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Abstract
We consider an environment for an open quantum system described by a ‘quantum network
geometry with flavor’ (QNGF) in which the nodes are coupled quantum oscillators. The
geometrical nature of QNGF is reflected in the spectral properties of the Laplacian matrix of the
network which display a finite spectral dimension, determining also the frequencies of the normal
modes of QNGFs. We show that an a priori unknown spectral dimension can be indirectly
estimated by coupling an auxiliary open quantum system to the network and probing the normal
mode frequencies in the low frequency regime. We find that the network parameters do not affect
the estimate; in this sense it is a property of the network geometry, rather than the values of, e.g.,
oscillator bare frequencies or the constant coupling strength. Numerical evidence suggests that the
estimate is also robust both to small changes in the high frequency cutoff and noisy or missing
normal mode frequencies. We propose to couple the auxiliary system to a subset of network nodes
with random coupling strengths to reveal and resolve a sufficiently large subset of normal mode
frequencies.

1. Introduction

Networks [1, 2] describe discrete topologies that can capture the architecture of complex systems, from the
brain to societies. As an increasing number of datasets about complex systems are becoming available, the
characterization of real-world network structures has significantly enriched the understanding about the rela-
tion between network topology and dynamics. A classic result of network theory is that the statistical properties
of the complex network topology, including for instance the degree distribution, strongly affect the properties
of dynamical processes such as percolation, epidemic spreading and spin models [3]. However only recently
the scientists have realized that a large variety of network datasets have an intrinsic geometrical nature that
affects their dynamical properties.

The term ‘network geometry’ [4, 5] refers to discrete topological spaces with notable geometrical features.
These structures can be modelled by using simplicial complexes [4, 6] which are discrete structures not only
formed by nodes and links but formed also by triangles, tetrahedra and so on. A general feature of network
geometries is that they display a finite spectral dimension [7, 8], i.e. the random walks defined on these struc-
tures relax to its stationary state only algebraically like in finite dimensional Euclidean lattices. The spectral
dimension of a d-dimensional Euclidean lattice is d, however it is well known that also fractals have a finite
spectral dimension [7], and only recently it has been shown that several real network datasets also display this
important geometrical property [9].

Recently a general theoretical framework called ‘network geometry with flavor’ (NGFs) [10, 11] has been
proposed to model network geometries using simplicial complexes. The NGFs depend on the dimension d
of their building blocks and on another parameter s called flavor. For any dimension d and any flavor s the
NGFs capture the main characteristics of complex networks including modularity, small-world properties and
heterogeneous degree distribution. Moreover these topologies display also a finite spectral dimension which
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is the signature of their geometrical nature. It is also worth noting that the spectral dimension can change
significantly the dynamical properties of classical and quantum random walks [8, 12, 13], and the Kuramoto
model leading to an anomalous frustrated synchronization [14, 15].

During the recent years, network theory has also opened significant possibilities within the framework of
quantum physics [4, 16]. Indeed, the concept and use of quantum complex networks are becoming increasingly
common. Here, the interest is focused, e.g., on quantum correlations and phase transitions [17], quantum
communication networks and internet [18], quantum walks [19], and generalizing the classical concepts of
network theory to quantum domain [20, 21].

Our current interest lies on using quantum complex networks within the framework of open quantum
systems, where the environment—that an open system interacts with—consists of a network of interacting
quantum entities. Intriguing possibilities are now provided by using an open system to probe the properties of
the quantum complex network. Here, one assumes that the only available information about the quantum net-
work is the information that can be inferred by studying the properties of the probe system only. This approach
has been fully developed in the case in which the quantum network is formed by a network of harmonic quan-
tum oscillators coupled to an open system oscillator that acts as the probe [22, 23]. Moreover, the experimental
implementation of the theoretical framework and the probing schemes, have been recently proposed using a
multi-mode optical set-up [24].

Building on these results, in this paper we investigate the QNGF which is the environment of a quantum
open system (the probe) and is formed by a network of quantum harmonic oscillators coupled according to
the topology of the NGF.

Quantum algorithms to investigate the topological properties of simplicial complexes have been proposed
in previous works [25] however not using the theory of open quantum systems.

We are interested in how to obtain crucial information about the geometrical properties of the QNGF
without having any a priori knowledge of the generating mechanism of the NGF or of its structure. In particular
our main goal is to infer the value of the spectral dimension of the underlying topology of the QNGF. We
provide a connection between the eigenfrequencies of the QNGF and the eigenvalues of the Laplacian matrix
of the NGF. Using the theory of open quantum systems combined with data science we are able to probe the
value of the spectral dimension of the QNGF. Moreover, we also consider cases where the probe has limited
capacity to reveal the full set of eigenfrequencies of the oscillator network, and also when the obtained data is
noisy, i.e., influenced by random fluctuations of the eigenfrequencies. The results indeed demonstrate that the
probing scheme for the spectral dimension is rather robust when not having fully ideal setting at hand.

The paper is organized as follows. We introduce the considered quantum network model in sections 2.1
and 2.2, focusing on the topology and physical model, respectively, and introduce the open quantum system
used to probe its properties as well as the interaction term in section 2.3. Specifically, we consider networks
of identical interacting quantum harmonic oscillators where the network structure is generated with NGF.
The relation between the eigenvalues of the unweighted Laplacian matrix and the frequencies of the normal
modes of the oscillator networks is given and used to connect the spectral properties of the Laplacian matrix
with those of the physical network. In section 3 we show how the spectral dimension of the eigenvalues can be
estimated from the normal mode frequencies. In section 4, we consider the impact of small errors and missing
values on the estimate and find it to be robust to both. While the normal mode frequencies are possible to
probe with an auxiliary system, the normal mode structure can make it difficult to reveal and resolve enough
of them; we propose to couple to multiple network nodes with random couplings to avoid this problem. We
conclude in section 5.

