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Abstract. We explore Einstein-Podolsky-Rosen steering, measured by steering robustness,
in the ground states of serval typical models that exhibit a quantum phase transition. For the
anisotropic XY model, steering robustness approaches to zero around the critical point and
vanishes in the ferromagnetic phase despite the fact that there exist other quantum nonlocality,
e.g. quantum entanglement. For the Heisenberg XXZ model, steering robustness exhibits
some similar behavior as entanglement around the infinite order quantum phase transition point
∆ = 1, e.g. reaching its maximum. As a further example, we also consider steering robustness
in the Lipkin-Meshkov-Glick collective spin model. It is then shown that steering robustness
disappears at the transition point and remains to zero in the fully polarized symmetric phase,
just like the behavior of entanglement and Bell nonlocality.
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Einstein-Podolsky-Rosen steering in critical systems 2

1. Introduction1

At absolute zero temperature, the ground state properties2

of a many-body system may change dramatically and3

qualitatively owing to the pure quantum fluctuation. This4

phenomenon, known as quantum phase transition (QPT),5

which comes from the interplay between the different6

orders associated with competing interactions in the7

system[1]. This topic attracts much attention in many8

branches of physics. Traditionally, a QPT is described9

in the framework of Landau-Ginzburg paradigm that the10

transition from one phase to another is usually accompanied11

by symmetry breaking. In recent years, many works paid12

attention to this problem from the quantum-information13

perspective[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,14

15, 16, 17, 18, 19, 20, 21](e.g. fidelity[16, 17],quantum15

echo[18], quantum quench dynamics[20]). Specially,16

quantum systems possess genius nonlocal correlations,17

which are fundamental to varying applications of quantum18

information theory and technology. Since correlations19

among the subsystems of many-body systems are closely20

related to the emergence of the QPT, it is natural to21

investigate the link between this phenomena and nonlocal22

correlations[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,23

15]. Particularly, nonlocal correlations measures such as24

entanglement and Bell nonlocality have been employed25

to investigate QPT in numerous quantum spin systems.26

For instance, pairwise entanglement close to the QPT27

of one-dimensional Ising model[2, 3] and entanglement28

entropy approach to the quantum critical phenomena in29

XY and XXZ spin chains were addressed[4, 5, 7]. And30

Bell nonlocality measured by Clauser-Horne-Shimony-Holt31

(CHSH) function has also been introduced to examine the32

QPT in several spin systems[6, 8, 9]. All these results33

seemly state that the quantum nonlocality as a nontrivial34

tool to characterize the QPT of a quantum system does35

function.36

Recently, Einstein-Podolsky-Rosen (EPR) steering37

has been attracted much interest both theoretically and38

experimentally[22, 23, 24, 25, 26, 27, 28, 29, 30, 31,39

32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Apart from the40

fundamentality of steering in quantum theory itself[22, 23,41

24, 25, 26, 27, 28], there are also quite a few of application42

motivations in the quantum information technology (e.g.43

quantum key distribution[38] and secure teleportation[39]).44

Now we know that EPR steering is an intermediate45

type of quantum nonlocality between entanglement and46

Bell nonlocality[22]. Contrary to entanglement and Bell47

nonlocality, quantum steering possesses a fundamental48

asymmetry due to the facts that the two observers hold 49

different positions in the steering test[29, 30, 32]. Since 50

both entanglement and Bell nonlocality play an important 51

role in the QPT, so it’s an interesting issue to investigate the 52

behavior of EPR steering in critical systems. In this work, 53

we will study the behavior of steering robustness around the 54

critical points in three kinds of spin systems. By calculating 55

the steerable robustness, we find that the bipartite reduced 56

state for the Ising chain is unsteerable in the ferromagnetic 57

phase, and steering robustness approaches to zero around 58

the critical point. For the XXZ model, steering robustness 59

reaches its maximum at the critical point, and for 60

the Lipkin-Meshkov-Glick (LMG) collective spin ones, 61

steering robustness disappears at the critical point and 62

remains to be zero in the symmetric polarized phase. 63

