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Abstract: Malignancy of cancer has been linked to distinct subsets of stem-like cells, the so-called
cancer stem cells (CSCs), which persist during treatment and seem to lead to drug-resistant recurrence.
Metastatic spread of cancer cells is one of the hallmarks of malignancy and contributes to most human
melanoma-related deaths. Recently, overlapping groups of proteins and pathways were shown to
regulate stem cell migration and cancer metastasis, raising the question of whether genes/proteins
involved in stem cell pluripotency may have important implications when applied to the biology of
cancer metastasis. Furthermore, it is well known that ion channels and receptors, particularly those
responsible for calcium (Ca2+) signal generation, are critical in determining the cellular fate of stem
cells (SCs). In the present study, we searched for evidence of altered stem cell pluripotency and Ca2+

signaling-related genes in the context of melanoma metastasis. We did this by using network analysis
of gene expression in tissue biopsies from three different independent datasets of patients. First, we
created an in silico network model (“STEMCa” interactome) showing the landscape of interactions
between stem cell pluripotency and Ca2+ signaling-related genes/proteins, and demonstrated that
around 51% (151 out of 294) of the genes within this model displayed significant changes of expression
(False Discovery Rate (FDR), corrected p-value < 0.05) in at least one of the datasets of melanoma
metastasis when compared with primary tumor biopsies (controls). Analysis of the properties (degree
and betweenness) of the topological network revealed 27 members as the most central hub (HB) and
nonhub-bottlenecks (NH-B) among the 294 genes/proteins of the whole interactome. From those
representative genes, CTNNB1, GNAQ, GSK3B, GSTP1, MAPK3, PPP1CC, PRKACA, and SMAD4
showed equal up- or downregulation (corrected p-value < 0.05) in at least 2 independent datasets
of melanoma metastases samples and PTPN11 showed upregulation (corrected p-value < 0.05)
in three of them when compared with control samples. We postulate that altered expression of
stem cell pluripotency and Ca2+ signaling pathway-related genes may contribute to the metastatic
transformation, with these central members being an optimal candidate group of biomarkers and in
silico therapeutic targets for melanoma metastasis, which deserve further investigation.
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1. Introduction

During the last 20 years of cancer research, the so-called cancer stem cell (CSC) theory has
generated and still generates debates among the scientific community as to the critical participation of
these cells in tumorigenesis, regarding their main characteristics to (i) initiate, (ii) maintain, (iii) re-grow
diverse tumors, and (iv) give rise to drug-resistant recurrence [1,2]. The molecular mechanisms of
cancer metastasis are still under study, but metastasis is known to develop from a small population
of cancer cells within the primary tumor that is capable of entering and surviving in the circulation
and then exiting to re-grow in a distant tissue [3]. The way in which the CSC theory may fit with the
general scheme of metastatic potential is not well defined to date.

Melanoma is a neoplasm stemming from melanocytes or the cells that develop from melanocytes.
Since the increase in popularity of the CSC theory, single stem cell markers, including ABCB5, CD20,
CD133, CD271, and ALDH1A, have been reported in the literature to correlate with melanoma
malignancy [4]. These studies invite further investigation into the potential role of stem cell
pluripotency-related genes/proteins in tumor progression and, potentially, metastatic transformation.
Considering that stem cells (SCs) have the capability to self-renew and to differentiate into more
specialized cells [5], the signaling pathways governing their properties are also the subject of intense
research. For instance, ion channels and its receptors, particularly those responsible for calcium
(Ca2+) signal generation, are critical for determining the cellular fate and differentiation of SCs. It is,
therefore, plausible that transcriptional changes in members of the Ca2+ signaling pathway may trigger
pathological events such as tumorigenesis [6,7]. However, only a limited number of studies have
explored the putative link between intracellular Ca2+ and the metastasis of human cancer cells. For
example, a recent study (2016) by Rizaner and colleagues observed spontaneous Ca2+ oscillations in a
proportion of strongly metastatic human prostate and breast cancer cells [8].