2. Quantum network geometries

2.1. Network geometry with flavor
NGF [10] is a model of random simplicial complexes, also interpretable as hyper-graphs. Simplicial complexes
are ideal to model discrete network geometry because they are formed by geometrical building blocks such
as triangles, tetrahedra and so on. Specifically these building blocks are called simplices. A d-dimensional
simplex includes d + 1 vertices forming a fully connected graph with d + 1 nodes. A face of a simplex is a lower
dimension simplex formed by any proper subset of its nodes. A simplicial complex is formed by simplices that
are connected along their faces. The dimension of a simplicial complex is defined to be the highest dimension
of its simplices. The NGF are pure d-dimensional simplicial complexes, i.e. they are formed from a set of d-
dimensional simplices connected along their (d − 1)-dimensional faces; an NGF of d = 1 consists of links
connected through their nodes, an NGF of d = 2 of triangles connected through their links, an NGF of d = 3
of tetrahedra connected through their triangles and so on.

A d-dimensional NGF of N nodes evolves from a single d-dimensional simplex by choosing at each timestep
a (d − 1)-dimensional face to which an additional simplex is added, increasing the number of nodes by one.
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The probability to choose a particular face is affected by the number of simplices already incident with it, as
controlled by flavor s. Let nα be the number of d-dimensional simplices incident with face α minus one. The
probability Πs(α) to choose face α is given by

Πs(α) =
1

Zs
(1 + snα) (1)

where Zs is
Zs =

∑
α

(1 + snα) (2)

and the sum is over all (d − 1)-dimensional faces currently in the growing NGF, ensuring normalization.
A rich variety of simplicial complexes with distinct properties can be generated by adjusting the dimension

d, and flavor s. In particular an NGF with s = 1 evolves thanks to an explicit generalized preferential attachment
mechanism while NGFs with flavor s = −1, 0 do not obey an explicit preferential attachment rule. Addition-
ally, a d-dimensional NGF with flavor s = −1 is a discrete manifold; all (d − 1)-dimensional faces are incident
to either 1 or 2 d-dimensional simplices.

The NGFs display an emergent hyperbolic geometry [11] as well as a finite spectral dimension dS [26]
which is a further indication of their spontaneous geometric character. The spectral dimension is an impor-
tant spectral property strongly affecting the long time behaviour of the random walk defined on networks. In
particular the spectral dimension of a generic (connected) network of N nodes is defined as follows. Let L be
a Laplacian matrix of elements

Lij = δijdi − aij, (3)

where δij indicates the Kronecker delta, di is the degree of node i and aij is an element of the adjacency matrix
of the network. Let {λi} indicate the eigenvalues of the Laplacian matrix L listed in a non-increasing order, i.e.

0 = λ1 < λ2 � λ3 � . . . ,� λN , (4)

where this is valid on any connected network. If the density of eigenvalues ρ(λ) satisfies

ρ(λ) =
1

N

N∑
i=1

δ(λi − λ) ∼ λdS/2−1 (5)

for λ � 1, with the first non-zero eigenvalue (also called the Fiedler eigenvalue) λ2 vanishing in the large
network limit as

λ2 ∼ N−2/dS , (6)

then dS is called the spectral dimension of the network. Consequently the cumulative distribution ρc(λ) scales
as

ρc(λ) =
1

N

N∑
i=1

θ(λi − λ) ∼ λdS/2, (7)

for λ � 1, where θ(x) = 1 if x � 0 and θ(x) = 0 otherwise. In other words, when the Fiedler eigenvalue of
the networks λ2 goes to zero in the large network limit, and ρ(λ) and ρc(λ) has a power-law scaling for small
values of λ, the network has a finite spectral dimension. The spectral dimension for a regular lattice reduces to
the Hausdorff dimension of the lattice. In general for networks and fractal geometry, the spectral dimension
can be understood as the effective dimension of the networks as probed by a random walker moving on the
network.

NGFs display a finite spectral dimension for every flavor s ∈ {−1, 0, 1}. Interestingly the presence of a
finite spectral dimension is robust to modification of the models including non-integers flavors s = −1/m
with m > 1 and the generalization of NGFs to cell-complexes, i.e. discrete topological structures obtained by
gluing regular polytopes others than simplices such as hypercubes, orthoplex and so on.

Here for simplicity we focus exclusively on the case s = −1. In this case the spectral dimension dS is an
increasing function of d. Examples of both NGF with d = 2 and d = 3 flavor s = −1 and the scaling of the
associated ρc(λ) are shown in figure 1. From this figure it is possible to clearly appreciate that the spectral
dimension dS is increasing with increasing values of d.

