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Abstract—We present design principles for implementing de-
coders for low-density parity check codes in CMOL-type memris-
tive circuits. The programmable nonvolatile connectivity enabled
by the nanowire arrays in such circuits is used to map the parity
check matrix of an LDPC code in the decoder, while decoding
operations are realized by a cellular CMOS circuit structure. We
perform detailed performance analysis and circuit simulations
of example decoders, and estimate how CMOL and memristor
characteristics such as the memristor OFF/ON resistance ratio,
nanowire resistance, and the total capacitance of the nanowire
array affect decoder specification and performance. We also
analyze how variation in circuit characteristics and persistent
device defects affect the decoders.

I. INTRODUCTION

In this work, we consider the use of an emerging technology
— CMOL-type memristive circuits — in decoding error cor-
recting LDPC codes. This is a computational task of practical
significance especially in digital communication and data
storage systems. We begin by briefly outlining the considered
technologies and their currently perceived significance, the
motivation for the considered area of computing, and the
specific objectives of this work.

A memristor — short for memory resistor — is a two-
terminal resistive component, whose resistance changes as
a function of the voltage across or the current through it.
Theoretical concepts regarding memristors, which were pos-
tulated by Leon Chua in 1971 [1], can be used to explain
the dynamical properties of various emerging memory devices
based on resistive switching, such as resistive RAM and
phase-change memories [2]; in this work we assume the term
memristor refers to all such devices. Various different physical
realizations of memristors have been reported, for example
in [3]–[6]. A natural circuit topology for the use of memristors
is a nanowire crossbar structure, where a memristive device
is located at each crossing of two wires. This topology allows
the realization of extremely dense non-volatile random-access
memories, as each memory cell consists of a single memristor,
whose feature size can already be scaled down to a few
tens of nanometers [3]. Memristive memory technology has
been reported to be approaching commercial viability as a
replacement for Flash and DRAM memories [7], [8].

The CMOL (CMOS/molecular hybrid) [9] architecture fa-
cilitates the realization of a programmable communication
network on top of CMOS integrated circuits by interfacing
active CMOS components with passive memristive crossbars.
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Besides memory circuits, existing proposals for practical ap-
plications of CMOL circuits have focused especially on imple-
mentations of neuromorphic systems consisting of memdevice-
based synapses and CMOS-based artificial neurons [10]–[12].
Memristive devices and systems can also be used to implement
Boolean logic directly within memory arrays, as considered
recently for example in [13]–[16]. CMOL-type realization of
parallelized memristor logic is considered in [17].

In this work we utilize a specific benefit of the CMOL
architecture: it allows programmable, nonvolatile, and area
efficient connectivity between CMOS processing elements. A
general drawback in the CMOL architecture is that addressing
several memristors simultaneously in the associated nanowire
crossbar is limited. However, we show that in the presented
LDPC decoding approach this is not a significant limitation,
as the considered decoding circuits consist of independent
parallel processing cells, and require mainly global signaling.

LDPC decoding is one of the key enablers of near-capacity
information transfer in modern digital communication systems
and memory circuits. Practical application of these codes is
facilitated by iterative decoding, which in essence allows a
shift from a complex global decoding problem to operating a
large number of relatively simple parallel processing elements
with complex interconnections. In general, added intercon-
nection complexity in LDPC coding improves code perfor-
mance, but presents significant implementation challenges in
energy-efficient decoder hardware realizations. In this work
we demonstrate how the CMOL architecture can be used
to implement reconfigurable iterative decoding with simple
CMOS designs, yielding low power and energy consumption
using a 130 nm CMOS technology.

Compared to conventional purely CMOS-based LDPC de-
coders, the considered designs benefit from removal of the
physical routing between parallel processing elements, and
related routing memory and programming, from the CMOS
layer. Another benefit of this approach is that performing
signal processing related to error correction coding directly
within, for example, CMOL-type resistive memory circuits
should be more efficient in terms of design, circuit area, and
energy efficiency than passing all stored data to corresponding
external processing circuits.

It should be noted that CMOL circuits are not yet a mature
technology, which means that comprehensive measurements
on their characteristics and performance are not currently
available. In the following we apply published empirical
data on memristive device characteristics when available, and
consider analytically the effects of currently not well known
circuit characteristics. Specifically, we assume memristor char-



acteristics from empirical results published in [6], where also
integration of a nanowire array on top of a CMOS circuit
was demonstrated. The computing approach considered in this
work is not restricted to this single memristor technology,
however; in principle, any resistive switching devices whose
characteristics match the requirements outlined in the follow-
ing could be applied.

A. Main objectives

A significant property of the CMOL architecture considered
in this work is that it can be used to realize circuits which
enable computations directly within memory structures. Ex-
amples of such circuits were recently considered for example
in [12], where various CMOL-based memristive associative
memories utilizing 1–2 nanowire layers for memory and
computing purposes were presented. The primary objective of
this work is to show how a single additional nanowire layer
and relatively simple additional logic in the CMOS cells can
be used to add basic LDPC decoding functionality to a CMOL-
type memory/computing circuit. For example, the CMOS cells
in the associative memory circuits presented in [12] already
contain the components required for the current sum -based
decoder presented in the following; in the CMOS layer its
implementation thus requires mainly different control signal
configurations and some additional switching logic. It is worth
noting that the mathematical operations performed by the
decoder considered in the following can also be used for LDPC
encoding.

Secondary objectives of this work are:

• Where empirical data on CMOL circuit characteristics
is not available, to approximate the numerical circuit
and device parameter values required in practice to yield
useful results. Specifically, in Sections II and III we
consider how technology characteristics such as nanowire
and memristor capacitance and OFF–ON resistance ratio
limit the performance of the considered decoders. In
Section V we analyze how inaccurate memristor program-
ming, varying nanowire resistance, limited processing
accuracy, and device defects affect decoding performance.

• To estimate the benefits and drawbacks of the CMOL
architecture compared to traditional CMOS approaches in
implementing decoding algorithms. In order to do this, we
present in Section IV performance estimates and HSPICE
simulations of the considered decoding circuits.

On the other hand, the focus of this work is not to produce
a comprehensive study on CMOS cell designs required for
different types of iterative decoding algorithms. Rather, we
outline a basic design principle which can be used to add error
correction functionality to CMOL circuits, and which may be
used in later studies to implement decoders of varying com-
plexity. To estimate the baseline performance of the considered
design approach, we analyze and implement simple bit flipping
iterative LDPC decoders with practical significance for exam-
ple in ultra low power applications such as bio-compatible
electronics [18] and energy-efficient wireless communication
systems [19], [20]. Furthermore, such decoders are used for
example in fibre-optic systems, where the communication

channel can be approximated to be binary symmetric, and hard
decision demodulation is assumed by default [21].

II. BACKGROUND AND ASSUMED DEVICE

CHARACTERISTICS

A. Principles of memristive devices

A memristor is in this work defined as a nonvolatile
programmable resistor whose resistance can be changed by
applying a voltage across, or current through, the device.
The number of reliably programmable resistance states of
a memristor depends on its fabrication, and the resulting
dynamic device characteristics. For example, bistable devices
called binary memristors have been reported in [4], [22], while
an analog memristor with a seemingly continuous range of
memristances is presented in [23].