The biggest challenge for cancer researchers probably resides in the discovery of robust markers of
survival and metastatic potential, and to provide early diagnosis and treatment for patients. The detection
and follow-up of disease markers are nowadays based on solitary proteins and most of the time this
approach is unreliable. Wider and more powerful systems than conventional pathology-based data (i.e.,
immunohistochemical)—capable of dealing with and analyzing increasing amounts of information—are
needed, such as bioinformatics and systems biology tools [9]. For example, by integrating additional
information into biological pathways or into protein–protein interaction (PPI) network models, we
could find modular biomarkers that integrate multiple genes with potential interactions, which could
lead to more accurate and reproducible prognostic predictions and better comprehension of disease
pathogenesis [10]. In fact, our group has successfully applied network-based approaches and systems
biology analyses in the context of diverse pathologies such as autism, Alzheimer’s disease, and
periodontal inflammation [11–17].

In this study, we created an integrated in silico network model of interactions to seek evidence
of altered stem cell pluripotency and Ca2+ signaling pathways in microarray samples from three
independent datasets of patients (Figure 1). By using a system biology-based approach, we searched
for de-regulated central genes, at the transcriptional level, which could represent putative biomarkers
for melanoma metastasis. Based on our findings, we hypothesize that aberrant signaling of stem cell
pluripotency and Ca2+ pathways may account for metastatic transformation, and specifically propose
nine representative central genes from our whole network model as an optimal candidate group of
biomarkers for human metastatic melanoma.
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Figure 1. General abstract workflow summarizing the criteria and tools utilized for the present study. Two 
maps from the KEGG PATHWAY Database corresponding to “Signaling pathways regulating pluripotency of 
stem cells” (map04550) and “Ca2+ signaling pathway” (map04020) were selected. Thereafter, an interactome 
was developed for integrating these maps into a single gene/protein interaction network model by the STRING 
V10.0 database (http://string-db.org/). With GALANT (GrAph LANdscape VisualizaTion), a Cytoscape 
(http://cytoscape.org/) plugin for visualizing data as functional landscapes projected onto biological networks, 
we projected numerical data from three different datasets extracted from the GEO database 
(http://www.ncbi.nlm.nih.gov/geo/). The 2D views correspond to the relative gene expression on the newly-
developed interactome. This tool creates three smoothed data plots that resemble the network model layout. 
Differential gene expression analysis was performed by using the R environment, limma package 
(http://www.R-project.org.). The p-values were adjusted for multiple comparisons by calculating false 
discovery rates (FDR) to avoid potential false positives. By using Cytoscape, further identification of 
“vulnerable” points within the in silico model upon the elucidation of centrality values and the selection of 
those central (hub (HB) and nonhub-bottlenecks (NH-B) up or downregulated genes suggest candidate 
diagnostic biomarkers and also potential molecular targets for therapeutics. GSEs: unique and stable GEO 
accession number assigned for each series record or group of related samples. 

2. Material and Methods 

2.1. Development of the Gene/Protein Interaction Network Model, Data Acquisition, and Processing 

For developing an integrated in silico network model (“STEMCa”), we first retrieved all the 
genes annotated as members of the KEGG PATHWAY Database entries x and y, which were, 
respectively, “Signaling pathways regulating pluripotency of stem cells” (map04550) and “Ca2+ 
signaling pathway” (map04020) (Supplementary Table S1). The human interactome (i.e., annotated 
interactions between human proteins) was downloaded from the STRING V10.0 database 
(http://string-db.org/) [18] in a text file and read into the R programming environment where scripts 
were written to generate our PPI network. We used only interactions reported by STRING as being 
from either “database” or “experimental evidence” and also with a minimum score of 0.400 
(medium confidence). The basic steps for network generation were as follows: (i) proteins encoded 
by the KEGG gene list were used as input to build the PPI network with the set parameters; (ii) the 
algorithm searched for disconnected nodes on the network (i.e., proteins with no reported 
interaction with the main network); (iii) if there were disconnected nodes, the algorithm would 
hunt for neighboring proteins or connectors (CONs) that could be included in the network with the 
purpose of joining disconnected nodes to the main network; (iv) if two or more nodes were able to 
join a set of disconnected nodes to the main network, then the one with the highest degree was 
selected; and finally, (v) the algorithm stopped only when there were no more nodes that could be 
added. The rationale behind this approach was to build a fully connected PPI network model from 
a list of proteins with the least possible interference from outsiders (proteins that were not 
originally inputs) and without losing network density connection. 
  

