u] and [v] are
contained in distinct intervals of Ik,m, there exists a point x in Pk,m such
that x ∈ K. Denote the set R−(m−(k−1))(Dk,m) by S. The point x cannot be
in Dk,m because u and v share a common prefix of length k−1. Therefore we
must have x ∈ S. Let y be an arbitrary point in S. If y ∈ T \ ([u]∪ [v]∪K),
then either [u] ⊆ I(x, y) and [v]∩ I(x, y) = ∅, or symmetrically [v] ⊆ I(x, y)
and [u] ∩ I(x, y) = ∅. Then, by the definition of S, we see that u and v
have distinct suffixes of length k− 1, which is impossible. We conclude that
S ⊆ K (see Example 3.5). Since {−mα} ∈ S, it follows by Proposition 3.2
that u and v are not abelian equivalent. This is a contradiction.

Notice that Ik,m contains 2k intervals when m ≥ 2k − 1, and m + 1
intervals when 0 ≤ m ≤ 2k − 2. This number of abelian equivalence classes
for factors of length m characterizes Sturmian words [15, Theorem 4.1].

Example 3.5. Let us consider the 2-abelian equivalence classes of length 5
of the Fibonacci word; its slope α is 1/ϕ2. On the left in Figure 1, there

[00100]

[00101]
[01001]

[01010]

[10010]

[10100]

0

−α

−2α

−3α

−4α

−5α

[0010010]

[0010100]
[0100100]

[0100101]

[0101001]

[1001001]
[1001010]

[1010010]

0

−α

−2α

−3α

−4α

−5α

−6α

−7α

Fig. 1. Factors of length 5 and 7 of the Fibonacci word on the unit circle. The outer circles
illustrate the level 5 and 7 intervals, and the inner circles the 2-abelian equivalence classes
of length 5 and 7.
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are two concentric circles. The outer circle represents the level 5 intervals
separated by the points 0, {−α} (≈ 0.62), {−2α} (≈ 0.24), {−3α} (≈ 0.85),
{−4α} (≈ 0.47), and {−5α} (≈ 0.09). The inner circle shows the endpoints
of the 2-abelian equivalence classes. The points 0 and {−α} of D2,5 are shown
in black, while the points {−4α} and {−5α} of R−4(D2,5) are represented
by circles filled with white. The concentric circles on the right in Figure 1
give the corresponding intervals and points when m = 7.

We have four 2-abelian equivalence classes for length 5: {00100}, {00101,
01001}, {01010}, {10010, 10100}. The singleton classes are special. At the
end of the proof of Theorem 3.4, we had to take some extra steps because
factors corresponding to two distinct intervals of Ik,m could share prefixes
and suffixes of length k − 1. Indeed, here 00100 and 01010 have common
prefixes and suffixes of length 1, but this does not guarantee abelian equiv-
alence.

We make an observation regarding the part of the proof of Theorem 3.4
showing that if two level m intervals [u] and [v] are included in distinct
intervals of Ik,m then u �k v. The proof shows that if u and v have common
prefixes and suffixes of length k − 1, the only way that u �k v is when all
the points in S (this is the set R−(m−(k−1))(Dm,k)) are contained in one level
k − 1 interval J . We claim that this phenomenon cannot occur if k ≥ 2 and
‖α‖ > 1/(2(k − 1)). Notice that in the case k = 2 this may happen since
‖α‖ < 1/2 always.

Assume that k ≥ 2. There exist at least two points at distance ‖α‖ in S
(e.g., {−(m−1)α} and {−mα}), which implies that the length of J is greater
than ‖α‖. If k − 1 ≥ b1/‖α‖c, then each interval determined by the points
0, {−α}, . . . , {−(k − 1)α} has length at most ‖α‖, so we conclude that
k − 1 < b1/‖α‖c. The intervals determined by the points 0, {−α}, . . . ,
{−(k− 1)α} are now the same as those determined by the points 0, 1−‖α‖,
1− 2‖α‖, . . . , 1− (k− 1)‖α‖, so all of them have length ‖α‖ except one that
has length 1− (k − 1)‖α‖. Thus J has length 1− (k − 1)‖α‖. Since R is an
isometry, J contains k−1 intervals of length ‖α‖ (defined by the points of S),
and we must have (k− 1)‖α‖ < 1− (k− 1)‖α‖, that is, ‖α‖ < 1/(2(k− 1)).
Thus we obtain the following strengthening of Proposition 3.1.