The remainder of this work is organized as follows. 64

In Section 2, we introduce EPR steering and steering 65

robustness. In Sections 3, we study the steering robustness 66

in several typical critical systems. Finally, we give a 67

summary of our main results. 68

2. Einstein-Podolsky-Rosen steering and Robustness 69

For a bipartite state ρAB shared by Alice and Bob, quantum 70

steering commonly refers to the ability of one observer 71

(e.g. Alice) can nonlocally change (i.e. steer) the 72

remote other observer’s (e.g. Bob) state through local 73

measurements. In 2007, Wiseman et al. gave quantum 74

steering a rigorous definition in an operational way from 75

a quantum information perspective[22, 23]. And their 76

scenario is proposed as follows: Alice performs a series 77

of measurements described by positive operator values 78

measures (POVMs) {Ma|x}a,x (i.e. Ma|x ≥ 0 and
∑

a Ma|x = 79

I for all a, x. Here, x and a denote the measurement 80

setting and its corresponding outcome, respectively) on her 81

subsystem, then Bob is left with a non-normalized state 82

assemblage 83

σa|x := trA[(Ma|x ⊗ I)ρAB], (1) 84

where I is the identity operator on Bob’s subsystem. 85

The quantum assemblages must satisfy the no-signaling 86

requirement 87∑
a

σa|x =
∑

a

σa|x′ ∀x, x
′
, (2) 88

and the normalization condition 89

tr
∑

a

σa|x = 1 ∀x. (3) 90
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Einstein-Podolsky-Rosen steering in critical systems 3

If all the above unnormalized states in the assemblage1

{σa|x}a,x can be formulated in the form2

σa|x =
∑
ξ

Dξ(a|x)σξ ∀a, x (4)3

with4

tr
∑
ξ

σξ = 1, σξ ≥ 0 ∀ξ, (5)5

where ξ is a classical random variable held by Alice,6

Dξ(a|x) are deterministic single-party conditional probabil-7

ity distributions for Alice, then we call such an assemblage8

unsteerable (local hidden state (LHS) model) and the set9

of unsteerable assemblage is denoted by {σUS
a|x }a,x. Other-10

wise, any assemblage that can not be written in the form11

of above expression is called steerable, and the set of steer-12

able assemblage is denoted by {σS
a|x}a,x. With semidefinite13

program (SDP)[25], it is possible to test whether a given14

assemblage belongs to the set of unsteerable assemblage or15

belongs to the set of steerable assemblage.16

Another interesting question considered in the pre-17

vious literatures is how to quantify EPR steering, and18

there are many scenarios were proposed recently. For in-19

stance, Skrzypczyk et al. have proposed a quantity called20

steering weight to measure the steerability of quantum21

assemblage[24] by separating an assemblage into a steer-22

able part {σS
a|x}a,x and an unsteerable one {σUS

a|x }a,x (σa|x =23

µσUS
a|x + (1 − µ)σS

a|x, ∀ a, x, 0 ≤ µ ≤ 1). And Chen24

et al, extended this scenario to its temporal analogue[28].25

Analogously to the robustness of entanglement, Piani et al.26

proposed another alternative approach for the quantifica-27

tion of steering, called steering robustness R(A) by ask-28

ing how much noise one has to add to a given assemblage29

A = {σa|x}a,x in order for it to have an LHS model[26].30

Generally, aN-robustness of an assemblage {σa|x}a,x can be31

defined as[25, 26],32

R(σa|x) = min
σa|x,σλ,t

t s.t.

σa|x + tτa|x
1 + t

= σLHS
a|x ∀a, x

σLHS
a|x =

∑
λ

D(a|x, λ)σλ ∀a, x

τa|x ∈ N , σλ ≥ 0 ∀λ. (6)

Here, N is any subset of assemblages characterised33

by positive semi-definite constraints and linear matrix34

inequalities, which will determine the specific type of noise35

and the corresponding robustness quantifier. For instance,36

the choices of the noise N can be consider the set of LHS37

assemblages (N = {τa|x|τa|x =
∑
λ D(a|x, λ)σλ ∀a, x, σλ ≥38

0 ∀λ, tr∑λ σλ = 1}), corresponding to the LHS-39

robustness[27]; or N can be composed by a single40

assemblage (e.g, the maximally mixed assemblage, N =41

{I/(dBoA) ∀a, x}. Here, oA and dB denote the number42

of outputs of Alice’s measurements and the dimension43

of Bob’s Hilbert space, respectively), corresponding to44

the random steering robustness. Also, we can take a45

Figure 1. (Color online) Main panel: The biggest steering robustness
among 500 randomly generated assemblages with respect to the
parameters p for the two-qubit Werner state ρAB = p|ϕ⟩⟨ϕ|+ (1− p)I⊗ I/4.
Results for different number of measurements in each assemblage are
displayed. k = 3(cross), 4(circle), 6(diamond) and 8(pentagram). Insets:
Entanglement and Bell nonlocality vanish at the points 1/3 and 0.707,
respectively. Hereafter, we take the number of measurements k = 8 and
sample 500 random generated assemblages without additional remarks.