Figure 1. General abstract workflow summarizing the criteria and tools utilized for the present study.
Two maps from the KEGG PATHWAY Database corresponding to “Signaling pathways regulating
pluripotency of stem cells” (map04550) and “Ca2+ signaling pathway” (map04020) were selected.
Thereafter, an interactome was developed for integrating these maps into a single gene/protein
interaction network model by the STRING V10.0 database (http://string-db.org/). With GALANT
(GrAph LANdscape VisualizaTion), a Cytoscape (http://cytoscape.org/) plugin for visualizing data
as functional landscapes projected onto biological networks, we projected numerical data from three
different datasets extracted from the GEO database (http://www.ncbi.nlm.nih.gov/geo/). The 2D
views correspond to the relative gene expression on the newly-developed interactome. This tool
creates three smoothed data plots that resemble the network model layout. Differential gene expression
analysis was performed by using the R environment, limma package (http://www.R-project.org/).
The p-values were adjusted for multiple comparisons by calculating false discovery rates (FDR) to
avoid potential false positives. By using Cytoscape, further identification of “vulnerable” points within
the in silico model upon the elucidation of centrality values and the selection of those central (hub (HB)
and nonhub-bottlenecks (NH-B) up or downregulated genes suggest candidate diagnostic biomarkers
and also potential molecular targets for therapeutics. GSEs: unique and stable GEO accession number
assigned for each series record or group of related samples.

2. Material and Methods

2.1. Development of the Gene/Protein Interaction Network Model, Data Acquisition, and Processing

For developing an integrated in silico network model (“STEMCa”), we first retrieved all the genes
annotated as members of the KEGG PATHWAY Database entries x and y, which were, respectively,
“Signaling pathways regulating pluripotency of stem cells” (map04550) and “Ca2+ signaling pathway”
(map04020) (Supplementary Table S1). The human interactome (i.e., annotated interactions between
human proteins) was downloaded from the STRING V10.0 database (http://string-db.org/) [18] in a
text file and read into the R programming environment where scripts were written to generate our
PPI network. We used only interactions reported by STRING as being from either “database” or
“experimental evidence” and also with a minimum score of 0.400 (medium confidence). The basic
steps for network generation were as follows: (i) proteins encoded by the KEGG gene list were used as
input to build the PPI network with the set parameters; (ii) the algorithm searched for disconnected
nodes on the network (i.e., proteins with no reported interaction with the main network); (iii) if there
were disconnected nodes, the algorithm would hunt for neighboring proteins or connectors (CONs)
that could be included in the network with the purpose of joining disconnected nodes to the main
network; (iv) if two or more nodes were able to join a set of disconnected nodes to the main network,
then the one with the highest degree was selected; and finally, (v) the algorithm stopped only when
there were no more nodes that could be added. The rationale behind this approach was to build a fully
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connected PPI network model from a list of proteins with the least possible interference from outsiders
(proteins that were not originally inputs) and without losing network density connection.