Theorem 3.6. Let u and v be two factors of the same length occurring in
a Sturmian word of slope α. Then u ∼k v if and only if they share a common
prefix and a common suffix of length min{|u|, k − 1} and u ∼1 v. Moreover,
the condition u ∼1 v may be omitted if 2(k − 1)‖α‖ > 1.

The slope of the Fibonacci word is approximately 0.38, so Theorem 3.6
says that the condition u ∼1 v can be omitted when k ≥ 3. It is rather
surprising that such a weak condition is sufficient to establish k-abelian
equivalence. This raises the question of whether it is possible to improve
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on the Fibonacci word and have an infinite word for which the condition is
redundant even when k = 2. We study this question in Section 4.

3.2. The k-Lagrange spectrum. Let Aek,α(m) be the maximum expo-
nent of k-abelian powers of periodm occurring in a Sturmian word of slope α.
We define the k-abelian critical exponent of slope α to be the quantity

lim sup
m→∞

Aek,α(m)

m
,

and we denote it by Ack(α). It measures the maximal ratio between the ex-
ponent and period of a k-abelian power in a Sturmian word of slope α; it
was introduced in the case k = 1 in [9] (in the current paper we follow the
notation of the dissertation [22] instead of the article [9]). As mentioned in
the introduction, the set of finite values of Ac1(α) is the Lagrange spectrum
[9, Theorem 5.10], so the finite values of Ack(α) can be viewed as a combina-
torial generalization of the Lagrange spectrum. Thus we give the following
definition.

Definition 3.7. The k-Lagrange spectrum Lk is the set

{Ack(α) : α is irrational} ∩ R.
In order to study Lk, we begin by showing how to compute Aek,α(m)

especially when m is a denominator of a convergent of α.
Say that a Sturmian word sx,α of slope α and intercept x begins with a

k-abelian power of period m and exponent n. The prefix of sx,α of length m
and the factor of sx,α of length m starting after this prefix are k-abelian
equivalent, so by Theorem 3.4, the points x and {x+mα} lie in a common
interval of Ik,m. The distance between these points is ‖mα‖. Thus we see
that the points x, {x+mα}, . . . , {x+(n−1)mα} all lie in a common interval
of Ik,m, which must have length at least (n−1)‖mα‖. Conversely, given such
points, we see that the word sx,α begins with a k-abelian power of period m
and exponent n. Thus by considering the longest interval in Ik,m, we obtain
the following result (recall that max Ik,m means the maximal length of an
interval in Ik,m).

Lemma 3.8. We have

Aek,α(m) =

⌊
max Ik,m
‖mα‖

⌋
+ γ,

where γ is 1 if max Ik,m 6= ‖mα‖ and 0 otherwise.

Example 3.9 (Example 3.5 continued). Observe that the interval of
the class {10010, 10100} has length α, which means by Lemma 3.8 that
using the words in the class we can form a 2-abelian power of period 5
and exponent bα/‖5α‖c+ 1 = 5. Indeed, it is straightforward to check that
(10100)2(10010)3 is a factor of the Fibonacci word. Using words from the
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class {01010} can only lead to 2-abelian powers of exponent b‖3α‖/‖5α‖c+1
= 2. The word (00100)2 is not a factor of the Fibonacci word since it contains
000. Indeed, we see using Lemma 3.8 that the exponent for this class is 1.

Interestingly, if m = 7, then the exponent for each equivalence class is 1.
The reason is that ‖7α‖ is large: we have ‖7α‖ ≈ 0.33 whereas ‖5α‖ ≈ 0.09.
The k-abelian equivalence relation for k > 1 differs in this respect from
abelian equivalence: it follows from [9, Theorem 4.7] that in any Sturmian
word there exists an abelian square of period m for each m ≥ 1.