particularly case that the set N corresponds to the set 46

of all valid assemblages (i.e., N = {τa|x|
∑

a τa|x = 47∑
a τa|x′ ∀x, x

′
, tr
∑

a τa|0 = 1}), in which case the quantifier 48

was named the steering robustness R simply[25, 26]. The 49

steering robustness of A, which is nonzero if and only if 50

A is steerable, is a measure of the minimal noise needed to 51

destroy the steerability of the assemblageA. 52

First, we take the two-qubit Werner state ρAB = 53

p|ϕ⟩⟨ϕ| + (1 − p)I ⊗ I/4 (|ϕ⟩ = (|01⟩ − |10⟩)/
√

2 is the 54

singlet state) as an example to investigate the steering 55

robustness. By taking a measurement of the three Pauli 56

operators X, Y , and Z, we find that the steering robustness 57

decreases monotonically with decreasing p and further the 58

state becomes unsteerable exactly when p = 1/
√

3. The 59

results are showed in figure 1. Now, we choose a given 60

number k of random measurements on the Bloch sphere. 61

For k = 4, 6 and 8, we sampled over 500 random generated 62

assemblages for various values of p. We can find that 63

steering robustness increases as k increasing. And we can 64

also see that the points where steering robustness vanishes 65

depend on the choice of number of measurement k and 66

would approach to 1/2 with an increasing k. So the choice 67

of number of measurement k and sample will be very 68

important in the following research. As a comparison, we 69

also plot some other quantum nonlocality in figure 1, which 70

show that entanglement vanishes at the point p = 1/3 and 71

Bell nonlocality (CHSH functions less then 2) disappears 72

around the point p ≃ 0.707. 73

3. Results 74

In the following, we investigate the behavior of steering 75

robustness in the three typical spin systems. Since we take 76

steering robustness to describe the quantum nonlocality, it 77

is necessary to derive the pairwise reduced density matrix. 78

For both the XY model and XXZ one, the pairwise reduced 79
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Einstein-Podolsky-Rosen steering in critical systems 4

Figure 2. (a)Steering Robustness with respect to the parameters λ for
the nearest-neighbor reduced density state in the Ising model. Steering
Robustness approaches to zero around the critical points λ = 1 and remains
to be zero in the ferromagnetic phase. (b) Entanglement and (c) CHSH
function for the nearest-neighbor reduced density state in the Ising model.