2.2. Quantum network geometry with flavor
In this work we investigate the properties of a quantum network geometry called QNGF. The QNGFs are
formed by a set of N quantum harmonic oscillators interacting through the topology described by NGF. Each
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Figure 1. Examples of NGFs and cumulative distributions of eigenvalues ρc(λ). The structure is demonstrated with two small
(N = 50) networks. For both each (d − 1)-dimensional face is incident with at most two d-dimensional simplices and each
available face is equally likely to attract new simplices during growth. For d = 2 (d = 3) the resulting NGF consists of triangles
(tetrahedra). The panel on the right shows ρc(λ) for two NGFs with larger size (N = 2000) but otherwise same parameters. The
power-law scaling for λ � 1 is a sign of a finite spectral dimension dS.

quantum harmonic oscillator has the same frequency ω0 � 0, and each pair of connected oscillators is coupled
with the same interaction strength g > 0. The resulting Hamiltonian reads

H =
p�p

2
+ q�Aq, (8)

where p and q are vectors indicating the momentum and position operators of each of the N nodes of the NGF.
The matrix A present in the Hamiltonian H can be expressed in term of the Laplacian L as

A =
1

2
ω2

0I +
1

2
gL. (9)

Since the Hamiltonian (8) is quadratic in position and momentum operators and A is positive definite,
we may find a basis of non-interacting normal modes [27]. To this end let us now define the matrix U whose
columns are the eigenvectors of A, then the diagonal matrix D whose diagonal elements are the eigenvalues of
A, is given by

D = U�AU. (10)

It follows that by defining new operators for the normal modes as Q = U�q and P = U�p the Hamiltonian
takes a diagonal form where the modes are clearly decoupled, i.e.

H =
P�P

2
+ Q�DQ, (11)

and their frequencies ωi are given by Dii =
1
2ω

2
i .

We may now relate the eigenvalues of the NGF to the normal mode frequencies of the associated QNGF.
In fact from equation (9) it is clearly evident that the matrix A and the Laplacian can be diagonalized on the
same basis, i.e. the eigenvectors of A are eigenvectors of L and vice versa. Since the eigenvalues of A are given
by Dii = ω2

i /2 equation (9) implies that the eigenvalues λi of the Laplacian can be expressed in terms of the
frequencies ωi as

λi =
ω2

i − ω2
0

g
. (12)

Therefore for quantum network geometries displaying a finite spectral dimension (like QNGF), we can
consider the cumulative distribution of the normal mode frequencies Pc(ω), defined as

Pc(ω) =
1

N

N∑
i

θ(ωi − ω). (13)

The cumulative distribution of normal model frequencies Pc(ω) is related to the cumulative density of the
eigenvalues ρc(λ) of the Laplacian by

Pc(ω) = ρc((ω2 − ω2
0)/g). (14)

In presence of a finite spectral dimension dS the cumulative density of eigenvalues ρc(λ) of the NGF Laplacian
obeys equation (7). Therefore it follows that Pc(ω) scales like

Pc(ω) ∝ (ω2 − ω2
0)dS/2. (15)

This relation is key for our work as it implies that the knowledge about the normal mode frequencies reveals
information about the spectral dimension dS of the QNGF.
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2.3. QNGF as a quantum environment of an open quantum system
We consider the QNGF as a quantum environment interacting weakly with a single probe formed by an open
quantum system. By only considering local observables of the probe our general problem is to study which
properties of the QNGF can be inferred. In previous studies of quantum complex networks it has been shown
that a similar approach is able to infer several important properties of the quantum networks, e.g., the network
spectral density [22] or degree sequence [23]. Here we focus specifically on the problem of inferring the spectral
dimension of a given QNGF from the normal mode frequencies {ωi}. In this section the total Hamiltonian
is defined and the principle behind probing the normal mode frequencies is explained. Although here we
assume that the network geometry is generated with NGF, our approach is very general and can be applied to
any quantum network geometry displaying a finite spectral dimension, provided that the Hamiltonian is of
the form given by equation (8).

The open system is assumed to be an additional quantum harmonic oscillator with a Hamiltonian Hs, given
by

Hs =
p2

s

2
+

ω2
s q2

s

2
(16)

where ωs is the frequency of the probe and qs and ps are the position and momentum operators respectively.
The interaction Hamiltonian is assumed to be of the form

HI = −qsk
�q, (17)

where the vector k has elements ki � 0 indicating the interaction strength between the probe and network
oscillator i. The total Hamiltonian of the system including both the probe and the environment is therefore
given by

Htot = Hs + H + HI

=
p2

s

2
+

ω2
s q2

s

2
+

p�p

2
+ q�Aq − qsk

�q.
(18)

In the bases of the normal modes of the QNGF the total Hamiltonian Htot can be expressed as

Htot =
p2

s

2
+

ω2
s q2

s

2
+

P�P

2
+ Q�DQ − qsg

�Q, (19)

where
g = U�k. (20)

From this expression of the total Hamiltonian it can be appreciated how the eigenvalues of the Laplacian control
the physical frequencies affecting the open system while the eigenvectors affect how strong is the open system’s
coupling to each eigenmode. Indeed equation (20) relates the eigenvectors of the NGF that constitute matrix
U to coupling strengths to the network normal modes. An important special case is the one in which the probe
is coupled to a single node (oscillator). In this case k has only one non-vanishing element and g given by
equation (20) is proportional to a single left eigenvector of the Laplacian L. Since according to equation (20)
g is linear in k, and since k can be written as

k =

N∑
i=1

kie
i (21)

where ei is the vector of elements ei
j=

′δij, it follows that in the general case the vector g can be interpreted as a
linear combination of the interaction strength resulting from coupling to single nodes of the network.