As the number max Ik,m is generally difficult to find, let us argue next
that when m is chosen suitably then, in order to find Aek,α(m), it is suf-
ficient to study the level 2k − 2 intervals. As in Subsection 3.1, the points
Dk,m = {0, {−α}, {−2α}, . . . , {−(k − 1)α}} together with the points S =

R−(m−(k−1))(Dk,m) = {{−(m − (k − 1))α}, . . . , {−mα}} determine the in-
tervals Ik,m of the k-abelian equivalence classes. Suppose now that ‖mα‖ is
sufficiently small. Then the points of Rm(S) = Rk−1(Dk,m) are close to the
points of S. In fact, when comparing the intervals Ik,m defined by the points
of Dk,m∪S to those intervals defined by the points of Dk,m∪Rk−1(Dk,m), we
see that some intervals are shortened by ‖mα‖ and some intervals are length-
ened by ‖mα‖, but the order of the points is the same whenever ‖mα‖ is
small enough. The points {−mα} and 0 however merge, but this is irrelevant
when considering max Ik,m as we only lose a short interval of length ‖mα‖.
Now

Dk,m ∪Rk−1(Dk,m) =
{
{−(k − 1)α}, . . . , {−α}, 0, α, . . . , {(k − 1)α}

}
.

Using the fact that R is an isometry, we can study the set R−(k−1)(Dk,m ∪
Rk−1(Dk,m)) instead. This is the set of endpoints of the level 2k − 2 in-
tervals. It is quite obvious from the preceding that ‖mα‖ is small enough
whenever ‖mα‖ < minL(2k − 2). We have thus argued that whenever
‖mα‖ < minL(2k − 2), we have

|max Ik,m −maxL(2k − 2)| ≤ ‖mα‖.
Therefore we have proved the following lemma.

Lemma 3.10. Let m be a positive integer and suppose that ‖mα‖ <
minL(2k − 2). Then∣∣∣∣⌊maxL(2k − 2)

‖mα‖

⌋
− Aek,α(m)

∣∣∣∣ ≤ 1.

This lemma shows that the exponents of k-abelian powers grow arbitrar-
ily large (as we can make ‖mα‖ as small as desired). A more general result
was obtained in [15, Theorem 5.4].

With the results so far, we are able to show that in order to determine
Ack(α) it is sufficient to consider Aek,α(m) only when m is the denominator
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of a convergent. Recall that qt refers to the denominator of the tth convergent
of α.

Proposition 3.11. For all large enough t,

Aek,α(m) ≤ Aek,α(qt) + 2 for all 1 ≤ m < qt+1.

Proof. Let t≥1, and assume t is large enough that ‖qtα‖<minL(2k− 2).
Suppose that m is an integer such that 1 ≤ m < qt+1. By the best approxi-
mation property of the convergents, we have ‖mα‖ ≥ ‖qtα‖. Suppose first
that ‖mα‖ < minL(2k − 2). Then by Lemma 3.10,

Aek,α(m) ≤ maxL(2k − 2)

‖mα‖
+ 1 ≤ maxL(2k − 2)

‖qtα‖
+ 1,

so, by the same lemma, we have Aek,α(m) ≤ Aek,α(qt)+2. Suppose next that
‖mα‖ ≥ minL(2k − 2). Then

maxL(m)

‖mα‖
≤ maxL(m)

minL(2k − 2)
≤ 1

minL(2k − 2)
,

so Aek,α(m) is bounded by a constant. Thus Aek,α(m) < Aek,α(qt) for all
large enough t. The sequence (Aek,α(qi))i reaches arbitrarily high values due
to Lemma 3.10.

Proposition 3.11 can be improved to Aek,α(m) ≤ Aek,α(qt) + 1 for all
1 ≤ m < qt+1 and t large enough. Proving this would complicate the argu-
ment significantly, and we do not need the improved statement in this paper.
It is very well possible that Aek,α(qt) > Aek,α(qt+1). For example, if k = 2 and
say α = [0; 3, 1, 1, 1, 100, 1], then the sequence of denominators of convergents
is 1, 3, 4, 7, . . . , and it is readily computed that Aek,α(4) = 6 > 5 = Aek,α(7).
On the other hand, if k = 1, then Aek,α(m) < Aek,α(qt) for all t and
1 ≤ m < qt as can be readily observed from [9, Theorem 4.7].

For t large enough, let m be an integer such that qt ≤ m < qt+1. It
follows from Proposition 3.11 that

Aek,α(m)

m
≤

Aek,α(qt) + 2

qt
,

so we can conclude using Lemma 3.10 that

Ack(α) = lim sup
t→∞

Aek,α(qt)
qt

= lim sup
t→∞

maxL(2k − 2)

qt‖qtα‖
.

When k = 1, we obtain

Ac1(α) = lim sup
t→∞

1

qt‖qtα‖
,

so
Ack(α) = maxL(2k − 2) · Ac1(α).

Let us restate the result.
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Theorem 3.12. We have Ack(α) = maxL(2k− 2) ·Ac1(α) for all k ≥ 1.