density matrix in the basis {|00⟩, |01⟩, |10⟩, |11⟩} can be1

given by[2, 5, 15]2

ρi j =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 (7)3

disregarding spontaneous symmetry breaking effects. Here,4

all the elements of the matrix ρi j can be expressed by the5

spin-spin correlation functions, seeing the Appendix.6

3.1. One-dimensional anisotropic XY model7

Now we consider the anisotropy XY model with an external8

field. The Hamiltonian is written as follows,9

H = −
L∑
i

[
λ(

1 + γ
2
σx

i σ
x
i+1 +

1 − γ
2
σ

y
iσ

y
i+1) + σz

i )
]
. (8)10

Here, λ denotes the relative strength of the nearest-neighbor11

coupling with respect to the external field, and taking λ ≥ 012

without losing generality. γ is an anisotropy parameter13

which can be varied in the region [0, 1], and can separate the 14

Ising model(γ = 1) from the isotropic XX model(γ = 0). In 15

the limit λ → ∞, the ground state is a product of spins 16

pointing in the positive x direction, |0+⟩λ→∞ ≈ · · · | → 17

⟩i| →⟩i+1 · · · or negative ones |0−⟩λ→∞ ≈ · · · | ←⟩i| ← 18

⟩i+1 · · · with the global phase flip, so the ground state is 19

two-fold degenerate and is an equal mixture of these two 20

states(i.e. a thermal ground state ρ = 1
2 |0+⟩λ→∞⟨0+| + 21

1
2 |0−⟩λ→∞⟨0−|, which is a mixed state that does not contain 22

any type of quantum correlations between any parties). 23

While in the limit λ → 0, the transverse Ising model 24

ground state becomes a product of spins pointing in the 25

positive z direction, |0⟩λ→0 ≈ · · · | ↑⟩i| ↑⟩i+1 · · ·, which is 26

also a product state that there does not exit any type of 27

correlations between any parties[3]. Around the quantum 28

phase transition point, the system’s ground state changes 29

from degenerate to non-degenerate. 30

In figure 2(a), we display steering robustness for 31

nearest-neighbor spins in the Ising chain as a function 32

of λ at zero temperature. The results demonstrate that 33

there is a remarkable difference for the steering robustness 34

between the regions 0 < λ < 1 and λ > 1. In the 35

paramagnetic phase (λ < 1), steering robustness increases 36

first and reaches a maximum then decreases with increasing 37

λ. Around the point λ = 1, it disappears and remains 38

to be zero in the whole region of ferromagnetic phase 39

(λ > 1), which is very different to the entanglement. 40

Here, it should be mentioned that Zhang et al. shown 41

that the bipartite state would be unsteerable around the 42

point λ = 0.8[37]. The difference mainly come from 43

the special three measurements in their calculation. As a 44

comparison, in figure 2(b) and (c), we display the behavior 45

of entanglement and Bell nonlocality. We know that the 46

first-order derivative of entanglement is divergent[2] and 47

CHSH function takes its local minimum[8] at the critical 48

point λ = 1, which mean that these three kinds of quantum 49

nonlocality exhibit different behavior around the critical 50

point. Also, we can find that there does not exist Bell 51

nonlocality both in ferromagnetic phase and paramagnetic 52

one (CHSH function is less then 2) even there are some 53

quantum states which are highly entangled. All these results 54

state that there exits a strict hierarchy among EPR steering, 55

entanglement and Bell nonlocality in different phases for 56

this model. In facts, Bell nonlocality implies nonclassical 57

correlations that can not be described by local hidden 58

variable theory (i.e. Alice’s and Bob’s joint probability 59

satisfies P(a, b|A, B, ρAB) =
∑
ξ P(a|A, ξ)P(b|B, ξ)Pξ for 60

any Alice’s measurements A with output a and Bob’s 61

measurements B with output b) for a given quantum 62

state[23, 35]; EPR steering describes correlations that can 63

not be formulated by local hidden state theory (i.e. Alice’s 64

and Bob’s joint probability and the marginal probability 65

satisfy P(a, b|A, B, ρAB) =
∑
ξ P(a|A, ξ)PQ(b|B, ξ)Pξ with 66

PQ(b|B, ξ) = Tr[
∏B

b ρ
B
ξ ] for any A and B) and entanglement 67

is one whose joint probability cannot be expressed by any 68
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Einstein-Podolsky-Rosen steering in critical systems 5

Figure 3. (Color online) Steering Robustness with respect to the
parameters λ for the nearest-neighbor reduced density state in the
anisotropic XY model for different γ. (b) Steering Robustness with respect
to the parameters λ and γ in the whole region. (c) Entanglement with
respect to the parameters λ and γ in the whole region. There exist
some regions where the quantum states are highly entangled and steering
robustness is absent in the ferromagnetic phase.

separable model(i.e. Alice’s and Bob’s joint probability1

and the marginal probability satisfy P(a, b|A, B, ρAB) =2 ∑
ξ PQ(a|A, ξ)PQ(b|B, ξ)Pξ with PQ(a|A, ξ) = Tr[