Since the Hamiltonian is quadratic, the dynamics can be both solved and simulated efficiently when the
initial states of the network and the probe are Gaussian states [28]; for an explicit example see, e.g., [29].

The considered local observable is the expected value of the probe excitations, 〈a†a〉, where a† and a are
the probe creation and annihilation operators, respectively. This quantity is proportional to the energy of the
probe. Let 〈a(0)†a(0)〉 be the expected value of the probe initial excitations, and suppose it evolves with the
network according to total Hamiltonian Htot for time t, taking probe excitations to 〈a(t)†a(t)〉. The probe is
then decoupled from the network and its excitations are measured, allowing the determination of the quantity
Δn = |〈a(t)†a(t)〉 − 〈a(0)†a(0)〉|. It is well-known that an open system weakly interacting with a bosonic heat
bath must be in resonance with the bath to exchange information and excitations with it. In the present case
this means that for sufficiently weak interaction, Δn � 0 implies that ωS ≈ ωi for some i ∈ {1, 2, . . . , N}. The
principle is then to repeat the protocol for many different values ofωS; a largeΔn indicates that a normal mode
frequency is in the vicinity of the used ωS.
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In the following Section we focus on the estimation of dS assuming that we have acquired the full set of
normal mode frequencies {ωi} from probing them. We will discuss only later, in section 4, the more realistic
situation in which we are able to obtain only some approximate values of normal mode frequencies {ωi} and
briefly consider general strategies to infer {ωi} from Δn.

3. Probing the spectral dimension

Given the normal mode frequencies {ωi} of a QNGF, the objective is to estimate its spectral dimension dS. Our
strategy is to find the least-squares fit of {ωi} into a model with dS as a fitted variable. We begin by recasting
the power-law scaling in relation (15) to a linear one by considering the logarithm of both sides, namely

log(Pc(ω)) ∼ (dS/2) log(ω2 − ω2
0). (22)

The fitting is now amenable to ordinary least squares and the best fit can be found applying the Moore–Penrose
pseudoinverse [30]. While fitting to a linear model requires to know the bare frequency ω0 it is not necessary
to know it a priori since it will coincide with the smallest normal mode frequency; this follows from the well-
known property min({λi}) = 0 of Laplace eigenvalues and from equation (12).

At this point we face two additional problems. First, the normal mode frequencies are expected to behave
according to relations (15) and (22) only up to some upper limit in frequencies; therefore to estimate dS we
should have a way to truncate the frequencies appropriately. Second, we would like to be able to say something
about the quality of the estimated value and in particular be able to compare different estimates resulting
from different points of truncation. To address the first point we consider the goodness-of-fit between the
linear model and actual data derived from {ωi} for different points of truncation and choose the optimal
value; specifically, we consider the coefficient of determination R2 [31]. For the second, we consider the 95%
confidence intervals. Further details are given in the appendix A.

Remarkably, the estimate is independent of the values ofω0 and g. On the one hand this is because the value
of ω0 can in principle be probed exactly which facilitates the use of units where it becomes irrelevant. On the
other hand g can only scale the L.H.S. of equations (15) and (22); this does not affect the goodness-of-fit and
therefore not the values of R2 nor the confidence intervals as a function of the index i which determines the
cutoff frequency ωi.

A specific example of this procedure is shown in figure 2 where we consider a QNGF whose underlying
topology is NGF of N = 2000 nodes, with d = 2 and s = −1. As explained before, the particular values of
ω0 = 0.25 and g = 0.1 do not affect the estimate. In the top panel the logarithm of Pc(ω) is shown as a func-
tion of log(ω2 − ω2

0) together with R2 as a function of the point of truncation; higher values indicate a better
agreement between the fit and the data. Here dS is proportional to the slope of the linear model. Below the
corresponding confidence intervals for dS are shown. The optimal value of R2, showing the optimal point to
truncate the frequencies, is shown by the vertical dashed line. There is clear correlation between the behaviour
of R2 and the confidence intervals, with higher values leading to a smaller interval which we interpret as a more
reliable estimate for dS.

We compare the confidence intervals of figure 2 with those of two other networks which have otherwise
the same parameters but have dimensions d = 3 and d = 4, shown as a function of the truncation frequency
in figure 3. Here it can be better appreciated that the estimates are not particularly sensitive to small changes in
the truncation frequency. On the other hand, the results suggest that this robustness decreases for increasing
values of the spectral dimension dS.

Before concluding the section, we point out the possibility to fit equation (15) directly to a nonlinear model.
Similar arguments can be employed to show that such an estimate is also independent of the values of ω0 and
g, however in general finding a nonlinear least-squares fit is more challenging and in particular the available
algorithms, such as Levenberg–Marquardt method [32], nonlinear conjugate gradient method [33, 34] and
quasi-Newton methods [35], do not necessarily converge to a global optimum. This can lead to, e.g., jumps
from one local optimum to another as the cutoff frequency is varied. We also remark that there are many other
goodness-of-fit measures that could be employed; in the present case numerical experiments suggest that they
all lead to similar results.