In this work, we utilize binary memristors. The physical
characteristics of the devices utilized in this work are based
on those demonstrated empirically in [6]. For the decoding
algorithms considered in the rest of this paper, it is not
necessary to change the resistance states of memristors after
initially programming them acccording to a specific LDPC
code. Note, however, that the considered architecture allows
for configuring the decoder according to any LDPC code
within the dimensions of the circuit.

We define the memristor as a voltage controlled two-
terminal bistable linear device having the on-resistance RON

and the off-resistance ROFF, where ROFF is assumed to be
much larger than RON. Correspondingly we say that a mem-
ristor is either in a conducting (ON) or a nonconducting
(OFF) state. A memristor is programmed to ON-state by
applying a voltage larger than a threshold voltage VTH across it;
correspondingly applying a voltage more negative than −V TH

programs the memristor to OFF-state.
In Section III-B we also consider the use of rectifying

memristors, that is, memristors which pass significant current
only in one direction. Such devices have been reported empir-
ically for example in [5], [6]. These are programmed to OFF-
state identically to nonrectifying devices by applying a voltage
smaller than −VTH across them. Memristor programming is a
fundamental operation in CMOL circuits, and is not discussed
in detail in this paper. However, we do analyze the effect of
inaccurate programming, or variation in the resistance states
RON and ROFF on decoding performance in Section V.

We assume non-volatile memristors, which need to be pro-
grammed only once per LDPC code to be decoded. Thus this
programming can be performed using accurate but relatively
time-consuming methods such as cyclic programming, as
discussed in [24], or the variation-tolerant algorithm presented
in [25]. In the latter, the authors demonstrate memristor
programming with less than 1 % deviation from the target
conductances. Note that non-volatile binary memristors have
been demonstrated for example in [4], where the reported
devices retain their resistance state more than 10 years at
85 ◦C.

Memristors are naturally fabricated within a nanowire cross-
bar where a memristor is placed at each crossing of two
nanowires [26]. The nanowires are driven by CMOS circuitry



Fig. 1. Conceptual structure of a CMOL circuit with multiple vertically
stacked nanowire layers. Note that in the left inset, vias are depicted only
between the CMOS cells and the first nanowire layer; in practice, separate vias
are realized for each layer. The CMOS cells may use the different nanowire
layers for various purposes, for example for storing data. In this work we
show how a single nanowire layer can be used to implement LDPC decoding.
Designs for the CMOS cells denoted here by Ci are presented in Figures 5
and 9.

which is proposed to be located physically below the nanowire
crossbar [9]. This CMOS/molecular hybrid (CMOL) architec-
ture makes memristive nanowire crossbars ideally suited for
facilitating programmable communication and memory within
a CMOS chip.

B. CMOL circuits

An example of a CMOL-type CMOS/memristor hybrid
architecture [9], [27] is illustrated in Fig. 1. It consists of a
CMOS layer stacked vertically with a number of nanowire
layers, or memristive crossbars. For simplicity, we consider in
this work only one nanowire layer connected to the CMOS
cells. The CMOS layer is used for signal restoration, gain and
processing, and it is interfaced with the memristive crossbar
— which acts as a memory layer and as a programmable
communication network for the chip — by vertical vias. The
CMOS layer is divided into cells whose design depends on
the functionality of the system. For example, if a CMOL
architecture is used as a random access memory, the CMOS
cells comprise merely of pass-transistors, which are used
to select two mutually perpendicular nanowires and thus
the memristor located between them. CMOS cell designs
facilitating LDPC decoding in the CMOL architecture are
demonstrated in Section III, and illustrated in Figures 5 and 9.

As illustrated in Fig. 1, each CMOS cell can drive one
horizontal and one vertical nanowire, and thus two CMOS
cells are required to address a single memristor located at the
crossing of a horizontal and a vertical nanowire. To simul-
taneously control only these two CMOS cells, four CMOS
wires are needed — thus the CMOL architecture generally
requires double addressing compared for example to an array
of CMOS cells. Note also that the nanowire array is slanted
with respect to the CMOS cell array to allow N vertical and N
horizontal nanowires — or N 2 memristors — to be controlled
by N CMOS cells. A limitation of this architecture is that
it is not possible to address an arbitrary set of memristors;

for example, to program two memristors simultaneously, it is
necessary to drive two horizontal and two vertical nanowires,
and there are four memristors located at the crossings of these
wires. However, the decoding circuits described in this article
require mainly global control signals, and it is not necessary
to address individual memristors during the decoding, which
means that the considered decoding algorithms are well suited
for the CMOL architecture.

C. Device parameters

1) Memristors: We assume memristor characteristics corre-
sponding to the devices presented empirically in [6]. Specif-
ically, we consider the use of rectifying memristors located
at the crossings of perpendicular nanowires of width 50 nm,
separated vertically by a 20 nm memristive switching layer of
amorphous silicon. The reported ratio of memristor ON- and
OFF-resistances is of the order of 103 with ON-resistances
of order 105 Ω and OFF-resistances of order 108 Ω. In this
work we assume nominal resistance values RON = 500 kΩ and
ROFF = 500 MΩ; the effect of variation in these values caused
by inaccurate programming or device variation is analyzed in
Section V. As will be shown in Section III, the ratio of the
memristors’ OFF- and ON-resistances limits the maximum
LDPC code block size decodable in parallel using a single
nanowire crossbar. Therefore, it is desirable to have as large
an OFF—ON resistance ratio as possible.

2) Nanowire capacitance: Currently, there is little empiri-
cal data available on memristor capacitances. We estimate the
parasitic capacitance of a single memristor as a parallel plate
capacitance

Cpp = ε0εaSiA/dv ≈ 13 aF, (1)

where ε0 ≈ 8.85419 ·10−12 is the vacuum permittivity, εaSi ≈
11.8 is the relative permittivity of amorphous silicon, A =
(50 nm)2 is the area of the memristor, and dv = 20 nm is the
vertical plate distance, or dielectric thickness.

Furthermore, we approximate the capacitance between two
parallel nanowires as

Cw = πε0εSiO2L/ cosh
−1(dh/t), (2)

where L is the length of a nanowire, and it is assumed that
a nanowire’s thickness t = 50 nm is the same as its width.
The distance between parallel nanowires is dh, and we assume
that the nanowires are separated by a silicon dioxide substrate
with relative permittivity εSiO2 ≈ 3.9. Note that the distance dh
depends on the area of the CMOS cells in the CMOL structure;
as presented in Section IV-A, our estimate for the sizes of
the example cells implemented with 130 nm technology is
approximately 50 μm× 50 μm. We can thus approximate the
distance between parellel nanowires as dh ≈ 50 μm/

√
N ,

where N is the number of memristors along a nanowire. We
estimate the total capacitance of a nanowire as

Ctot = NCpp + 2Cw, (3)

taking into account N parallel plate capacitances and capac-
itances to two neighboring parallel wires. Fig. 2 illustrates
the magnitudes of the estimated capacitances as functions of
N , when we assume that the nanowire length L = Ndh.
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Fig. 2. Estimated nanowire capacitance as a function of the LDPC codeword
length N .

This total capacitance estimate is used in Section IV-B to
approximate the decoding speed and corresponding decoder
energy consumption.