∏A
a ρ

A
ξ ]3

and PQ(b|B, ξ) = Tr[
∏B

b ρ
B
ξ ] for any A and B). Obviously,4

the condition for no steering can imply the condition for5

Bell locality (By setting P(b|B, ξ) = PQ(b|B, ξ)) and the6

condition for separability can also imply the condition7

for no steering (By setting P(a|A, ξ) = PQ(a|A, ξ)).8

Thus steerability is strictly stronger than nonseparability,9

and strictly weaker than Bell nonlocality[23]. For the10

nearest-neighbor reduced state ρi,i+1 in the Ising model,11

entanglement can exist both in the ferromagnetic phase and12

paramagnetic ones, while EPR steering only can exist in13

the paramagnetic phase. As far as the Bell nonlocality14

is concerned, there does not exist such kind of quantum15

correlation in the whole region. 16

As is well known that the quantum XY chain belongs 17

to the same quantum Ising universality class for non-zero γ. 18

To confirm the universality, we need to check the behaviors 19

of steering robustness for different values of γ. Comparing 20

with the results in figure 2(a), we choose to plot steering 21

robustness as function of λ with γ = 0.6 and γ = 0.8 in 22

figure 3(a). Two curves of steering robustness with respect 23

to λ show some similar trend as γ = 1.0 qualitatively, which 24

mean that one can distinguish the ferromagnetic phase from 25

the paramagnetic ones by calculation of steering robustness 26

for the whole XY family. Figure 3(b) display the results 27

for whole region 0 < γ ≤ 1. It clearly show that the 28

steering robustness approaches to zero when λ cross the 29

critical point 1. Therefore, we can reasonably state that 30

the quantum critical behavior can be characterized by the 31

steering robustness in this special model. As a comparison, 32

we also plot the entanglement in the region λ ∈ [0, 1.2] and 33

γ ∈ (0, 1] in figure 3(c). Obviously, there exist some regions 34

where the quantum states are highly entangled but steering 35

robustness are absent in the ferromagnetic phase, which 36

imply that whether a quantum state is steerable depend on 37

its structure, which is related to the phases of system. 38

3.2. One-dimensional Heisenberg spin-1/2 XXZ model 39

The spin-1/2 XXZ chain is one of important and 40

fundamental models in the study of QPT, the Hamiltonian 41

is given by 42

H =
∑

i

(σx
i σ

x
i+1 + σ

y
iσ

y
i+1 + ∆σ

z
iσ

z
i+1), (9) 43

where σαi , α = x, y, z are the Pauli matrices acting on the ith 44

site and ∆ is the anisotropy parameter. The model has two 45

critical points that separate three different phases[4, 5, 6, 7, 46

8]: the first critical point is ∆c = −1, a first-order phase 47

transition point that separates the ferromagnetic phase for 48

∆ < −1 from the gapless one for −1 < ∆ < 1; the second 49

one is ∆c = 1, an infinite-order phase transition one that 50

separates the gapless phase from the anti-ferromagnetic one 51

for ∆ > 1. 52

Here, we first review some previous results of 53

entanglement and Bell nonlocality in this model. Around 54

the first-order phase transition point ∆ = −1, entanglement 55

of the nearest neighbors suddenly appears when the system 56

enters the gapless phase[6, 8], and then achieves its 57

maximum at the infinite-order QPT point ∆ = 1[5, 6, 7, 8], 58

and slowly decreases in antiferromagnetic phase (∆ > 1). 59

The first derivative of entanglement diverges at the first- 60

order phase transition point ∆ = −1. Justino et al have 61

shown that the first-derivative of CHSH function diverges 62

both at the first-order phase transition point and the infinite- 63

order one[6]. 64

In figure 4(a),(b) and (c), we depict the dependence of 65

the entanglement, steering robustness and CHSH functions 66

on the control parameter ∆. Obviously, both entanglement 67
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Einstein-Podolsky-Rosen steering in critical systems 6

Figure 4. (a) Entanglement and (c) CHSH function for the nearest-
neighbor reduced density state in the Heisenberg spin-1/2 XXZ model.
Entanglement reached to its maximum and CHSH function obtain its
minimal locally around the critical point. (b)Steering Robustness with
respect to the parameters ∆ for the nearest-neighbor reduced density state.
Steering Robustness takes its maximal value at the critical point ∆ = 1.