4. Robustness to missing or noisy normal mode frequencies

As outlined in section 2.3, normal mode frequencies {ωi} can be inferred from the dynamics of an open quan-
tum system, or probe, weakly interacting with the QNGF, by performing a frequency sweep in the low frequency
regime and tracking, e.g., the change in probe excitations. In practice, only a finite set of values for ωS can be
considered and consequently the probed values of {ωi} will not be exact. On the other hand, the cumulative
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Figure 2. Estimation of the spectral dimension by a linear fit. Top panel: the transformed Pc(ω) (solid line) is shown together
with the coefficient of determination R2 (dotted line). The latter gives the goodness-of-fit of a linear model fitted to data
truncated at the position on the horizontal axis. Bottom panel: the 95% confidence intervals for the estimated value of dS, given
by the slope of the linear model fitted to truncated data. The optimal value of R2 is shown by the vertical dashed line in both
panels. The QNGF has 2000 nodes with ω0 = 0.25 interacting with a coupling strength g = 0.1, while d = 2, and s = −1.

Figure 3. Comparison of 95% confidence intervals for three QNGF with d = 2, 3, 4 and s = −1 as a function of the cutoff
frequency where data is truncated before fitting. The black dots show the estimated value of dS at the optimal value of the
goodness-of-fit measure R2. All parameter values aside from d are as in figure 2.

distribution Pc(ω) can be expected to be very robust to small errors. Provided that we are able to resolve dif-
ferent normal mode frequencies these errors would be smaller than the difference between adjacent normal
mode frequencies, leaving Pc(ω) almost unaffected. We have checked that even a very pessimistic case of i.i.d.
relative error up to 5% leaves all results shown in figures 2 and 3 virtually the same.

Rather than finding accurate values for {ωi}, the challenge is to find values for them at all. In the extreme
case where gi = 0 for some index i in equation (20) it is impossible to learn the corresponding normal mode
frequency ωi since the probe is decoupled from this normal mode. Since g is a linear combination of the left
eigenvectors of matrix L of the NGF, this is highly unlikely to occur as long as k = 0. What is to be expected,
however, is that normal modes with frequencies in close proximity to each other interact with the probe with
very different strengths. In such a case the impact on probe dynamics is dominated by the normal modes with
a stronger coupling strength, making it almost impossible to reveal the other nearby frequencies. It is also

7
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Figure 4. Left: comparison of confidence intervals derived from complete (solid lines) and partial (dashed lines) data. In the
latter case a random sample of 10% of the eigenfrequencies is discarded before estimation. The dots show the fitted value of dS at
the optimal value of the goodness-of-fit measure R2. Right: the estimated value of dS (middle line) and confidence intervals (outer
lines) when the optimal cutoff frequency is used as a function of the probability p of missing data. The network parameters are as
in figure 2.

difficult to resolve frequencies that are close and interact with the probe with similar strengths, in which case
many frequencies might be mistakenly counted as a single frequency.

We consider the case where each normal mode frequency is equally likely to be missing in figure 4. In the
left panel we fix the probability to miss a normal mode frequency to p = 0.1 and compare the confidence
intervals when full and partial set of normal mode frequencies is available, indicated by solid and dashed lines,
respectively. The fitted value of dS at the optimal cutoff frequency is shown by the dot. In the right panel we
show the estimated value of dS which maximizes the goodness-of-fit against probability p. It can be seen that
neither the confidence intervals nor the optimal estimate for dS are particularly sensitive to uniformly missing
frequencies. As p increases the trend seems to be that the optimal estimate decreases, however the result is still
reasonably close to original even at p = 0.3.

In a probing scenario missing frequencies might not be uniformly distributed, while in some cases a fre-
quency might be mistakenly interpreted as a normal mode frequency. To further investigate these challenges
we simulated a simple proof-of-concept scheme where the QNGF spectrum is swept using equidistant values
of probe frequency and the change in probe excitations Δ〈n〉 = |〈n(0)〉 − 〈n(t)〉| from initial to final time t is
considered as a function of probe frequency ωS. Prominent local maxima indicate resonance, i.e. that a normal
mode frequency is close. A general purpose non-adaptive algorithm is employed to find these maxima and dS

is estimated from the associated values of probe frequency. The considered network is a small QNGF with
N = 50, d = 2, and s = −1. We took the initial states to be vacuum for the network and squeezed vacuum
with squeezing parameter r = 2.5 for the probe. Further details about the dynamics, the frequency sweeps and
the algorithm used to find the peaks are given in appendix B–D, respectively.

The results are shown in figure 5. In the right panel an example of the behaviour of Δ〈n〉 is shown. Here
the shown values are averaged over 10 frequency sweeps. For each sweep the probe is coupled to 8 randomly
chosen network nodes. The vertical lines indicate the values of {ωi} and the dots are their probed values,
found by identifying the peaks. As can be seen, the peaks align quite well with {ωi}. Even though the majority
of normal mode frequencies are found, some are missed, including rather obvious cases in the high frequency
regime. While indeed there is a local maximum in the vicinity of every normal mode frequency it will be
seen that avoiding false positives is important for probing dS. Consequently very cautious settings for the peak
finding algorithm are used in the entire spectrum; further improvements could be expected by using a custom
algorithm optimized for the task at hand.