2.2. Relative Gene Expression Network Visualization and Microarray Analysis

For our expression meta-analysis, we searched for cancer microarray raw data on the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) using the following as keywords: “melanoma” and
“metastasis” or “metastatic melanoma” in Homo sapiens. Selected GSEs (unique and stable GEO
accession number assigned for each series record or group of related samples) were GSE8401 (N = 83),
GSE46517 (N = 104), and GSE15605 (N = 58). The database is publicly available, and data were originally
contributed by Xu et al. [19], Kabbarah et al. [20], and Raskin et al. [21], respectively. Experimental
assays are explained in detail in these original publications, including the selection criteria of the
patients. Raw data normalization technique was chosen based on each dataset platform. Differential
gene expression analysis was performed through the implemented functions for R in the limma package,
which uses linear models to calculate moderated t-statistics for microarray data. The p-values were
adjusted for multiple comparisons by calculating false discovery rates (FDR) [22]. Only genes with
corrected p-values < 0.05 (FDR) were considered as differentially expressed (Supplementary Table S2).
Log-fold changes for each of the encoding genes of the proteins on the in silico model were exported
from R into text files and plotted over the PPI network (metastatic vs. primary melanoma samples) by
using the plugin GALANT for Cytoscape (Gaussian function sigma set to 0.04), which builds functional
landscapes onto biological networks [23].

2.3. Elucidation of the Topological Network Properties (Degree or Connectivity and Betweenness)

Elucidation of the topological network properties [24] such as degree (also known as connectivity)
and betweenness centralities (Supplementary Table S2) was performed by using the Network Analyzer
plugin from the Cytoscape software. Values of centralities above one standard deviation (+1 SD) of the
mean were selected to identify central nodes within the interactome. Degree gives information about the
local topology of each node by summing the number of its adjacent nodes. Nodes with high values of
degree over the threshold values are known as hubs. Betweenness provides values about how frequently
the shortest path connects each pair of nodes through a third given node. Therefore, betweenness
provides information about the influence of a node over the spread of information throughout the
interactome. Nodes with values of betweenness over the thresholds are named as “bottlenecks” (nonhub-
and hub-bottlenecks are represented by NH-Bs and HBs, respectively).

3. Results

3.1. “STEMCa” Is an Integrative Network Model of Interactions for Stem Cell Pluripotency and Ca2+

Signaling Pathways

Two pathways, the stem cell pluripotency (map04550) and Ca2+ signaling (map04020)
(Supplementary Table S1), were integrated within the interactome (Figure 2), being composed of
294 nodes interconnecting through 2995 interactions. In the case of non-existing direct crosstalk
through common members from both signaling pathways, it was possible to search for common
neighboring nodes corresponding to additional genes/proteins or CONs to members of both pathways
by using mathematical algorithms in the R environment (see Section 2). Our model included 21 CONs
within the “STEMCa” interactome.

http://www.ncbi.nlm.nih.gov/geo/
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revealed significant transcriptional changes in metastatic melanoma. In particular, 151 (~51%), 63 
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Table S2 and Figure 2). The observed changes may account for the metastatic transformation of 
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Figure 2. “STEMCa” interactome. General landscape of interactions between the genes/proteins
of stem cell pluripotency (map04550) and calcium signaling (map04020) interaction network model.
The present in silico network model was developed by using the STRING V10.0 database resource
search tool, exclusively using “experiments” and “databases” as input options for active prediction
methods and a minimum confidence score of 0.400 (medium confidence).

3.2. Network-Based Analyses of Stem Cell Pluripotency and Ca2+ Signaling Pathways Reveal Transcriptional
Changes in Independent Datasets of Human Metastatic Melanoma