and CHSH function exhibit the same results as the previous1

work[5, 6, 7, 8]. Here it should be mentioned that although2

CHSH function can signal the critical points ∆ = −1 and3

∆ = 1, there does not exit Bell nonlocality in this model4

as well as XY one. Oliveira et al. stated that nonviolation5

of Bell’s inequality in translation invariant systems should6

trace back to the monogamy trade-off obeyed by bipartite7

Bell correlations[11]. Surprisedly, steering robustness8

exhibits some similar behavior as entanglement around the9

infinite order phase transition point ∆ = 1, i.e. increasing10

monotonically with respect to ∆ in the region ∆ < 1 and11

decreasing monotonically in the region ∆ > 1, and reaching12

its maximum at the critical point. Around the first-order13

transition point, we observe that steering robustness does14

not emerge at the point ∆ = −1.0 exactly where a first-15

order phase transition happen. This phenomenon may come16

from the facts that the calculating process for the steering17

robustness depend on the number of measure k heavily. The18

point that the steering robustness emerge would approach to19

the critical point as we increasing k. However, a large k will20

cost too much CPU time. 21

3.3. LMG model 22

Finally, we analyze steering robustness in the ground state 23

of the LMG model. In its spin 1/2 representation, LMG 24

model can be regarded as a chain of N spin particles with 25

infinite-ranged interactions, and each spin is subject to an 26

external transverse magnetic field λ. The Hamiltonian can 27

be written as 28

HLMG = −
1
N

(S 2
x − S 2

y) + λS z. (10) 29

The model has a second-order quantum phase transition at 30

λc between a symmetric phase (λ > 1) and a broken phase 31

(λ < 1). Alternatively, this model can also be seen as 32

a two-level Fermi system {|+⟩, |−⟩} with each level having 33

degeneracy Ω. And the ground state of the LMG model for 34

N → ∞ can be obtained by using the Hartree-Fock (HF) 35

approach. In this work, we study the pairwise ground state 36

density matrix for general modes (+m) and (−n) in the HF 37

ground state of the LMG model by taking the scenario in 38

the work[15]. 39

In the previous study, some typical quantum correla- 40

tions (e.g. entanglement, quantum discord) have been in- 41

vestigated carefully[8, 14, 15]. And the results state that 42

all these quantum correlations measures are equal for the 43

density matrix of the ground state for the (+m,−m) modes 44

due to the fact that those modes of the ground state is 45

pure[15]. In figure 5 (a), (b) and (c), we display the calculat- 46

ed quantum nonlocality (entanglement, steering robustness 47

and Bell nonlocality) with respect to λ between the modes 48

(+m) and (−m) in the HF ground state of the such model. 49

All these quantum nonlocality do exist in the broken phase 50

which process a twofold degenerate ground state for λ < 1. 51

And we also can find that all these quantum nonlocality ap- 52

proach to zero around the critical point and disappear in the 53

symmetric phase which process fully polarized in the direc- 54

tion of the field for λ > 1. And all the results state that 55

three kinds of quantum correlations exhibit a similar behav- 56

ior qualitatively even under a different phase for the pure 57

state in this model. Here it should be mentioned that the re- 58

sults would be different if the pairwise density matrix in the 59

LMG model is evaluated directly for qubits (i.e., spins)[14]. 60

4. summary 61

In summary, we have investigated the quantum steering 62

in several typical spin systems including one-dimensional 63

XY model, XXZ model and LMG collective spin one by 64

calculating steering robustness. The results show that 65

the behavior of steering robustness are model depend in 66

different phases. As a comparison, we also calculated 67

two other typical quantum nonlocality (e.g. entanglement 68

and Bell nonlocality). The results imply that there exit a 69

strict hierarchy among EPR steering, entanglement and Bell 70

nonlocality in different quantum phases for these models. 71
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Figure 5. (a) Entanglement, (b) Steering Robustness and (c) CHSH
function with respect to the parameters λ for the nearest-neighbor reduced
density state in the LMG model. Steering Robustness approach to zero
around the critical points λ = 1 and remains to be zero in the symmetric
phase. Three kinds of quantum nonlocality exhibit a similar behavior in
this model.

For the XY model, the results show that steering1

robustness increase firstly and then decrease in the2

paramagnetic phase, which is very different from the3

results by using steering weight as a measures[37]. When4

the parameter λ approaches to the critical point, steering5

robustness disappears exactly and then remains to be6

zero in the whole ferromagnetic phase. These characters7

are quite different from the information provided by8

other quantum correlations(e.g. entanglement). For the9

XXZ model, the results show that steering robustness10

reaches its maximum at the critical point, indicating the11

occurrence of QPT, which agrees with the prediction12

provided by the entanglement. In the both above two13

models, although CHSH function exhibits a behavior of14

local minimum around the critical points, there does not15

exit Bell nonlocality due to the monogamy trade-off obeyed16

by bipartite Bell correlations. For the LMG model, EPR17

steering does exist in the broken phase for λ < 1, and18

approaches to zero around the critical point then disappear19

in the symmetric phase for λ > 1, just liking the behavior20

of entanglement and Bell nonlocality. 21
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Appendix A. Elements of reduced density matrix 27