Notice that Ac1(α) is finite if and only if α has bounded partial quotients;
see (4). Therefore Ack(α) is finite if and only if α has bounded partial quo-
tients. As is well-known, the numbers with bounded partial quotients form
a set of measure zero.

As mentioned in Section 2, equivalent numbers have the same Lagrange
constant. By Theorem 3.12, this is no longer true when k > 1 because
maxL(2k − 2) depends on α. It is not difficult to convince oneself that the
points obtained in Theorem 3.12 from a single class of equivalent numbers
form a dense set. This is what we shall prove next. As a corollary we obtain
Theorem 3.15, which states that the k-Lagrange spectrum Lk is itself dense
when k > 1. In the statement of the following lemma, maxLβ(`) is the
maximal length of a level ` interval of slope β.

Lemma 3.13. Let α be irrational. The set {maxLβ(`) : β is equivalent
to α} is contained and dense in

(
1
`+1 , 1

)
for all ` > 1.

Proof. Clearly maxLβ(`) >
1
`+1 since there are `+1 level ` intervals. Let

γ ∈
(

1
`+1 , 1

)
, and suppose without loss of generality that it is irrational. By

cutting the continued fraction expansion of 1− γ after finitely many partial
quotients, we obtain a fraction that is as close to 1 − γ as we desire. Thus
we can find a rational β such that `β is arbitrarily close to 1 − γ (from
either side). Now form an irrational β′ by continuing the continued fraction
expansion of β in such a way that it is equivalent to α. By selecting the
partial quotients appropriately, we find that `β′ is arbitrarily close to 1− γ.
Consider now the level ` intervals of slope β′. The longest such interval
clearly has length 1− `β′ since γ > 1

`+1 . Since 1− `β′ is as close to γ as we
like, the claim follows.

As the smallest element of the Lagrange spectrum is
√
5, Theorem 3.12

and Lemma 3.13 imply the following result.

Theorem 3.14. Let k > 1. Then Lk ⊆
( √

5
2k−1 ,∞

)
and

√
5

2k−1 is the least
accumulation point of Lk. In particular, the set Lk is not closed.

This proposition should be compared with the fact that L1 is closed [6,
Ch. 3, Theorem 2]. Notice that it also follows that when k > 1, the Fibonacci
word no longer has minimal critical k-abelian exponent among all Sturmian
words.

Let us now recall some remarkable facts about the Lagrange spectrum.
Hall’s ray is the largest half-line contained in L1. It was proven by Hall [12]
that the half-line [6,∞) is contained in L1. Through a series of improvements
by several researchers, it was finally determined by Freiman [11] that Hall’s
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ray equals [cF ,∞), where cF is the Freiman constant

cF =
2221564096 + 283748

√
462

491993569
= 4.5278295661 . . . .

The detailed history and references can be found in [6, Ch. 4]. Hall’s result
together with Theorem 3.12 and Lemma 3.13 implies the following theorem.

Theorem 3.15. The k-Lagrange spectrum Lk is dense in
( √

5
2k−1 ,∞

)
when

k > 1.

Proof. By Lemma 3.13 and Hall’s result, the intervals
( √

5
2k−1 ,

√
5
)
and(

cF
2k−1 ,∞

)
are dense with points of Lk. Now cF < 6, so cF

2k−1 ≤ 2 <
√
5,

meaning that these dense sets overlap.

We do not know if Lk contains a half-line when k > 1. If true, this is
not a straightforward consequence of Hall’s and Freiman’s results: the union
of the dense subsets obtained from each θ ∈ [cF ,∞) by Lemma 3.13 is not
automatically a half-line. This poses an interesting open problem.

Question. Does Lk contain a half-line when k > 1? If so, what is the
largest such half-line? Is it

(
cF

2k−1 ,∞
)
?

It is conceivable that a point in L1 below cF could map to cF
2k−1 . Moreover,

L1 could contain an interval below cF (see below) that could produce an
interval in Lk.