3) Nanowire resistance: The decoding methods presented
in Section III are essentially based on measuring simultane-
ously the resistances of several memristors on a nanowire. The
resistances of the nanowires affect these measurements, as the
total resistance depends on the length of the associated current
path, and will vary over the decoder circuit. We estimate
the maximum resistance from nanowires — corresponding
to a current path between diagonally opposite corners of the
nanowire array — as

Rnw,max = 2NdhρAg/A, (4)

where Ndh is again the length of a single nanowire and
silver nanowires with resistivity ρAg = 1.6 · 10−8 Ω-m are
assumed, as well as a rectangular nanowire cross-section with
area A = (50 nm)2. If we assume that the maximum nanowire
length is of the order of 1 mm, this maximum resistance will be
of the order of 10 kΩ, which is 2 % of the assumed memristor
ON-resistance. For the considered decoding approaches, it
is not the maximum nanowire resistance, but the deviation
from mean resistance which may cause decoding errors. This
deviation is always smaller than Rnw,max/2, which corresponds
in this case to less than 1 % of the memristor ON-resistance.
Worst-case effects of nanowire resistance variation are consid-
ered in more detail in Section V.

D. LDPC codes and decoding

A Low-Density Parity Check code is described completely
by its parity check matrix H . The columns of H represent the
bits bi – often called variables – in an LDPC codeword, while
the rows of H specify a number of parity checks: H(k, l) = 1
when bit l is included in the k:th parity check, and each
check consists of an XOR operation over the included bits. We
denote the row weight, or number of input bits participating in
the k:th parity check by ρk, or simply ρ, when all row weights
are assumed to be equal. Correspondingly, the column weight,
or number checks corresponding to bit l, is denoted by γ l or
γ. The LDPC code construction problem is to find good parity

check matrices H in terms of theoretical error correction capa-
bility and coding/decoding performance. Detailed information
on LDPC codes can be found for example in [28].

By definition, the parity check matrices of LDPC codes
have low density – all rows and columns are sparse, which
allows for efficient decoding. In accordance with Shannon’s
random coding principle, good LDPC codes can be generated
by selecting H pseudorandomly according to some constraints
on the row and column densities. However, encoding randomly
generated codes is complex, and analysis of the properties
and theoretical performance of such codes is difficult. It is
thus beneficial to have random-like LDPC codes which can
be constructed algebraically, and contain a regular strucure
such as check matrix rows which are cyclic shifts of each
other. Especially quasi-cyclic (QCLDPC) codes [29], where
H consists of a number of circulant submatrices, are currently
widely used, as they are relatively simple to construct and
implement, and provide good error correction performance.
These are also well suited for the decoders considered in this
work, as will be shown.

Bit flipping algorithms are the simplest approach to iterative
decoding of LDPC codes. As an example of bit flipping,
consider an LDPC codeword where one bit bk is erroneous.
Suppose that in the parity check matrix H of the considered
code, the weight, or number of ones, of the k:th column is
γk. The single error will then cause γk parity checks to fail.
In a well designed LDPC code, no other bit is involved in
all the same parity checks as bk, meaning that the number
of unsatisfied checks per bit will be larger for bit k than for
any other bit. A bit flipping decoder may look for the largest
number of unsatisfied parity checks, and in this case flip bit bk,
producing the correct codeword. Allowing for the possibility
of several erroneous bits in a codeword, this same procedure
can be implemented in an iterative fashion, if the code is well
designed.

Let x(0) be the undecoded input vector. For n ≥ 0, the
mathematical operations performed by the decoders described
in the following are

c(n) = x(n)HT (mod 2), (5)

x(n+ 1) = x(n) + fΘ(c(n)H) (mod 2), (6)

where c(n) is a row vector containing the parity check results
for all rows of H , and fΘ(v) is a vector whose ith element
is 1 if the ith element of v is greater than or equal to Θ and
0 otherwise.

The threshold Θ can be selected for example to flip a fixed
fraction of the bits corresponding to the largest numbers of
unsatisfied checks. Also, it is possible to weigh the bits in
the codeword according to external reliability information,
and use this to find the most probable erroneous bits at each
iteration [30], [31]. Such decoding approaches the princi-
ple of belief propagation, where the decoder operates with
continuous-valued estimates of the likelihoods of bit values
instead of quantized bits. This requires more information on
the transmission channel than bit flipping, and updating the
likelihood values at each iteration is relatively complicated.
However, belief-propagation produces near-optimal decoding.
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Fig. 3. Bit error rates versus signal-to-noise ratio corresponding to uncoded
binary phase shift keying (BPSK), the random coding bound [32] for the
binary symmetric channel (BSC), and a randomly generated LDPC code [28]
of codeword length 500 bits with ρ = 6, γ = 3, decoded with bit flipping
(BF) and min-sum (MS) algorithms.

In terms of bit error rate (BER) versus signal-to-noise
ratio (SNR), the performance of an LDPC code is crucially
dependent on the size and structure of the parity check matrix,
and on the algorithm used for decoding. An example of
this is presented in Fig. 3, where the bit error rate of an
LDPC code of length 500 bits is shown for bit flipping (BF)
and min-sum (MS) decoding. For comparison, the random
coding bound [32] is shown; this represents the optimal BER
performance of a code with this length when the related
communication channel is binary symmetric, that is, no soft
channel information is available. The asymptotic distance
between the BF decoding performance and the random coding
bound demonstrates that the structure of the simulated code
is not optimal. On the other hand, the distance between the
random coding bound and the MS decoding performance
shows that if soft channel information is available, its use in
more complicated decoding algorithms provides improvement
in BER performance. A related tradeoff is that near-optimal
decoders typically consume significantly more power and
energy per decoded bit than for example bit flipping decoders.
Therefore the choice of decoder type generally depends on
the application-specific energy budget and power limitations.
Please note that the discussion above applies directly to the
performance comparisons presented in Section VI.

In the following we outline two approaches to decoding
LDPC codes in a CMOL circuit structure. In the first, com-
putations are based on measuring current sums in the CMOS
cells, and in the second, computations are performed using
digital logic. To be efficient, the digital approach requires the
decoded LDPC code to have certain characteristics specified
in Section III-B; QC-LDPC codes are particularly well suited
for this decoder.

In both of these decoding approaches, the M × N parity
check matrix H of the LDPC code is represented by the
states of memristors at the crossings of M horizontal and
N vertical nanowires, that is, memristor mi,j is in a low
resistance (ON) state if H(i, j) = 1, and in a high resistance
(OFF) state otherwise. We assume in the following that the

CMOL circuit has been initialized in this way according to
a given parity check matrix, and do not explicitly consider
the circuitry required for programming the memristors. The
states of the memristors do not change during the following
decoding procedures.

III. CMOS DECODER CELL DESIGNS

Let us first consider the basic principle according to which
the decoder circuits, discussed in following sections, operate.
As illustrated in the example of Fig. 4, the parity check
matrix is mapped into the states of memristors in a nanowire
crossbar. Assume that we now keep the horizontal nanowires
at a fixed voltage, while driving to a higher voltage the vertical
nanowires corresponding to logical ones in an input codeword.
This results in a current flow through every memristor located
at a driven vertical wire. At horizontal wire k, the sum current
can be written as

Ik = Vmemx(H
T
k /RON + (1T −HT

k )/ROFF) (7)

⇒ IkRON/Vmem = x(HT
k + (1−HT

k )RON/ROFF), (8)

where Hk is the kth row of H , 1 is a row vector of ones, and
Vmem is the nonzero voltage across a memristor. If the length
of an input codeword is N , then

xHT
k ≤ IkRON/Vmem ≤ xHT

k +NRON/ROFF. (9)

Assuming that NRON/ROFF < 1, the parity check of row
k is obtained as �IkRON/Vmem� (mod 2), which is in the
following computed using a parity A/D converter explained
below.