In the left panel we compare dS estimated from original {ωi} (dashed vertical line) to values estimated
from probed normal mode frequencies as a function of the number of performed frequency sweeps and when
a different amount of randomly selected network nodes is directly interacting with the probe. The results are
not sensitive to cutoff frequency in the vicinity of its optimal value, which is used throughout. It can be seen
that the accuracy tends to improve with the number of sweeps. This is to be expected since each set of network
nodes corresponds to a different linear combination of the associated left eigenvectors of L. Different sweeps
therefore change which normal modes are interacting too weakly to be distinguished. While the trend is not
as strong, it also seems to be the case that it is better to couple to multiple network nodes than just one. This is
actually connected to the number of false positives which tends to be highest when coupling to a small number
of network nodes; in terms of correctly identified {ωi} alone there is no evident difference between the three
cases, which all saturate to approximately 80% of {ωi} with the used algorithm and its settings.
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Figure 5. Example of spectral dimension probing with a small QNGF (N = 50). Left: change in probe excitations Δ〈n〉 as a
function of probe frequency ωS averaged over 10 sweeps when the probe is coupled to 8 randomly selected network nodes. The
normal mode frequencies are indicated by vertical lines and probed values by dots. Right: estimated dS when coupling the probe
to an indicated number of randomly selected network nodes. In both cases a new random selection is made for each sweep. The
initial state is squeezed vacuum for the probe and vacuum for the network. See main text and appendix D for details.

It may be asked what role the initial conditions play in the final result. As a matter of fact, a simple analytical
argument suggests that when the network is in vacuum the estimate can easily be made independent of the
probe initial excitations by scaling Δ〈n〉. Furthermore, the probe initial state will not change the estimate
either. The details are given in appendix E where we make the argument and verify in figure E1 that it holds to
a good approximation by simulating the spectral dimension probing for many different probe initial states and
initial excitations. We also confirm that probing remains robust when the network is in a thermal state of some
finite temperature, which suggests robustness for other network states as well, as argued in the Appendix. This
all assumes that sufficiently many measurements are done to deduce the value of Δ〈n〉. While it is conceivable
that using non-classical states for the probe can optimize the number of measurements, such considerations
are beyond the scope of the present work.

In general, the challenges revolve around resolving a sufficiently large fraction of {ωi} while avoiding false
positives, which in practice requires large differences of Δ〈n〉 when in and out of resonance. The difficulty
increases with the density of {ωi} and therefore with N and d, while it tends to decrease with longer interac-
tion times and weaker interaction. Multiple frequency sweeps and coupling to multiple network nodes can be
expected to remain beneficial. False positives in particular seem to cause a loss in the rise and fall behaviour of
the goodness-of-fit measure, moving the maximum value to high frequency regime. This could potentially be
used to eliminate them.

5. Conclusions

Finite spectral dimension is characteristic of network geometries. A very general mathematical framework for
generating a large variety of network geometries is the ‘NGF’ model. The simplicial complexes generated by
this model obey simple stochastic rules yet from these simple rules network geometries emerge spontaneously.
Here we have proposed the model QNGF which is formed by a set of quantum harmonic oscillators interacting
through a hyperbolic simplicial network geometry given by NGF. Using the relation between the normal mode
frequencies of QNGFs and the eigenvalues of the Laplacian of NGFs we show that the spectral dimension
of NGF can be probed with an open quantum system. The obtained estimate of the spectral dimension is
independent of the bare frequency of the network oscillators and the strength of the couplings between them
and is not sensitive for the choice of the cutoff frequency, especially when the spectral dimension is small. Our
estimate of the spectral dimension is formed from the normal mode frequencies of the network, which are in
principle possible to deduce from the reduced dynamics of the probe. In practice some deviation from the exact
values and incompleteness of the set of frequencies can be expected. Our results show that the estimate remains
robust to small deviations and uniformly missing frequencies. As a further proof-of-concept we simulated
probing of the normal mode frequencies and the spectral dimension for a small network. The results reveal
that misinterpreting a frequency as a normal mode frequency can be just as harmful for the estimation as
not finding one, and in particular the two effects do not tend to cancel each other out. To reduce both errors
simultaneously we propose to perform multiple frequency sweeps where the probe is coupled to multiple
randomly selected network oscillators. Indeed, in this way the estimate is close to that of the ideal case. We
expect the proposed method to be useful also for probing just the normal mode frequencies.

The QNGF provides a very flexible benchmark model to investigate quantum network geometry. In par-
ticular, this allows us to explore the robustness of the results in higher dimension, by comparing the results
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obtained on NGF evolving according to the same rules but having different dimension d of their building
blocks and different spectral dimension dS. We show that probing the spectral dimension can be performed
on QNGF formed by simplices of different dimension d although we achieved higher accuracy of the results
for lower dimensions. Interestingly the approach proposed in this work and tested on QNGF can be applied
to arbitrary quantum network geometries displaying a finite spectral dimension.

6. Data availability

The data that support the findings of this study are available upon reasonable request from the authors.
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Appendix A. Used goodness-of-fit measure and determination of parameter
confidence intervals

The coefficient of determination R2 is a measure of how well the predictions of the fit approximate the data
points, defined as

R2 =

∑
i

( fi − ȳ)2

∑
i

(yi − ȳ)2
(A.1)

where fi are predicted values and ȳ is the mean value of the data points. Notice that the denominator is propor-
tional to the variance of the data. Normally 0 � R2 � 1, where R2 = 0 indicates that the variance in the data
cannot be explained at all by the fit while R2 = 1 indicates that the variance can be explained perfectly.

Besides R2, we also considered adjusted R2 [36], Bayesian information criterion [37] and Akaike informa-
tion criterion with [38] and without [39] correction for small sample sizes. Unsurprisingly, adjusted R2 behaves
very similarly to R2, while the latter three have very similar behaviour with each other but differ from that of
R2 and adjusted R2. Specifically, for them the optimal value seems to appear at somewhat higher frequencies
than for R2 and adjusted R2, which in turn tends to correspond to a bit smaller estimate for dS.