The usual Lagrange spectrum is not dense between
√
5 and cF . In fact,

substantial amount of research has been done on maximal gaps occurring in
this interval (see for instance [6, Ch. 5]). It is known for example that the set
[
√
5, 3] ∩ L1 is discrete and that the interior of the interval [

√
12,
√
13] does

not include any points of L1 while its endpoints are in L1. It is unknown if L1
contains an interval below cF . The existence of such an interval could show
that Lk also contains an interval below cF

2k−1 , but it is plausible that this could
also happen for other reasons. For example, it is possible for uncountably
many numbers to have the same Lagrange constant, so an interval could
be produced by means of Lemma 3.13. One such example is the number 3;
it is the Lagrange constant of uncountably many numbers [29, Sect. IV.6,
Theorem 3]. We do not believe that this particular example would provide
an interval; we just mention it is a possibility. It is known that the part of
L1 below

√
689/8 has measure zero [3]. It seems to us that studying intervals

in Lk for k > 1 is of comparable difficulty as the study of intervals in L1.
Let us also point out that it is easy to come up with numbers greater

than
√
5/(2k − 1) that are not in Lk. The two smallest elements of L1 are√

5 and
√
8, so any point in Lk between

√
5/(2k − 1) and

√
8/(2k − 1) is

of the form maxLα(2k − 2) ·
√
5 for some α equivalent to the golden ratio.
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The number maxLα(2k− 2) is always irrational, so rational multiples of
√
5

between
√
5/(2k − 1) and

√
8/(2k − 1) are not in Lk.

3.3. The spectrum L∞. As mentioned in the introduction, when the
critical exponent is considered for the equality relation, it is typical to just
measure the supremum of fractional exponents, not the ratio of the exponent
and the period. In this subsection, we briefly remark what happens if we look
at the ratio instead.

Analogous to what we have done already, we set

Ac∞(α) = lim sup
m→∞

Ae∞,α(m)

m
,

where Ae∞,α(m) is the maximum integer exponent of a power of period m
occurring in a Sturmian word of slope α. We further set

L∞ = {Ac∞(α) : α is irrational} ∩ R.
We show next that the set L∞ contains every nonnegative real number.

Proposition 3.16. We have L∞ = R≥0.

Proof. Consider powers occurring in a Sturmian word of slope α having
continued fraction expansion [0; a1, a2, . . .] and a sequence of convergents
(pt/qt)t. It is well-known that if m is not a denominator of a convergent of α,
then any power of periodm has exponent at most 2 (see, e.g., [7, Lemma 3.6]
or [22, Theorem 4.6.5]). Moreover, if m = qt with t > 1, then the highest
integer exponent of a power of period m is at+1 + 2 [7, Lemma 3.4], [22,
Theorem 4.6.5]. Given that we have chosen the partial quotients a1, a2, . . . , at
and thus determined the convergent qt, we have complete freedom to choose
at+1 to make the ratio (at+1 + 2)/qt behave as we like.

If the sequence (at)t of partial quotients is bounded, then we clearly
have Ac∞(α) = 0 because the sequence (qt)t is increasing. Hence 0 ∈ L∞.
Let then λ be a fixed positive real number, and let k1 be the least inte-
ger such that k1 > 1 and that there exist nonnegative integers r1 and
s1 such that 0 ≤ s1 < qk1 and λ − (r1 + s1/qk1) < 1/2. Set a1,1 = a1,
a1,2 = a2, . . . , a1,k1 = ak1 , a1,k1+1 = max{1, qk1(r1 + s1/qk1) − 2}, and let
a1,t = 1 for t > k1 + 1 to obtain a new number α1 with continued frac-
tion expansion [0; a1,1, a1,2, . . .]. Analogously, select then k2 to be the least
positive integer such that k2 > k1 and that there exist nonnegative inte-
gers r2 and s2 such that λ − (r2 + s2/q1,k2) < 1/4 where q1,k2 is the de-
nominator of the k2th convergent of α1. Set a2,1 = a1,1, . . . , a2,k2 = a1,k2 ,
a2,k2+1 = max{1, q1,k2(r2 + s2/q1,k2)− 2}, and let a2,t = 1 for t > k2 + 1 to
again obtain a number α2 with continued fraction expansion [0; a2,1, a2,2, . . .].
Repeating this procedure yields sequences (kt), (rt), (st) and a number β
with continued fraction expansion [0; b1, b2, . . .] and a subsequence (p′t/q

′
t)t
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of its convergents such that

λ− bkt+1 + 2

q′kt
<

1

2t

for all t ≥ 1 (the numbers at,kt+1 will grow arbitrarily large since λ > 0). We
conclude that

lim sup
t→∞

Ae∞,β(q′kt)
q′kt

= λ,

so Ac∞(β) ≥ λ. As we have constructed the sequence (bt)t in such a way
that bt = 1 whenever ki < t < ki+1 for some i, it follows that for such i and
t large enough

bt + 2

q′t−1
≤ bki + 2

q′t−1
<
bki + 2

q′ki−1
≤ λ.