We performed a systems level analysis of potential transcriptional changes in genes belonging to
SC pluripotency and Ca2+ signaling pathways in metastatic melanomas. The “STEMCa” interactome
(Figure 3A) was subjected to a relative gene expression analysis profile by using the GALANT software,
which plotted the expression mean values derived from metastatic melanoma over the expression of
primary tumor samples in the network model, presenting it as two-dimensional GALANT-generated
landscapes graded by color (Figure 3B–D). The relative gene expression levels were color-coded
with warm colors (yellow-red) being representative of higher expression whereas cold (green-blue)
colors represent lower gene expression when compared to control samples. The 2D GALANT plots
revealed equal landscape patterns of de-regulated relative gene expression in SC pluripotency and
Ca2+ signaling pathways when metastatic melanomas were compared to primary tumors in three
independent datasets (GSE8401, GSE46517, and GSE15605) of microarray samples (Figure 3B–D).
Differential expression analysis of the “STEMCa” interactome revealed significant transcriptional
changes in metastatic melanoma. In particular, 151 (~51%), 63 (~22%), and 14 (~5%) out of 294 genes
from “STEMCa” interactome were differentially expressed (corrected p-values < 0.05; FDR) in the
tissue samples from one, two, or three independent microarray datasets, respectively (Supplementary
Table S2). At this stringent FDR, none of these changes were expected to be a false positive. Of note,
in all cases, these genes followed the same pattern of de-regulation (up or downregulation) when the
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datasets were compared (Supplementary Table S2 and Figure 2). The observed changes may account
for the metastatic transformation of human melanoma with consequent alterations in patient survival.Med. Sci. 2018, 6, x FOR PEER REVIEW  6 of 12 
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Figure 3. GALANT plots over the in silico model “STEMCa” in melanoma metastasis from three
independent sample sources from GEO. The figure represents the relative gene expression over the
“STEMCa” interactome (A) in melanoma metastasis vs. primary melanoma analyzed in (B) GSE8401,
(C) GSE46517, and (D) GSE15605 independent microarray samples, by using the GALANT software,
which is an open-source application able to build landscape maps of gene expression networks.

3.3. Elucidation of Key Hub Genes/Proteins within the Integrative “STEMCa” Interactome Suggests a Group of
Candidate Biomarkers for Metastatic Melanoma

For characterizing the newly-developed interactome, we calculated the topological network
properties or centrality values (Supplementary Table S2), known as degree or connectivity and
betweenness. These values reveal the most central nodes (genes/proteins) in a network [14–16]. Central
nodes (NH-B and HB) mark the points of vulnerability within the network of interactions and any
variations in these members (e.g., up or downregulation of a given gene) could be considered to
trigger more intense changes in the rest of the interactome (e.g., “STEMCa”) than those of non-central
or less central nodes. Therefore, one could consider that any gene/protein identified as NH-B or
HB may represent one putative biomarker [16], especially if those showed the same qualitative up
or downregulation in gene expression (corrected p-values < 0.05; FDR) in at least two independent
datasets of microarray samples. After calculating centrality values for the 294 “STEMCa” gene/protein
members (Supplementary Table S2), we identified 27 central nodes (Figure 4), 19 NH-Bs (values of
betweenness above one standard deviation of the mean), and 8 HBs (values of betweenness and degree
above one standard deviation of the mean). Respectively, 11, 5, and 1 gene(s) out of 19 NH-Bs showed
the same qualitative (up or downregulation) differential gene expression (corrected p-values < 0.05;
FDR) in these tissue samples from one, two, or even three independent microarray datasets. Eight
and 3 out of 8 HBs showed the same qualitative differential gene expression (corrected p-values < 0.05;
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FDR) in one or two GSEs (Table 1). In particular, CTNNB1, GNAQ, GSK3B, GSTP1, MAPK3, PPP1CC,
PRKACA, and SMAD4 genes (corrected p-value < 0.05; FDR) were over- or sub-expressed in at least
two datasets of melanoma metastases when compared with primary tumor samples. PTPN11 or
protein tyrosine phosphatase, non-receptor type 11 showed upregulation (corrected p-value < 0.05;
FDR) in the three re-analyzed independent cohorts of patients (Table 1).Med. Sci. 2018, 6, x FOR PEER REVIEW  7 of 12 
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Figure 4. Analysis of the topological properties (betweenness vs. degree) of genes/proteins belonging
to the “STEMCa” interactome. The figure identifies only central nodes, hub-bottlenecks and
nonhub-bottlenecks with values above +1 SD of the mean, which are differentially expressed (corrected
p-values < 0.05) in at least one GSE, which is the unique and stable GEO accession number assigned for
each series record or group of related samples, it is the ID from GEO for the analyzed datasets from the
re-analyzed cohorts (GSE8401, GSE46517, and GSE15605).