The considered parameter confidence intervals are defined to be intervals of values such that they include
the true value 95% of the time. To determine the intervals it is assumed that the error in the parameters is
normally distributed. Let α = 1 − 0.95, n the number of data points and p = 2 the number of parameters.
Then the intervals are

dS ± t(1 − α/2, n − p) SE(dS) (A.2)

where dS is the estimated spectral dimension, t(1 − α/2, n − p) is the 100(1 − α/2) percentile of Student’s t
distribution with n − p degrees of freedom and SE(dS) is the standard error of the estimated spectral dimen-
sion. SE(dS) is determined from the parameter covariance matrix σ̂2(X�WX)−1 where σ̂2 is the variance
estimate, X the design matrix and W the diagonal matrix of weights. The diagonal elements of the parameter
covariance matrix are squares of parameter standard errors.

Appendix B. Determination of the open system dynamics

Simulation of the dynamics is considered in section 4. Throughout, we work in such units that the reduced
Planck constant � = 1 and the Boltzmann constant kB = 1. Oscillators have unit mass.

The Gaussian states considered in this work are a paradigmatic class of states in continuous-variable
quantum information science, and may be defined as the states determined completely by the second and
first moments of the momentum and position operators [40, 41]. Such states are conveniently described by
their covariance matrix σ. Consider the Hamiltonian Htot in the basis of network normal modes, given by
equation (19). Let X = {Q1, Q2, . . . , QN, qs, P1, P2, . . . , PN, ps}. In this basis the covariance matrix is

σij =
1

2
〈[Xi, Xj]+〉 −

1

2
[〈Xi〉, 〈Xj〉]+, (B.1)

where the angle brackets denote an expectation value over the state and [Xi, Xj]+ = XiXj + XjXi is the
anticommutator.
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As a Hamiltonian quadratic in momentum and position operators, Htot preserves the Gaussian character
of the state. Consequently the evolution it induces is completely captured by the evolution of the covariance
matrix. Let σ(0) be the initial form of the covariance matrix of equation (B.1) and let the probe and network
interact for time t, taking the covariance matrix to σ(t). Then the initial and final forms of the total covariance
matrix are related as

σ(t) = S(t)σ(0)(S(t))�, (B.2)

where the matrix S(t) is induced by the Hamiltonian Htot and the interaction time t.
The explicit form of S(t) is easily found by using the analytic solution for the equations of motion of non-

interacting oscillators. To apply it, the total system of network and probe is diagonalized, propagated in the
diagonal basis, and taken back to the original basis. This corresponds to decomposing S(t) as

S(t) =

(
O 0
0 O

)
Sdiag(t)

(
O 0
0 O

)�
, (B.3)

where O is the orthogonal matrix diagonalizing Htot, akin to U in equation (10), and Sdiag(t) propagates the
covariance matrix of non-interacting oscillators. Let us define the following diagonal matrices: (Δω)ii = ωi,
(Δcos)ii = cos(ωit) and (Δsin)ii = sin(ωit), where ωN+1 = ωs. Now

Sdiag(t) =

(
Δcos Δ−1

ω Δsin

−ΔωΔsin Δcos

)
. (B.4)

As an example initial state for the network we may consider the stationary state of the network Hamiltonian
H, i.e. a thermal state of some temperature T—in the simulations we take T = 0 unless stated otherwise. The
corresponding covariance matrix is diagonal in the basis of network normal modes and has elements

〈Q2
i 〉 =

1

2ωi
(2ni + 1) , 〈P2

i 〉 =
ωi

2
(2ni + 1) , (B.5)

where ni = (exp(ωi/T) − 1)−1.
The initial state of the probe is taken to be a squeezed state, i.e. a state where the second moment in one

quadrature is lowered below that of vacuum, at the expense of increasing the second moment in the other
quadrature. In the simulations we consider squeezing of the momentum. The corresponding covariance matrix
is also diagonal, with elements

〈q2
s 〉 =

1

2ωs
exp(2r), 〈p2

s 〉 =
ωs

2
exp(−2r), (B.6)

where r is the magnitude of squeezing. With this, all of the non-vanishing elements of the initial form of the
covariance matrix σ in equation (B.1) are fixed. The probe observable we consider is

〈a†a〉 = ωs

2
〈q2

s 〉+
1

2ωs
〈p2

s 〉 −
1

2

=
ωs

2
σN+1,N+1 +

1

2ωs
σ2N+2,2N+2 −

1

2
,

(B.7)

namely the probe excitations. It is proportional to the probe energy 〈Hs〉. With the initial sate of the probe
defined by equation (B.6), we get the initial value 〈a†a〉 = sinh2(r), while the value at time t is recovered by
substituting σ(t) of equation (B.2) into equation (B.7).

Appendix C. Frequency sweeps

In section 4 the quantityΔn = |〈a(t)†a(t)〉 − 〈a(0)†a(0)〉| is considered when frequency sweeps are made. The
evaluation of 〈a†a〉 is covered in appendix B, while here the protocol for frequency sweeps is explained.

A single value for Δn is acquired as follows.