Therefore Ac∞(β) = λ and λ ∈ L∞.

4. Additional questions. At the end of Subsection 3.1, we asked if
there exist infinite words for which the condition of Theorem 3.6 on abelian
equivalence is redundant. The next proposition tells us that such binary
words exist but that they are rather uninteresting.

Proposition 4.1. Let w be an infinite binary word such that for each
of its factors u and v of equal length we have u ∼1 v if they share a common
prefix and a common suffix of length 1. Then w is ultimately periodic.

Proof. Suppose for a contradiction that w is aperiodic, so either 00 or 11
occurs in w. By symmetry, we assume that 00 is a factor of w. If 0011 occurs
also, then 001 and 011 occur. This is impossible as then by our assumption
we should have 001 ∼1 011; this is clearly absurd. Thus 0010n1 occurs in w
for some n ≥ 1. The factors 000 and 010 are also incompatible, so 000 cannot
occur in w. Hence 101 and 1001 are the only possible factors of the form
10n1 with n ≥ 1. Since (100)ω is not a suffix of w, either 101 occurs or 10011
must occur. We already ruled out the latter case, so 101 occurs, meaning that
111 is not a factor of w. If 11 is not a factor, then w has a suffix that is a
concatenation of the words 10 and 100. Suppose then that 11 is a factor. The
only way this is possible is that we have an occurrence of 1011. This means
that we do not see the incompatible factor 1001. Hence 00 occurs only as a
prefix of w. We have concluded that w has a suffix that is a product of the
words 01 and 011. Thus by mapping w with the coding 0 7→ 1, 1 7→ 0, we
obtain a word satisfying the assumptions and which has a suffix that is a
product of 10 and 100. Thus without loss of generality, we may assume that
w has such a suffix.

If 100(10)n100 occurs in w for two distinct values of n, then for some
m ≥ 0 both 00(10)m100 and 0(10)m+110 are factors of w. By our assump-



k-abelian equivalence and generalized Lagrange spectra 17

tion, we must have 00(10)m100 ∼1 0(10)m+110, but this is false. Therefore
100(10)n100 can occur only for a single value n, and w must have either of
the words (10)ω or (100(10)n)ω as a suffix. This is a contradiction.

However, if we allow more than two letters, then aperiodicity is possible,
as is shown by the next proposition. Let A and B be alphabets. Recall that a
substitution f : A∗ → B∗ is a mapping such that f(uv) = f(u)f(v). The im-
age of the infinite word a0a1 · · · under f is the infinite word f(a0)f(a1) · · · .
If w = uv, then by wv−1 we mean the word u. In the next proof, we
need to know some properties of Sturmian words; these can be found in
[17, Ch. 2]. Firstly, Sturmian words are balanced. This means that for any
two factors u and v of equal length occurring in some Sturmian word, we
have

∣∣|u|0−|v|0∣∣ ≤ 1. Secondly, in a Sturmian word, there exists exactly one
right special factor of length n for all n ≥ 0. A factor u of an infinite word
w is right special if ua and ub occur in w for distinct letters a and b.

Let σ be the substitution defined by σ(0) = 02, σ(1) = 1. It is easy to
see that the word σ(s) is aperiodic for any Sturmian word s.

Proposition 4.2. Let k ≥ 2 and s be a Sturmian word containing 00. Let
u and v be two factors of the same length occurring in σ(s). Then u ∼k v
if and only if they share a common prefix and a common suffix of length
min{|u|, k − 1}.

Proof. Suppose that u and v share a common prefix and a common
suffix of length min{|u|, k − 1}. We proceed as in the proof of [15, Proposi-
tion 2.8] (this is the proof of Proposition 3.1). In this proof it is assumed that
u ∼1 v and a counting argument is used to show that u ∼`+1 v if u ∼` v for
1 ≤ ` < k. By a careful analysis, it can be seen that this counting argument
only uses the fact that there exists at most one right special factor of length
n for each n. Let w and w′ be two right special factors of equal length occur-
ring in σ(s). It is clear that both w and w′ must end with 2. By the form of
the substitution σ, there exist words a and b and unique factors x and y of
s such that a, b ∈ {ε, 0}, |x| ≥ |y|, aw = σ(x), and bw′ = σ(y). Since w and
w′ are right special, so are x and y. It follows that y is a suffix of x, so w
and w′ are suffixes of σ(x). Since |w| = |w′|, they are equal. Thus we argued
that u ∼k v if and only if they share a common prefix and a common suffix
of length min{|u|, k − 1} and u ∼1 v. Thus it suffices to show that u ∼1 v.