4. Discussion

In this study, we constructed an in silico model (interactome) resulting from the interplay between
stem cell pluripotency and Ca2+ signaling pathways, in a network composed of 294 genes/proteins
and 2995 interactions based on “Experiments” and “Databases” and a confidence score of at least
0.400 (Figure 2). The newly-developed model was then subjected to further analysis by the GALANT
software, showing a similar pattern of differences when the relative expression of metastatic melanoma
from three microarray datasets was plotted over the expression of primary tumor samples in the
“STEMCa” interactome (Figure 3). Differential expression analysis of “STEMCa” model showed
significant transcriptional differences in metastatic vs. primary tumor tissues with around 51% (151 out
of 294) exhibiting changes in at least one of the studied datasets (Supplementary Table S2). In particular,
CTNNB1, GNAQ, GSK3B, GSTP1, MAPK3, PPP1CC, PRKACA, SMAD4, and PTPN11 were de-regulated
(corrected p-values < 0.05) central genes in the tissue samples in our model (Table 1 and Figure 4),
representing not only a putative group of biomarkers but also potential therapeutic targets in melanoma
metastasis. The observed transcriptional changes may account for the molecular changes involved in
the metastatic transformation of primary tumor sites.
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Table 1. Centrality values (degree and betweenness) for each node (gene/protein) within the stem cell pluripotency (map04550) and calcium signaling (map04020)
interaction network model (“STEMCa” network). Differentially expressed genes within these members are listed. Centralities over the thresholds with values above
one standard deviation of the mean (+1 SD) are in bold. Corrected p-values < 0.05 are considered significant for differentially expressed genes. Nodes identified as
nonhub-bottlenecks (NH-Bs) and hub-bottlenecks (HBs) (based on degree and betweenness centralities), with values above +1 SD of the mean are represented as NH-Bs
and HBs, respectively. “ST”, “Ca”, and “CON” represent “stem cell pluripotency”, “calcium signaling”, and “connector”, respectively. NH-Bs and HBs differentially
expressed in at least two analyzed GSEs are in gray color. Only one gene (PTPN11, NH-B) was differentially expressed (upregulated) in the three analyzed GSEs. Table
sorted by alphabetical order of gene symbol.

Gene Information Topology
NH-B or HB

GSE8401 GSE46517 GSE15605

Gene Symbol Ensemble ID Sub. Degree Betweenness Diff. Exp. Corrected p-Value (FDR) Diff. Exp. Corrected p-Value (FDR) Diff. Exp. Corrected p-Value (FDR)
1-12

AKT1 ENSP00000270202 ST 32 0.03034247 NH-B - - - 0.073094859 Down 0.002572769 - - - 0.99159187

CALM1 ENSP00000349467 CON 46 0.04297522 HB - - - 0.420640218 Up 0.014354422 - - - 0.102753445
1-12 CTNNB1 ENSP00000344456 ST 49 0.09934346 HB Up 0.000112883 Up 5.22113E−05 - - - 0.134736908

1-12 EGFR ENSP00000275493 Ca 41 0.02867496 HB - - - 0.454469806 Down 4.09354E−18 - - - 0.372953188
ESR1 ENSP00000206249 CON 37 0.03902762 NH-B - - - 0.34361801 - - - 0.691913409 - - - 0.858356832

GABRR1 ENSP00000412673 CON 4 0.02033756 NH-B - - - 0.516750581 - - - 0.178807962 Up 0.030236148
1-12 GNAQ ENSP00000286548 Ca 69 0.08508797 HB Up 0.014769785 Up 0.038122837 - - - 0.174777485

GSK3B ENSP00000324806 ST 31 0.03985954 NH-B Down 4.43231E−06 Down 2.75596E−10 - - - 0.542667881
GSTP1 ENSP00000381607 CON 4 0.02033756 NH-B Down 3.14081E−05 Down 2.61693E−06 - - - 0.274434846

1-12 HDAC1 ENSP00000362649 CON 27 0.03262084 NH-B - - - 0.213434449 - - - 0.710999269 - - - 0.865172009
IGF1 ENSP00000302665 CON 28 0.04312205 NH-B - - - 0.697266013 - - - 0.431465367 - - - 0.66956775