Similarly to the above, in the second phase of decoding,
vertical nanowires are kept at a fixed voltage, while the
horizontal wires corresponding to failed parity checks are
driven to a higher voltage. As above,

cH l ≤ I lRON/Vmem ≤ cH l +MRON/ROFF, (10)

where H l is the lth column of H , and I l is the current
at vertical nanowire l. Thresholding I lRON/Vmem yields an
approximation of (6). In the following subsection we describe
a simple CMOS circuit which implements the above specified
operations. Note that the condition

NRON/ROFF < 1 ⇔ N < ROFF/RON (11)

sets a fundamental limitation on length of a codeword decod-
able using the considered approach in a monolithic, or non-
segmented, nanowire array.

A. Current sum -based decoder cell

Fig. 5 illustrates the structure of a CMOS cell which can
be used in bit flipping decoding of an arbitrary LDPC code.
The operating principle of this circuit resembles that of the
search operation specified and demonstrated for a memristive
autoassociative content addressable memory in [12]. A single
iteration in the decoding process is divided into two phases
which in the following are referred to as row checks and bit
flips.



Fig. 4. Principle of the considered LDPC decoding. Top: in the parity check
phase, modulo-2 sums of currents flowing through memristors in ON-state are
computed in parallel for all rows of the nanowire array. Bottom: in parallel
for all columns of the nanowire array, bit flip decisions are made based on
the numbers of failed parity checks from the first decoding phase.

In the first decoding phase, the global signal RCHK = 1.
Each CMOS cell drives its vertical nanowire to VDD if the
value of the codeword bit stored in the JK flip flop is 1, oth-
erwise the vertical nanowire is driven to Vgnd. Simultaneously,
the negative feedback of the op-amp keeps the horizontal
nanowires at Vgnd, and the incoming currents from the vertical
nanowire drivers are summed and converted into a voltage
by the transresistance opamp circuit. To obtain the parity
check values for each row, a parity analog-to-digital con-
version is performed by comparing the opamp output voltage
corresponding to the row current sum against a ramp voltage
signal denoted as Vramp, which goes through the possible row
sum values. The result of this comparison is used to gate a
D flip flop, whose input Vparity varies according to the ramp
signal parity. The principle of this parity A/D conversion and
the corresponding control signals are illustrated in Fig. 6. As
this process is performed in all CMOS cells simultaneously,
this configuration realizes the modulo 2 matrix multiplication
specified in equation (5).

In the second decoding phase, the global signal RCHK = 0.
The CMOS cells drive the horizontal nanowires according
to the stored check bit values, obtained in the previous
decoding phase. Again, the resulting sum currents at the
vertical nanowires — representing the numbers of unsatis-
fied checks per bit — are measured and thresholded. If the

Fig. 5. Operating principle of the analog decoding cell. The decoding phase
is selected by the global control signal RCHK: when RCHK=1, row checks
are computed, and when RCHK=0, bit flipping is performed.

Fig. 6. Principle of the ramp A/D conversion. Top: the comparator inputs are
the opamp output and the ramp voltage; the latter is selected to distinguish
between opamp outputs corresponding to the currents Ik specified in (9).
Middle: Vparity is selected as the parity of the current value of the ramp
signal. Bottom: the output of the comparator gates the D flip flop; once the
ramp voltage falls below the opamp output at the time indicated by the dotted
vertical line, the current logical value of Vparity is stored as the result of the
parity check.

measured voltage is below the global threshold voltage V thr,
the codeword bit stored in the JK flip flop is flipped. Over
the whole array of cells this realizes the operation specified
in equation (6). In each decoding iteration, the threshold
voltage is the same for all CMOS cells, but may vary between
decoding iterations. Selection of predefined threshold voltage
sequences is discussed in more detail for example in [31].

Note that in memristive crossbar architectures, as considered
in this work, sneak path current leakage must be taken into
account. This term refers to undesired current passed through
memristors connected to nanowires which are not driven to
a specific voltage; such currents may disrupt the operation of
the circuit. In the current sum -based decoder design described
above, sneak path leakage is prevented as in [12] by always



Fig. 7. Principle of computing parity at one horizontal nanowire using digital
logic. At the CMOS cell, resistance Rref is selected to enable voltage division
so that when the vertical nanowire is driven to a high voltage (IN = VD)
and the memristor is in ON-state (Rmem = RON), the voltage at the XOR
gate input connected to the horizontal nanowire is higher than the switching
threshold of the XOR gate. Otherwise the voltage at the XOR input remains
close to ground. The other input of the XOR gate is the previous result of the
XOR operation (initially zero). By sequentially driving all vertical nanowires
connected to this horizontal nanowire, the row parity is computed. When
inactive, the vertical nanowires are at high impedance (IN = HZ).

connecting all nanowires either to the virtual ground voltage
Vgnd or to VDD, ensuring that currents are generated only
according to the desired computations.

B. Digital decoder cell

The main advantage of the opamp-based processing de-
scribed above is that it allows summations in current domain,
in parallel at all rows or columns of the nanowire array. A
drawback in this is the analog-to-digital conversion required to
process the sum currents: especially in the parity check phase
there is a tradeoff between the maximum number of different
current sum levels — corresponding to the row weight ρ of
the LDPC code — and the complexity and operation speed
of the CMOS cell. As the row parity can be defined as a
sequence of logical XOR operations, it is natural to consider
its computation using digital logic.

Fig. 7 illustrates the principle of a digital decoding cell with
a single vertical and a single horizontal nanowire. A reference
resistor Rref is used to implement voltage division so that when
the vertical nanowire is driven with a large voltage and the
memristor is in ON-state, the XOR gate input connected to
the horizontal nanowire is at a high voltage, corresponding
to logical 1. The other input of the XOR gate is connected
to a flip flop which maintains the result of the previous XOR
operation. By sequentially driving to a high voltage VD all ver-
tical nanowires corresponding to input bits with logical value
1, while keeping all other vertical wires at high impedance,
the parity over all horizontal nanowires can be computed
in parallel. Note however that in this case the memristors
must be rectifying, as otherwise undesired currents would be
passed from horizontal nanowires to vertical nanowires in high
impedance state, preventing correct operation.