(a) the value for probe frequency ωS is chosen

(b) the probe is prepared to the initial state with excitations 〈a(0)†a(0)〉
(c) the interaction Hamiltonian HI is switched on for a time t

(d) the probe excitations are measured

(e) the process is repeated as necessary to get an accurate value for 〈a(t)†a(t)〉
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In the simulations the state of the network resets with the state of the probe, but in general the results can be
expected to be similar as long as there is an energy difference between the probe and the network. To perform
a frequency sweep, the above protocol is repeated for many different values of ωS, resulting in a list of values
for Δn.

In section 4 both single and multiple frequency sweeps are considered. In the latter case a frequency sweep
is repeated for many different realizations of the interaction Hamiltonian HI, resulting in an array of values for
Δn. This array is reduced to a list of values by averaging over different HI. When choosing network nodes to
couple the probe to, each node is selected with equal probability. The selections are independent, consequently
overlap between sets for different sweeps may happen.

Appendix D. Normal mode frequency probing

Here it is explained how the results shown in figure 5 were made. Details about the determination of the
open system dynamics and the value of the quantity 〈a†(t)a(t)〉 are given in appendix B while the protocol for
frequency sweeps is covered in appendix C.

The considered network consists of identical quantum harmonic oscillators with a bare frequency of
ω0 = 0.25 interacting with uniform coupling strengths g = 0.1. The probe couples to the network in such
a way that

∑
i ki = 0.05g while all non-vanishing elements ki have the same magnitude. At t = 0 the state of

the probe is squeezed vacuum, defined by equation (B.6), with squeezing parameter r = 2.5, while the network
is in vacuum, defined by equation (B.5) with T = 0.

For all shown results, the interaction time in Δ〈n〉 = |〈a†(t)a(t)〉 − 〈a†(0)a(0)〉| is t = 40000ωs, while 500
equidistant values in the closed interval [0.9ω0, 1.1ωN] are used for ωs. Here ωN is the largest normal mode
frequency. As explained in appendix C, the frequency sweeps result in 500 values for Δ〈n〉.

To find the normal mode frequencies from the values of Δ〈n〉, we employ the following algorithm. We
perform a Gaussian blurring on the data up to scale σ = 0.55. Out of all of the local maxima of the blurred
data, we select any that have a minimum sharpness of 1 and a value at least 0.1. In other words, the data is
first convolved with a Gaussian kernel of standard deviation σ. The surviving maxima are chosen if they have
a negative second derivative greater in magnitude than 1 and a value at least 0.1. The second derivative is
estimated by padding the data by a single repetition of both the first and last element and convolving it with
the kernel {1,−2, 1}. The role of blurring is to smooth out weak peaks, and sharpness and minimum value
further restrict which surviving maxima are selected.

The spectral dimension is estimated from the found normal mode frequencies exactly the same way as in
section 3.

Appendix E. Impact of probe and network initial states

If the network is initially in its ground state and the probe is not, then changing the initial state of the probe
should have negligible impact on the estimated spectral dimension. This can be understood from the follow-
ing analytic expression of 〈a†(t)a(t)〉 (equation (15) in [42]), derived in the infinite size, weak coupling and
Markovian limits and assuming a thermal state of some temperature T for the network. It reads

〈a†(t)a(t)〉 = e−Γt〈a†(0)a(0)〉+ (1 − e−Γt)nth(ωS), (E.1)

where nth(ω) = (exp(ω/T) − 1)−1, ωS is the probe frequency and Γ depends on ωS and the network
Hamiltonian HE. When T = 0 the latter term on the R.H.S. of equation (E.1) vanishes and consequently
Δ〈n〉 = |〈a†(t)a(t)〉 − 〈a†(0)a(0)〉| becomes directly proportional to 〈a†(0)a(0)〉. Then changing probe ini-
tial excitations can only scale Δ〈n〉 and therefore can be accounted for by scaling the values of Δ〈n〉 in some
fixed way before normal mode frequencies are extracted as described in appendix D. Assuming Markovian
dynamics and that the finite size effects are not too strong the estimate is then very robust to changes in initial
conditions.

To verify that the analytic expression holds to a good enough approximation in spite of the complex normal
mode structure (which in general can lead to non-Markovian dynamics) and the finite size of the network, we
considered several different initial states for the probe. The network is the same as in figure 5, and the spectral
dimension is estimated following exactly the same steps, except that Δ〈n〉 is scaled such that its maximum
value is 35, which is approximately the same as in the left panel of figure 5. This time we consider only the case
where the probe is coupled to 8 randomly chosen network nodes and 10 frequency sweeps are made.

The results are shown in figure E1 where the estimated spectral dimension dS is compared to the difference
between probe initial excitations and nth(ω0), where ω0 is the network bare frequency. Focusing first on the
cases where the probe initial state is not the vacuum (T = 0), we can see that neither the state itself nor the
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Figure E1. Impact of different initial conditions on the estimated spectral dimension. When the probe initial state is the vacuum
the network temperature T > 0, while otherwise T = 0. The value of dS estimated directly from the full set of normal mode
frequencies is shown by the horizontal dashed line.

initial excitations affect the estimate, as expected. We also considered the case where the probe is initially in
vacuum and T > 0. In this case there is some variation in the estimate for small and intermediate temperatures
because nth(ωS) in equation (E.1) depends on probe frequency, but at high temperatures this effect becomes
negligible.

For other network states, such as multi-mode squeezed states, the last term of the R.H.S. of equation (E.1)
is replaced by a more general term that depends in particular of the probe frequency [42]. Provided that
this dependency is not significantly stronger than in the case of a thermal state our results remain directly
applicable.
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