ITPR3 ENSP00000363435 Ca 22 0.01942364 NH-B - - - 0.269623007 - - - 0.671875922 - - - 0.742562621
JUN ENSP00000360266 CON 31 0.03792962 NH-B Down 8.92807E−06 - - - 0.171366276 - - - 0.900656682

MAPK1 ENSP00000215832 ST 42 0.05561423 HB Up 0.000412172 - - - 0.429091242 - - - 0.608460569
MAPK14 ENSP00000229794 ST 34 0.02912488 NH-B - - - 0.605738821 Up 0.038642425 - - - 0.358766287

1-12 MAPK3 ENSP00000263025 ST 33 0.02244545 NH-B Down 1.10052E−05 Down 0.01074679 - - - 0.999319565
1-12 MYC ENSP00000367207 ST 34 0.03598441 NH-B - - - 0.602836201 - - - 0.274057104 - - - 0.449615647
NCOR1 ENSP00000268712 CON 21 0.02875081 NH-B - - - 0.627351808 - - - 0.257849878 - - - 0.148831132
PIK3R1 ENSP00000274335 ST 69 0.05441236 HB - - - 0.383906559 Down 0.030059149 - - - 0.057825554

1-12 PPP1CC ENSP00000335084 CON 22 0.01965509 NH-B Up 1.52233E−05 Up 3.22551E−05 - - - 0.307997432
PRKACA ENSP00000309591 CON 51 0.0837037 HB Down 0.00193898 Down 0.006166758 - - - 0.056947292

1-12 PRKCA ENSP00000408695 Ca 55 0.03906664 HB Up 0.003860994 - - - 0.227826787 - - - 0.934220679
1-12 PTPN11 ENSP00000340944 ST 34 0.02374219 NH-B Up 0.039908343 Up 0.009092992 Up 0.048264037
1-12 SMAD2 ENSP00000262160 ST 29 0.02336588 NH-B Up 0.009466433 - - - 0.924719732 - - - 0.23296179

SMAD3 ENSP00000332973 ST 28 0.02392531 NH-B - - - 0.975647588 - - - 0.09794078 - - - 0.219862918
1-12 SMAD4 ENSP00000341551 ST 35 0.03753624 NH-B Up 5.56315E−06 Up 0.000292094 - - - 0.141417242

1-12 TCF3 ENSP00000262965 ST 18 0.02573384 NH-B - - - 0.803481248 - - - 0.217139092 - - - 0.260191349

Mean 20.37414 6.56E−03
SD 16.80553 0.01276070

1 SD 37.17968 0.01932203
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Melanoma is the most lethal type of skin cancer with an estimated 73,870 new cases in 2015,
representing 4.5% of all new cancer cases. In this same year, 9940 people died from this disease.
The incidence of melanoma is rising [25]. Metastasis is the spread of cancer cells from the primary tumor
site to distant organs and accounts for more than 90% of deaths in cancer patients since most metastases
are undetectable by clinicians [3,26]. Therefore, a better comprehension of the mechanisms governing
melanoma metastasis and the discovery of optimal biomarkers for early diagnosis remain necessary.

In general, a couple of hallmarks make CSCs putative candidates responsible for cancer metastasis:
first, it seems that these are the only cells within tumors that are capable of initiating and maintaining
cancer growth; and second, a single CSC is able to develop a metastatic lesion in contrast to the rest
of the cancer cells from the heterogeneous tumor [27,28]. In addition, the expression of pluripotency
markers in CSCs, which share several molecular characteristics typically observed in normal SCs and
depend on common embryonic signaling pathways, has been reported. These molecular pathways
likely represent novel therapeutic targets that could improve patient survival rates [29].