As above, there exist words a and b and unique factors x and y of s
such that a ∈ {ε, 0}, b ∈ {ε, 2}, aub = σ(x), and avb = σ(y). Let us show
next that x and y are abelian equivalent. The claim follows from this. Since
k ≥ 2, the words x and y end in a common letter c. Now x ∼1 y if and only
if xc−1 ∼1 yc

−1, so by replacing x with xc−1 and y with yc−1 if necessary,
we may assume that x and y end with 0 (1 is always preceded by 0 since
s is balanced). For each binary word w, we have |σ(w)| = |w| + |w|0. Since
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|u| = |v| (if x and y were replaced as above, we must replace u and v
respectively by σ(xc−1) and σ(yc−1)), we have

(5) |x|+ |x|0 = |y|+ |y|0.

Suppose without loss of generality that |x| ≥ |y|, and write x = zt with
|z| = |y|. By plugging this into (5), we deduce that |t| + |t|0 = |y|0 − |z|0.
Since s is balanced, we see that |t|+ |t|0 ≤ 1. Thus t = ε or t = 1. The latter
case is impossible as x ends with 0, so t = ε. Thus |x| = |y| and so |x|0 = |y|0
by (5). This means that x ∼1 y.

Sturmian and episturmian words have the property of Proposition 3.1
and it was shown in [5] that so does the Cantor word. The authors of [5]
asked what sort of words have this property. As we remarked above in the
proof of Proposition 4.2, any infinite word having at most one right special
factor of each length also has this property. Proposition 4.2 provides more
examples of such words.

5. Further open problems. It would be nice if our combinatorial gen-
eralization of the Lagrange spectrum had some number-theoretic interpreta-
tion, perhaps in connection with rational approximations of irrational num-
bers. We are unaware of such a connection.

Question. Is there an arithmetical characterization of the k-Lagrange
spectrum Lk?

An obvious open problem is to determine the k-abelian critical exponent
of non-Sturmian infinite words. For example: what is the k-abelian critical
exponent of the Tribonacci word, the fixed point of the substitution 0 7→ 012,
1 7→ 02, 2 7→ 0? What about the Thue–Morse word? The case k = 1 is clear
for the Thue–Morse word as the whole infinite word is an abelian power of
infinite exponent and period 2.

Instead of looking at particular words or classes of words, it would be
interesting to determine the set of critical exponents of all infinite words.
In [16], Krieger and Shallit show that every real number greater than 1 is
a critical exponent of some infinite word. The result of Freiman [11] shows
that every real number greater than cF is the abelian critical exponent of
some infinite word. Our result in Theorem 3.15 shows that a dense subset of(

cF
2k−1 ,∞

)
is attainable as k-abelian critical exponents when k > 1. We are

thus led to ask the following question (1).

Question. Is every nonnegative real number the k-abelian critical expo-
nent of some infinite word?

(1) Note added in proof: The question has been solved in the positive; see [23].
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In [9], the abelian periods of factors of Sturmian words were studied (see
that paper for definitions). It was proven for example that the abelian period
of a factor of the Fibonacci word is always a Fibonacci number. The same
sort of questions could be asked in the k-abelian setting for Sturmian words
more generally. We have not attempted to study this.

Acknowledgements. We thank the referee for a careful reading of the
paper, which improved the presentation.
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Abstract (will appear on the journal’s web site only)
We study the set of k-abelian critical exponents of all Sturmian words. It

has been proven that in the case k = 1 this set coincides with the Lagrange
spectrum. Thus the sets obtained when k > 1 can be viewed as generalized
Lagrange spectra. We characterize these generalized spectra in terms of the
usual Lagrange spectrum and prove that when k > 1 the spectrum is a dense
nonclosed set. This is in contrast with the case k = 1, where the spectrum
is a closed set containing a discrete part and a half-line. We describe explic-
itly the least accumulation points of the generalized spectra. Our geometric
approach allows the study of k-abelian powers in Sturmian words by means
of continued fractions.
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