The main problem with this approach is that while it is
possible to compute the parity of all rows in parallel, N
steps are required to compute the row parities. However, this
drawback can be significantly reduced with suitable LDPC
code structures such as quasi-cyclic codes, where the parity
check matrix H consists of ρ × γ submatrices obtained as

Fig. 8. Example of a block-based LDPC code structure allowing paral-
lelization of parity check computation over vertical nanowires. The parity
check matrix is divided into submatrices, or blocks, of size 4× 4, where the
row weight of each submatrix is one. The parity checks are now performed
by allowing vertical nanowires to be driven only in one code block at a
time. Thus the current at any horizontal nanowire may only be close to zero
— corresponding to a low voltage at the corresponding CMOS cell’s XOR
gate input — or close to that passed by a single memristor in ON-state —
corresponding to a high voltage at the XOR input. In this example, input
bits one and three have logical value one, which results in significant current
at horizontal nanowires one and three, as the first code block is as identity
matrix. The memristors must be rectifying, as otherwise stray currents would
flow from horizontal wires to vertical wires in high impedance state through
memristors in ON-state.

cyclic shifts of an LB ×LB identity matrix. As demonstrated
in Fig. 8 with LB = 4, with such coding, all vertical nanowires
within each block of LB bits can be driven simultaneously
according to their associated input bits. Within a block, only
one memristor in ON-state per horizontal nanowire can be
driven, which ensures the correct logical value at the XOR
input. Thus, only ρ sequential XOR steps are required to
compute the parity for all rows.

Note that with QCLDPC codes the parity check matrix H
and its transpose HT have the same structure. This means that
the above described approach to computing the row parities
can be applied directly in computing the total numbers of
failed parity checks in parallel over all vertical nanowires.
In this case the single XOR gate is replaced with a counter
and comparison to a threshold. Furthermore, due to the use
of rectifying memristors it is necessary in this case to drive
horizontal nanowires corresponding to check bits with logical
value 1 to a low voltage VSS, while the reference resistor is
connected to a high voltage VD . Finally, VD should generally
be smaller than the memristor programming threshold voltage
VTH to avoid changing the memristors’ states during decoding.
In the following simulations we assume VD = 0.8VDD = 0.96
V.

Fig. 9 shows the structure of a digital decoding cell which
operates according to the principle described above. Resistors
R1 and R2 are implemented using NMOS and PMOS tran-
sistors in saturation. The target resistance values for these are
specified in Section IV-B. Selection of the cells which drive
their nanowires at any given time is in Figure 9 controlled by
the signal SEL. In practice, small local memory registers and
some additional logic can be used to realize this selection.



Fig. 9. Operating principle of the digital decoding cell. The global signal
RCHK functions as in the analog decoder cell of Fig. 5. The local control
signal SEL is used to select whether or not the cell drives its vertical
(horizontal) nanowire in the row check (bit flip) phase. The JK and D flip
flops store the input bits and parity check bits, respectively.

IV. SIMULATIONS AND PERFORMANCE ANALYSIS

In the following we first present simulation results for the
CMOS cells described in the previous section. The main
objective in these simulations is to verify that the circuits
operate as intended, and to obtain area and power consumption
estimates for the considered CMOS cells, corresponding to a
specific technology. In the second subsection below, we esti-
mate analytically the average power and energy consumption
of the considered decoding approaches as functions of the code
parameters and assumed hardware characteristics.

A. Circuit simulations using a 130 nm CMOS technology

Decoding circuits corresponding to LDPC codeword lengths
20, 40, and 80 bits were simulated using 130 nm CMOS
technology with VDD = 1.2 V. Memristors were modeled using
fixed-valued resistors and capacitors selected according to the
device characteristics specified in Section II-C.

Fig. 10 illustrates the operation of the analog decoding
cell outlined in Section III-A. Decoding is here demonstrated
using a QCLDPC code with a 15 × 20 parity check matrix
with row weight ρ = 4 and column weight γ = 3, with
one erroneous bit in the input codeword. Fig. 10 shows the
comparator input voltages in all 20 CMOS cells over two
decoding iterations. The ramp signal used as a threshold in
both the parity check and the bit flip phase is depicted as
the dashed curve. The colored line plots are averages over
10 Monte Carlo simulations taking device mismatch into
account; the sample standard deviation of each voltage curve
is presented by a shaded area. Here we do not consider the
variances of the memristors’ ON and OFF resistances; the
effect of inaccuracy in memristor programming with respect
to the accuracy required for correct operation of the analog
decoding cell is analyzed in detail in Section V. Fig. 10
shows how the decoder corrects the input codeword in a single
iteration, with a decoding iteration duration of 100 ns. This
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Fig. 10. Simulation example of analog decoding. Mean comparator input
voltages (solid lines) and their standard deviations (shaded areas) obtained
from 10 Monte Carlo simulations are plotted for 20 decoding cells along
with the global ramp/threshold signal Vramp/Vthr (dashed line). In the first 50
ns, the input bits are programmed to the cells; during this time the comparator
inputs are undetermined, which explains the large standard deviations of the
input voltages. After this initialization, two decoding iterations are shown.
The input vector contains one erroneous bit, which is seen in the first row
check phase as odd-valued comparator inputs. The single error is corrected
in the first bit flip phase, and in the second row check phase all comparator
inputs are even-valued.

consists of 70 ns for the parity check phase, and 30 ns for the
bit flip phase.

Note that in the considered example with row weight
four, the separation between voltage levels with the presented
decoder circuit is larger than 100 mV, and typically the row
weights in well performing LDPC codes are of order 10 or
less. For example, in [33] quasi-cyclic LDPC codes with row
weight 8 which perform within 1 dB of the optimal random
code bound are presented. Thus in practically significant
decoding cases the required voltage separation is of the order
of several tens of millivolts, achieved even by the presented
simple CMOS cell design. Of course, practical circuits will
contain also other sources of error than the considered device
mismatch. In Section V-A we determine the required resolu-
tion, taking into account the worst-case effects of memristor
programming inaccuracy, nonzero nanowire resistance, and
statistical variation in the input Hamming weight in the current
sum -based decoder.

The digital decoding cell of Fig. 9 was also simulated
using 130 nm technology. The memristor characteristics were
assumed to be the same as with the analog decoding cell, with
the additional assumption that the memristors are rectifying.
The counter/threshold logic block was realized in this example
as a three-bit adder and register whose carry overflow bit is
used as the flipping indicator corresponding to a global three-
bit threshold signal. With the digital decoder, circuit simula-
tions corresponding to a QCLDPC code with row weight 4,
column weight 3, and codeword length 20 were performed.
With this code length, the duration of both the XOR and
the counter/threshold operation over a block of LB = N/4
bits was 2.5 ns. As one full decoding iteration consists here
of four sequential XOR operations and three additions, the
simulated minimum duration of one decoding iteration is 17.5



ns. A 400 MHz clock frequency is sufficient for both of the
considered decoding approaches; in the opamp-based analog
decoder this clock frequency allows for switching between the
required ramp voltage levels shown in Fig. 10.

The simulated average power consumption of the opamp-
based CMOS cell is approximately 78 μW; most of this power
is consumed by the opamp and subsequent comparator. The
average power consumption of the digital decoding cell is
approximately 14 μW. Circuit areas of the CMOS cells were
estimated using a layout tool to place all transistors without
wiring inside a minimal area. For the opamp-based cell, this
minimum area was 25 μm × 25 μm; to approximate the total
area requirement we double these dimensions, obtaining an
area estimate of 50 μm × 50 μm, or 2500 μm2. The individual
components requiring most circuit area are the opamp and
the associated feedback resistor. For the digital decoding cell,
the corresponding minimal area estimate is 22 μm × 22 μm,
yielding an approximate total area of 2000 μm2.