Appendix A.1. Elements of reduced density matrix for XY 28

model 29

For the one-dimensional anisotropic XY model, the 30

elements of the reduced density matrix can be calculated 31

as[3] 32

ρ11 =
1
4
+
⟨σz⟩

2
+
⟨σz

iσ
z
j⟩

4

ρ44 =
1
4
− ⟨σ

z⟩
2
+
⟨σz

iσ
z
j⟩

4

ρ22 = ρ33 =
1
4
−
⟨σz

iσ
z
j⟩

4

ρ23 = ρ32 =
⟨σx

i σ
x
j⟩ + ⟨σ

y
iσ

y
j⟩

4

ρ14 = ρ41

⟨σx
i σ

x
j⟩ − ⟨σ

y
iσ

y
j⟩

4
(A.1)

The magnetization of the spin−1/2 XY chain is given 33

by, 34

⟨σz⟩ = −
∫ π

0

(1 + λ cos ϕ)
2πωϕ

dϕ (A.2) 35

with ωϕ = ((γλ sin ϕ)2+(1+λ cos ϕ)2)
1
2 . The two-point spin 36

correlation functions read, 37

⟨σx
0σ

x
r ⟩ =


G−1 G−2 · · · G−n

G0 G−1 · · · G−n+1
...

...
. . .

...
Gn−2 Gn−3 · · · G−1


⟨σy

0σ
y
r⟩ =


G1 G0 · · · G−n+2
G2 G1 · · · G−n+3
...

...
. . .

...
Gn Gn−1 · · · G1

 (A.3)

and 38

⟨σz
0σ

z
r⟩ = ⟨σz⟩2 −GrG−r. (A.4) 39

Here, 40

Gr =

∫ π
0

1
2πωϕ

{cos(rϕ)(1 + λ cos ϕ)

− γλ sin(rϕ) sin ϕ}dϕ (A.5)

r denotes the distance between the site i and j. 41
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Appendix A.2. Elements of reduced density matrix for XXZ1

model2

For the one-dimensional Heisenberg spin-1/2 XXZ model,3

the elements of the reduced density matrix can be written4

as[5, 6]5

ρ11 = ρ44 =
1
4
+
⟨σz

iσ
z
j⟩

4

ρ22 = ρ33 =
1
4
−
⟨σz

iσ
z
j⟩

4

ρ23 = ρ32 =
⟨σx

i σ
x
j⟩

2
ρ14 = ρ41 = 0 (A.6)

Here,6

⟨σz
iσ

z
i+1⟩ = 4

∂e0(∆)
∂∆

, (A.7)7

and8

⟨σx
i σ

x
i+1⟩ =

1
2

[4e0(∆) − ∆⟨σz
iσ

z
i+1⟩] (A.8)9

The energy e0 determined by the infinite size Bethe ansatz10

is given by[7]11

e0 =
∆

4
(A.9)12

for ∆ ≤ −1, and13

e0 =
∆

4
−1

2
(1−∆2)

∫ ∞
−∞

dx
cosh πx[cosh(2x arccos∆) − ∆]

(A.10)14

for ∆ > −1. At ∆ = 1 the integrand is not well defined, and15

one needs to take an appropriate limit.16

Appendix A.3. Reduced density matrix for LMG model17

The ground state of the LMG model for N → ∞ can be18

obtained by using the HF approach. Then the pairwise19

ground state density matrix for general modes (+m) and20

(−n) in the HF ground state of the LMG model can be21

written as[15],22

ρm,−n =
⟨M+mM−n⟩ 0 0 0

0 ⟨M+mN−n⟩ ⟨c†+mc−n⟩ 0
0 ⟨c†−nc+m⟩ ⟨N+mM−n⟩ 0
0 0 0 ⟨N+mN−n⟩

 .(A.11)

Here, the matrix elements can be given as23

⟨M+mM−n⟩ = (1 − δmn) sin2 α cos2 α)
⟨M+mN−n⟩ = δmn cos2 α + (1 − δmn) cos4 α

⟨N+mM−n⟩ = δmn sin2 α + (1 − δmn) sin4 α

⟨N+mN−n⟩ = (1 − δmn) sin2 α cos2 α)
⟨c†+mc−n⟩ = δmn cosα sinα (A.12)

with α = arccos λ/2 for λ < 1 and α = 0 for λ ≥ 1.24
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