The homeostasis of Ca2+ and Ca2+-dependent signaling are critical components of cellular
fate [30]. Surprisingly, this event has not been studied in detail yet as in pluripotent SCs. The role
of Ca2+ signaling is known in both proliferation and differentiation of SCs at the very early stages of
development and, consequently, the fate of their physiopathological status in vivo [31]. Therefore, one
could speculate that transcriptional differences in stem cell pluripotency and Ca2+ signaling-related
genes may contribute to the metastatic transformation in melanoma malignancy. The results that
we report here, derived from our newly-developed in silico model (Figure 2 and Supplementary
Table S1), corroborate this hypothesis in three independent datasets of microarray samples (Figure 3 and
Supplementary Table S2). However, the absence of experiments confirming the up or downregulation
of these genes at the protein level in additional human metastatic melanoma tissues remains a limitation
that requires further study.

Considering that diseases treated in the early stages are associated with better patient outcomes,
the discovery of new melanoma biomarkers through OMICS (genomics, proteomics, metabolomics)
and systems biology tools are required to assist clinicians in the diagnosis, follow-up, treatment, and
even prediction of melanoma outcomes [32]. The use of PPI offers the opportunity to analyze the
functional relationships among biological molecules within one or numerous signaling pathways [16].
Researchers can elucidate centrality values as a network-based approach to objectively identify/select
candidate biomarkers and therapeutic targets in silico in the context of any disease [16,33,34] and check
alterations at the transcriptional level in independent array datasets. In this study, we identified a
group of central members including CTNNB1, GNAQ, GSK3B, GSTP1, MAPK3, PPP1CC, PRKACA,
SMAD4, and PTPN11 genes within the present in silico “STEMCa” interatomic model (Figure 4).
Thereafter, we qualitatively validated in at least two independent datasets of patients from GEO
significant differences in expression of these genes (corrected p-value < 0.05; FDR) (Table 1). From
those, only PTPN11 (NH-B) gene confirmed its upregulation in another third independent cohort of
patients. This could be due to the lower number of samples provided in the third re-analyzed dataset
with 58 samples (GSE15605), when compared with the other two GSEs with 83 and 104 samples,
respectively. This group of nine genes/proteins as central (NH-Bs and HBs) de-regulated nodes
occupying vulnerable points in the “STEMCa” interactome represent potential therapeutic targets for
melanoma metastasis in silico and invites further investigation in vitro and in vivo.

PTPN11 gene encodes the protein tyrosine phosphatase non-receptor type 11 and has a
subnetwork contribution to the “STEMCa” interactome from the stem cell pluripotency signaling
pathway (map04550) (Supplementary Table S1). It is remarkable that suppression of PTPN11 confers
sensitivity to BRAF inhibitors (used in cancer therapeutics) in colon cancer by blocking signaling from
the receptor tyrosine kinases to the RAS–MEK–ERK pathway. This suppression also prevents the
acquired resistance to targeted cancer drugs resulting from receptor tyrosine kinase activation [35].
According to the CSC theory, one of the main characteristics of these cells is to confer drug-resistant
recurrence [1,2]. These recent findings [35] are therefore consistent with the present network-based



Med. Sci. 2018, 6, 23 10 of 12

identification of biomarkers and potential therapeutic targets from stem cell pluripotency and Ca2+

signaling pathways in metastatic melanomas.
We conclude that (i) altered expression of stem cell pluripotency and Ca2+ signaling

pathway-related genes may contribute to metastatic transformation, and (ii) CTNNB1, GNAQ, GSK3B,
GSTP1, MAPK3, PPP1CC, PRKACA, SMAD4, and especially PTPN11 may represent an optimal
candidate group of biomarkers and in silico therapeutic targets for melanoma metastasis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3271/6/1/23/s1,
Supplementary Table S1. Genes/proteins belonging to the stem cell pluripotency (map04550) and calcium
signaling (map04020) interaction network model (“STEMCa” network) and its gene subnetwork contributions (ST:
stem cell pluripotency; Ca2+: calcium signaling; CON: connector), Supplementary Table S2. Centrality values
(degree and betweenness) and differentially expressed genes from the stem cell pluripotency (map04550) and
Ca2+ signaling (map04020) interaction network model (“STEMCa” network). Corrected p-values < 0.05 were
considered significant. Centralities over the thresholds with value/s above one standard deviation of the mean
(+1 SD) are color-marked.
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