B. Performance analyses

In the following we estimate analytically the minimum
power consumption and energy per decoded bit corresponding
to the decoding principles described in Section III. The power
consumption in the full CMOL decoder circuit can be divided
into power dissipated in the memristors and resistive CMOS
cell elements along the measured current path, and power
consumed by other circuit elements in the CMOS cells. The
CMOS cell power consumption depends on the specific imple-
mentation and technology used in the cells; in the following
we assume the values given in the previous subsection.

For estimating the power consumption in the memristors, in
the following we assume that the CMOL circuit is configured
according to an M × N parity check matrix with constant
row and column weights ρ and γ, respectively, and that a
bit in the input codeword has value 1 with probability 0.5.
These assumptions are made only to simplify the following
analytical expressions; the results are easily generalized for
arbitrary parity check matrices and input codewords. We first
consider the performance of the opamp-based decoder, and
repeat the analysis for the digital decoder.

1) Opamp-based decoding cell: From (7), the mean current
at row k of the nanowire array in the parity check phase is

E [Ik] = Vmem
(
E
[
xHT

k

]
/RON + E

[
x(1T −HT

k )
]
/ROFF

)
=

1

2
Vmem (ρ/RON + (N − ρ)/ROFF) .

As this mean current is the same for all rows, we may leave
out the index k. Since vertical nanowires are driven to voltage
VDD, and there are in total M active rows in the nanowire
array, the mean total power consumption of the opamp-based
decoder can be written as

E [Pcheck] = N E [Pcell] +
1

2
MVDDVmem

(
ρ

RON
+

N − ρ

ROFF

)
,

(12)
where E [Pcell] is the mean power consumed by a single CMOS
cell and Vmem = VDD − Vgnd is the voltage across each
memristor connected to a vertical nanowire whose input data
bit has value 1.

With similar reasoning, the mean total power consumed in
the second decoding phase is

E [Pflip] = N E [Pcell] +NfailVDDVmem

(
ρ

RON
+

N − ρ

ROFF

)
,

(13)
where Nfail is the number of failed parity checks, that is, rows
driven to VDD.

Based on the above, we obtain the mean energy required
per decoded bit as

E [Ebit] = (E [Pcheck]Tcheck + E [Pflip]Tflip)Niter/N, (14)

where Tcheck is the duration of the first decoding phase, Tflip

is the duration of the second decoding phase, and N iter is
the number of decoding iterations performed — this number
depends on the bit error probability of the input data. We take
into account the increase of capacitance along with code length
by selecting the phase durations as Tcheck = 70 ns+ τcheck and
Tflip = 30 ns+τflip, according to the simulated decoding phase
durations and time constants τ = RThevenin · Ctot consisting of
the Thevenin resistance of the current path in the two decoding
phases, and the total nanowire capacitance as specified in
Section II-C.

2) Digital decoding cell: In the digital decoding circuit,
mean current at a given nanowire is equal either to the current
passed through a block of wires with no memristor in ON-state
driven, or to the current passed through a block with a single
memristor in ON-state driven. The mean block resistances
equivalent to these cases in the parity check phase are

E [RB,0] = 2ROFF/LB and

E [RB,1] = 2RONROFF/ (2ROFF +RON(LB − 1)) .

The total resistance between the driven voltage VD and
ground for a single nanowire is then RB,0+Rref or RB,1+Rref,
where Rref is the reference resistor from Fig. 7.

According to our initial assumptions, in the parity check
phase, the block resistances RB,0 and RB,1 occur with equal
probability. Thus the mean total power consumption over all
horizontal nanowires can be estimated as

E [Pcheck] ≈

N E [Pcell] +
1

2
MV 2

D

(
1

E [RB,1] +Rref
+

1

E [RB,0] +Rref

)
.

(15)
Note, however, that this expression is only an approximation,
as it is a nonlinear function of mean resistance values. Further-
more, to maximize the voltage swing at the XOR gate input,
the target value for the reference resistor is selected as

Rref =
√
E [RB,0]E [RB,1]. (16)

Following a similar reasoning as in the above, the mean
total power consumption in the second decoding phase can be
approximated as

E [Pflip] ≈

N E [Pcell] +Nfail,blockV
2

D

(
ρ

RON +Rref
+

N − ρ

ROFF +Rref

)
,

(17)
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Fig. 11. Analytical estimates of the mean power dissipated in memristors and
reference resistors in the CMOS cells, compared to corresponding numerical
simulation results obtained as averages over 100 different input vectors and
error patterns.
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Fig. 12. Mean total power consumption estimates obtained from (12), (13),
(15), and (17), including CMOS cell power dissipation estimates Pcell obtained
with HSPICE for a 130 nm technology.

where Nfail,block is the mean number of failed parity checks in a
code block of length LB, and we assume that Nfail,block is small
compared to LB. The mean energy consumption per bit is
obtained also for the digital decoder from (14). The increase of
capacitance along with code length is again taken into account,
selecting the phase durations now as Tcheck = 2.5 ns + τcheck

and Tflip = 2.5 ns+τflip. Again, τ = RThevenin ·Ctot is computed
according to the Thevenin resistance of the current path in the
decoding phases, and the total nanowire capacitance.

3) Performance estimation: In the following we show ex-
amples of performance estimates obtained using the analytical
results presented above. In these examples, QCLDPC codes
with row weigth ρ = 4 and column weight γ = 3, and
lengths varying from 20 bits to 1000 bits are assumed. To
estimate the power consumed in the second decoding phase,
in the following we assume that each codeword contains one
erroneous bit, which produces γ failed parity checks, and is
corrected in one decoding iteration.

Fig. 11 illustrates the magnitudes and accuracies of the
resistive power dissipation estimates (assuming E [Pcell] = 0)
provided by (12), (13), (15), and (17). The analytical estimates
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Fig. 13. Decoder maximum throughput estimates obtained using the total
nanowire capacitance defined in Section II-C. The shown values correspond
to a single decoding iteration; throughput estimates for larger numbers of
iterations can be obtained by dividing these results by the number of iterations.

are compared to results from numerical simulations, where
average power dissipations were determined by computing the
currents and total resistances corresponding to 100 randomly
chosen input vectors and error patterns. As noted above, (15)
does not produce an exact estimate of the mean power dissi-
pation, but the estimation error is relatively small. The other
analytical estimates are accurate. It is also evident that the
resistive power dissipation in the digital decoder is smaller
than in the opamp-based decoder, because a smaller number
of nanowires is driven at any given time in the digital decoder
than in the opamp-based decoder.

Fig. 12 shows the mean total power dissipation for both
decoding approaches, obtained by combining the estimates
produced by (12), (13), (15), and (17), taking into account
the relative durations of the decoding phases and the CMOS
cell power consumption estimates obtained with HSPICE for
a 130 nm technology.

Throughput estimates of the two decoding approaches are
presented in Fig. 13. These results illustrate how the operating
speed of the blockwise sequential digital decoding is reduced
as the codeword length — and corresponding total nanowire
capacitance defined in Section II-C — increases. With the code
lengths considered in these examples, the throughput of the
opamp-based decoder is limited mainly by the operating speed
of the operational amplifier. This means that the throughput
increases along with codeword length, as more data is pro-
cessed in parallel in each decoding iteration, while the duration
of an iteration remains approximately constant. Note that the
presented throughput estimates are optimistic in the sense that
they do not include the time required for storing the input bits
in the CMOS cells.

Finally, Fig. 14 presents the estimated energy consumption
per decoded bit for the considered examples. Results are
shown with and without the simulated CMOS cell power
consumption terms in (12), (13), (15), and (17). These results
demonstrate that the digital decoder is more energy efficient
than the opamp-based decoder, despite the larger throughputs
obtainable with the latter.
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To summarize the above discussed results, we demonstrated
that with the considered LDPC codes, the digital decoder —
taking into account resistive power dissipation and simulated
CMOS cell power consumption — is estimated to have the
better overall performance of the two designs. It achieves
average power consumptions of order 1–10 mW, throughputs
of order 1 Gbit/s, and energy efficiencies of order 1 pJ/bit.
It should be noted that here we focus strictly on the core
decoding circuits, ignoring peripheral circuitry and operations.

The power consumption with both of the considered decod-
ing approaches is dominated by the power consumption of the
CMOS circuit elements. There is margin for improvement in
the energy efficiency of these decoders using more refined
circuit designs. For example, the opamp utilized here was
specifically designed for fast and robust operation instead of
low power consumption.

The above presented analytical performance estimates can
be applied with any LDPC code. In Section VI we compare
estimated performance metrics of the considered digital decod-
ing approach with similar LDPC decoders presented in recent
publications. However, we first consider the effects of circuit
nonidealities on decoding reliability.

V. EFFECTS OF NONIDEALITIES

A. Allowable variation in memristances and nanowire resis-
tance with limited-precision processing

Let us consider LDPC codes of length N = 500 with
row weight ρ ≤ 8, and denote the number of driven vertical
nanowires in the parity check phase by ND. This is equal to
the Hamming weight of an input codeword. Assuming that
input data statistically follows the binomial distribution with
p = 0.5, it follows that P (N/2 − 70 ≤ ND ≤ N/2 + 70) ≈
1− 10−10. Furthermore, let us denote by NON the number of
memristors in ON-state at vertical nanowires corresponding to
codeword bits 1 at a given horizontal nanowire, and by INON

the corresponding nominal current,

INON = NONION + (ND −NON)IOFF,

where ION and IOFF refer to the nominal currents through
memristors in ON and OFF state, respectively, at vertical
nanowires corresponding to input bit 1.

We account for variation in circuit characteristics affecting
the parity check phase in the opamp-based decoder as follows.
We assume that memristors can be programmed to ON-state
with a relative conductance error less than or equal to α.
We define the OFF–ON resistance ratio K to measure the
achievable ratio of resistances in the two states. Thus we
here assume that a memristor in OFF-state has resistance
equal to or larger than KRON, but otherwise does not have
to be accurately programmed, that is, the OFF-resistance can
take any value from KRON to infinity. Finally, we denote
the maximum nanowire resistance relative to the nominal
memristor ON-resistance by β = Rnw,max/RON.

Due to the above described variation in circuit characteris-
tics and random variation of ND, the current at a given hori-
zontal nanowire will differ from the nominal value. We denote
the corresponding nonideal currents as ÎNON , and estimate the
worst-case maximum and minimum currents as

max(ÎNON) = NONION(1+α)+(N/2+70−NON)IOFF, (18)

min(ÎNON) =
NONION(1− α)

1 + (1− α)β
. (19)

In (18), every driven ON-state memristor is assumed to be
in a maximally conducting state, the input Hamming weight
is larger than average by the assumed maximum 70, and the
total nanowire resistance is assumed to be zero. In (19), we
assume that each memristor in ON-state is programmed to the
least conducting state possible, that all memristors in OFF-
state have infinite resistance, and that the nanowire resistance
for every current path is equal to Rnw,max. Note that the above
assumed values for total nanowire resistance are severely
pessimistic.

To guarantee correct operation of the decoder in the parity
check phase, the following must hold:

min
NON

(min(ÎNON)−max(ÎNON−1))

=min(Îρ)−max(Îρ−1) ≥ (Iρ − I0)/2
B, (20)

where B is the bit resolution of the analog-to-digital converter
in the decoding cell.

To demonstrate the accuracy requirements of the opamp-
based decoder cell to achieve practically error-free operation,
we fix the A/D converter resolution to values B = 4 and
B = 6, and plot for varying row weight ρ the maximum
allowable relative ON-state programming error α for line resis-
tance values 0.01RON, 0.02RON, and 0.04RON. This analysis
is illustrated in Figure 15. The results show that with the value
estimated for Rnw,max in Section II-C3, an A/D converter with
four bit resolution is sufficient to guarantee correct operation
for a code with row weight 8, if the maximum relative
memristor programming error is less than approximately 0.6
%. Increased A/D conversion accuracy allows for more error
in memristor programming and larger nanowire resistance. We
also show the results of the above analysis with an OFF–
ON resistance ratio 2000; increasing this ratio effectively
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reduces the A/D conversion resolution required for error-free
operation. Note that memristor programming with less than 1
% error has been demonstrated empirically for example in [25]
with target resistances of order 10 kΩ.

The above described analysis applies with minor modi-
fications also to the digital decoder cell. As in this case
the decoder is assumed to process smaller submatrices with
fixed row weighth 1, the decoder operates practically without
errors despite much larger variation in nanowire resistance and
memristor programming. For example, the decoder operates
correctly with probability larger than 1 − 10−10 on code
blocks of length 250 even with maximum relative ON-state
programming error of order 10 % and maximum nanowire
resistance of order 100 kΩ.

B. Stuck open and stuck closed -type defects

In addition to inaccurate programming, the considered de-
coders may be affected by device defects in the nanowire
array. We model these as memristors that are stuck open —
assumed to be permanently in OFF or logical 0 -state —
with probability pso, or stuck closed — permanently in ON
or logical 1 -state — with probability psc.

The probability pe,so that a stuck open -type defect will cause
at least one error in the M × N parity check matrix of any
LDPC code is

pe,so = 1− (1− pso)
Mρ, (21)

where ρ is again the mean row weight of the code. The
corresponding error probability p e,sc for stuck closed -type
defects is

pe,sc = 1− (1 − psc)
M(N−ρ). (22)

The probabilities specified in (21) and (22) are significant
even with very low defect probabilities p so and psc. However,
it should be noted that these are not equal to the probability
of bit error in the output of the decoder. For example, the
probability of a stuck open defect causing a change on one row
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Fig. 16. Probability of γ parity check errors per bit, caused by stuck open
(SO) or stuck closed (SC) -type defects.

of H , which may cause an erroneous parity check depending
on the input data, is

ppce,so = 1− (1− pso)
ρ. (23)

If we assume that each such error always causes an erroneous
parity check, the number of detected failed parity checks per
bit, denoted by Npce, follows a binomial distribution,

Npce ∼ B(γ, ppce). (24)

With relatively low error rates, it is reasonable to assume
that an erroneous bit in the input will cause γ failed parity
checks. With this assumption, we can assume that the flipping
threshold is equal to γ, and a correct bit in the input will be
classified erroneously by the decoder due to stuck open defects
with probability

pbe,so = (1− (1 − pso)
ρ)γ . (25)

The above described reasoning applies also for stuck closed
-type defects, resulting in

ppce,sc = 1− (1 − psc)
N−ρ, (26)

and
pbe,sc = (1− (1− psc)

N−ρ)γ . (27)

Fig. 16 illustrates the probabilities specified in (25) and (27)
for code lengths 100, 500, and 1000, and various code param-
eters. Note that increasing the row and column weights of a
code significantly reduces the probability of γ erroneous parity
checks corresponding to a correct input bit.

VI. COMPARISONS TO EXISTING DECODERS

In Table I, the digital memristive decoder is compared
to a state-of-the-art digital CMOS implementation [18] of
similar bit flipping decoding as considered in this work.
In [18], the authors consider ultra-low-power LDPC decoders
realized with 65 nm technology; they also predict that a dig-
ital sub-threshold implementation of the considered decoder
will provide an approximately 30-fold reduction in power
consumption. Power consumption and throughput in [18] are
given for a code of length 512 bits at bit error rate (BER)



equal to 10−5 after decoding; for this code, the corresponding
signal-to-noise power ratio is reported approximately as 7 dB.
For comparison with the results presented in [18], we apply a
QCLDPC code of length 500 bits.

The considered code reaches a BER of 10−5 at an SNR of
approximately 8 dB, and at this operation point, E[N iter] ≈ 2.5
and E[Nfail] ≈ 4. Please note that for the BF decoders
discussed here, comparing BER vs. SNR performances is
not relevant, since — ignoring the possibility of hardware
malfunctions, which were in this work considered in Section V
— the BER performance of bit flipping is essentially not
dependent on the hardware implementation of the algorithm.
Based on the operating parameters above and equations (15),
(17), and (14), we obtain the performance measures presented
in Table I. These results indicate that the digital memristive
decoding approach yields an energy consumption per decoded
bit approximately 1.8 times that reported in [18], but also
a throughput approximately 5.5 times that of the reference.
Note that as in this work, the results presented in [18] are
based on simulations of the considered decoding circuitry, not
measurements of fabricated circuits.

It is also relevant to note that the decoder reported in [18]
is designed for a fixed LDPC code. It is not trivial to
design integrated decoder circuits which operate efficiently
with arbitrary LDPC codes, as the routing and corresponding
data scheduling between decoding nodes can become very
complicated, especially with large code sizes and codes with
high row or column weights. To demonstrate the energy
performance gain of the considered simple bit flipping decod-
ing with respect to a more complicated decoding algorithm
in a programmable decoder, in Table I we also compare
performance estimates obtained for the digital CMOL-based
decoder with the LDPC decoder circuit presented in [34].
This comparison is justified in the sense that the reference
decoder is also fully programmable, utilizes the same kind
of quasi-cyclic LDPC codes as assumed in this work, and is
implemented with 130 nm CMOS technology. However, the
reference decoder performs min-sum (MS) decoding which,
as illustrated in Fig. 3, is significantly better in terms of error
correction capability than the bit flipping considered in this
work. The related performance tradeoffs were discussed in
more detail in Section III.

However, the performance estimates presented in Table I
indicate that the bit flipping decoder yields a data throughput
of order 10 times that reported in [34], and power consumption
and energy per decoded bit approximately 30 % and 2 %,
respectively, of that of the reference. Of course, some imple-
mentation margin must be assumed in all of these figures, as
our results are based on simulations and analytical estimates,
while the reference results are measured.

VII. CONCLUSIONS

A. Further work

The decoder design principle considered in this work pro-
vides many topics for further studies. A direct continuation
of this work would be to refine the simple CMOS cell
designs considered, especially with the aim of reducing power

consumption. Also, the considered decoding principle can be
used to implement more complicated decoding algorithms
such as soft bit flipping [30], [31], allowing a tradeoff between
CMOS cell complexity and bit error rate performance.

Finally, although we have not discussed memristive stateful
logic in this paper, the topic is relevant also to the work
performed here. For example, the digital decoding approach
considered in this work operates using a similar principle as
multi-input memristive stateful logic operations, whose prin-
ciples and practical realization are described in detail in [16],
[17]. It would be relevant to investigate further the design
of LDPC decoders using memristive stateful logic. Based on
the work presented in this paper, we find that a stateful logic
decoder implementation using the same kind of monolithic
nanowire crossbar as in this work is not reasonable, since the
necessary XOR logic can be implemented more efficiently
as CMOS gates. However, the use of partitioned nanowire
crossbars as considered in [17] might produce interesting
possibilities for error correction in memory.

B. Summary

We have presented design principles for implementing de-
coders for low-density parity check codes in CMOL-type
memristive circuits. The CMOL circuit architecture is de-
signed to yield programmable, nonvolatile, and area efficient
connectivity between CMOS processing elements; in this
work, the programmable connections were used to map the
parity check matrix of an LDPC code in the decoder. The con-
sidered LDPC decoder examples are based on matrix-vector
multiplication, implemented using two different approaches:
analog correlation based on Ohm’s law and Kirchoff’s current
law, and corresponding digital processing, achieved by setting
specific constraints on the LDPC code structure.

We performed detailed performance analysis and circuit
simulations of the example decoders considered in the work,
and estimated how CMOL and memristor characteristics will
affect decoder operation. Most significantly, the maximum
codeword or code block length is limited by the ratio of
the memristors’ OFF and ON resistances. We also estimated
how the operation speed of the decoders depends on the total
capacitance in the nanowire array, and analyzed how variation
in memristance values, nonzero nanowire resistances, and
persistent device defects affect the computation of correlations.
Note that these analyses are relevant also in other parallel
CMOL-type computing applications.

Regarding the main objectives of this work, based on
currently available empirical data on CMOL and memristor
characteristics, we found that LDPC decoding in CMOL-type
circuit architectures is viable, and enables programmable, en-
ergy efficient decoding. In CMOL architectures where multiple
vertically stacked nanowire arrays are available, as assumed
for example in [12], the considered approach facilitates adding
error correction functionality with relatively little increase in
CMOL circuit complexity or cell area.
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TABLE I
COMPARISON OF THE CONSIDERED MEMRISTIVE DECODING, USING THE DIGITAL CMOL CELL DESIGN SPECIFIED IN SECTION III-B, WITH

CONVENTIONAL CMOS DECODERS. NOTE THAT THE TWO DIFFERENT SETS OF PERFORMANCE ESTIMATES GIVEN FOR THE MEMRISTIVE DECODER

CORRESPOND TO THE TWO DIFFERENT CODES USED IN THE REFERENCES. THESE PERFORMANCE ESTIMATES ARE OBTAINED USING THE FORMULAS
SPECIFIED FOR THE DIGITAL MEMRISTIVE DECODER IN SECTION IV.

Reference Winstead et al., 2012 [18] This work Shih et al., 2009 [34] This work

Decoding BF (digital) BF (digital) MS (programmable) BF (digital)
Technology 65 nm 130 nm 130 nm 130 nm
Code length 512 500 1536 (max.) 1536
Circuit area (mm2) N/A 1 4.9 3.1
Iterations N/A 2.5 (at BER 10−5) N/A (reported 2–8) 2
Throughput (Gbps) 0.2 1.1 0.086 (reported max) 1.6
Power (mW) 0.67 7.0 58 18
Energy efficiency (pJ/bit) 3.5 6.4 670 11
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