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Abstract. Modern virtual machines, debuggers and sandboxing solutions offer a robust
and relatively safe way to run honeypots and analyze malware and other malicious activity.
This analysis yields valuable data for threat-assessment, malware identification and preven-
tion. However, the use of such introspection methods has caused malware authors to create
malicious programs with the ability to detect and evade such environments. This paper
presents an overview on existing research of anti-honeypot and anti-introspection methods.
We also propose our own taxonomy of detection vectors used by malware.

1 Introduction

Honeypots can be thought as a means of capturing and analyzing malicious behaviour and
traffic on networked computer systems. Depending on the level of involvement, honeypots
can be roughly divided into three categories: low-interaction honeypots, medium-interaction
honeypots and high-interaction honeypots [20].
Low-interaction honeypots (LIHPs) are fairly simple. Their main functionality is to provide
an out-facing interface to masquerade as legitimate service provider and detect irregular
activities. As the usual use-case for LIHPs is deployment to a corporate network (or similar),
almost all traffic directed at the honeypot is illegitimate. Once an intrusion is detected,
system administrators are alerted and the honeypot shuts down.
Medium-interaction honeypots (MIHPs) are a little more involved than LIHPs. Instead of
simply presenting a selection of out-facing interfaces, MIHPs usually have a specialized task
or target. For instance, a MIPH might be configured to service as a Telnet honeypot. Casting
aside all other functionality, the honeypot aims to provide as convincing interaction with
the selected interface domain as possible. Having a strict restriction upon which to build
the system, it is possible to deceive malware with highly convincing interaction.
High-interaction honeypots (HIHPs) are even more involved; their purpose is to let malware
infiltrate into the system in order to gain better understanding of the methods, technologies
and identities of the malicious adversaries. While it is clear that HIHPs offer a much bet-
ter view on the activities of these malicious characters and better opportunities to collect
valuable data, they are also more vulnerable. Having access on the inside means that the
malicious program has much wider attack surface at its disposal and the honeypot might
be compromised.
In this paper, we survey the anti-honeypot and anti-introspection methods used by malware
based on existing literature. Based on the existing taxonomies of honeypot detection vectors,
we propose our own taxonomy that we believe to be a good fit for the current threat
landscape. We also categorize the existing research on anti-honeypot techniques and anti-
introspection methods according to our presented taxonomy.

2 Anti-honeypot methods against low- and
medium-interaction honeypots

Low- and medium-interaction honeypots both differ from high-interaction honeypots by not
letting the attacker infect the system. LIHPs and MIPHs simply ’converse’ with their mark
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to the extent they are allowed, trying to gather as much data as possible. Thus the common
way to detect these two types of honeypots is by developing and applying fingerprinting
methods.

2.1 Network level fingerprinting

Low-interaction honeypots are usually deployed using some form of virtualization or simula-
tion. It is not uncommon to have multiple LIHPs running on the same hardware. This in turn
has a clear performance impact that reflects on the network response times. As discussed in
[19], these latencies can be used to profile network traffic and remotely detect honeypots.
While the results depend heavily on the network topology, technologies and profiling meth-
ods in use, ideal conditions may yield up to 95% detection rate simply using ICMP ECHO
request which is a fairly low-priority network message, resulting in large variance.
Similar work on network traffic profiling is done in [8]. Fu et al. measure network link
latencies and build a classifier based on Neyman-Pearson decision theory. This classifier is
used to detect honeynets build on Honeyd [22] low-interaction honeypot implementation.
They achieve a similar detection rate as in [19]. Large portion of this result is explained by
large difference between software and hardware timing resolution. Hardware-based timers
used by real network devices operate on microsecond scale while the software based timers
operate on millisecond scale. In their paper Fu et al. [8] suggest and implement patches to
Linux kernel and Honeyed software in order to increase the timing resolution. According to
their experiments, this counter-acts the fingerprinting quite well.

2.2 Application and service level fingerprinting

Low-interaction and medium-interaction honeypots are usually built in a compact manner.
They aim to simulate a very specific kind of a system, usually targeted to detect specific
type of attacks. The simplest low-interaction honeypot is a simple logging program listening
on port 22 (SSH protocol) and recording all received data to a log file. This makes the
honeypots easier to develop, deploy and maintain. However, it also makes them easier to
recognize.
Attackers build complex fingerprints based on the notion of related services. If a network
host A offers services X and Y, it is common that the host A should also offer services W,
E, and R. A real network host would then have the whole set of services (or some large
subset) while the honeypot might be offering only X and Y. This leads to easy detection by
attackers.[19]

3 Anti-honeypot methods against high-interaction honeypots

The aim of high-interaction honeypots is to get infected by malicious software and act like a
real system as convincingly as possible. This allows the researchers or other security experts
to monitor and gather data on the malicious entity. Currently, the most common and inter-
esting catch is a botnet worm, as these entities are highly undetectable and persistent. Being
part of a botnet with deep anti-introspection and data analysis tools can yield invaluable
operational and technological information.
Today’s malware is very introspection-aware and in most cases it is only a matter of time
before the honeypot is recognized and the infected host is cast aside. This is especially
true for botnets, where the bot-herder has a greater control over the infected hosts. On the
positive side, gaining understanding on the methods of discovery of honeypots is valuable
information on its own right [15]. HIHPs are more or less real systems which renders them
less secure than LIHPs and MIHPs, as the potential attack surface is much larger and the
honeypot might end up under the attacker’s control.

3.1 System level fingerprinting

High-interaction honeypots must resemble real systems as closely as possible in order to fool
a dedicated black hat hacker. This requires convincing system components and software. To



achieve this, HIHPs are often implemented as real operating systems with real software.
This operating system is either run on a virtualization platform or on real hardware. In the
former case, the introspection and data collection tools are bundled in with the honeypot. In
the latter, some hooks are used to monitor the virtualized operating system. In either case,
these monitoring systems leave traces in the system. Examples of such traces are irregular
hardware components, uncharacteristic behavior (e.g. large system call latencies) and hints
of monitoring software [6, 15, 13, 14].
The attackers develop capabilities for detecting these anomalies (or do it manually, if need
be) and build methods and fingerprints for detecting monitored systems that are poten-
tially honeypots. Research in the early 2000 is highly concerned with virtualization being
an instant kill-switch for the attackers. However, fifteen years of network infrastructure de-
velopment has seen the raise of huge numbers of virtualized services, which means those
concerns are no longer as valid as they used to be. Although we do not cover this issue in
detail in this study, techniques malware uses to detect virtual machines and hypervisors still
have some significance [4].

3.2 Operational analysis

A harder problem for honeypots that wish to remain undetected is the law. Infected hosts are
not allowed to continue to infect other systems if the administrator is aware of the infection.
To do otherwise is negligent. This enables the botnet masters to simply use infection as
means of verifying the nature of the current host. The infected host tries to infect a collection
of potential targets. Within those targets, a control node is hidden. If the control node
receives the infection, it can then verify the host as a valid infection target. Otherwise the
host is dropped. [26]
Other operational analysis consists of monitoring the system behavior and trying different
functions and contrasting the results against expected values. Port scanning and fetching
resources from Internet is also common, as the honeypots often have limitations related to
this functionality.

4 Detection vector taxonomies

4.1 Detection vectors

A detection vector describes the means the malware can use to detect an unwanted execution
environment. Such environments can consist of but are not limited to operating systems with
sub-optimal update compositions, virtualized execution environments, sand-boxing solutions
or debuggers. Modern malware is more and more environment-aware.
Chen et al. have captured and run 6900 malware samples in different environments [2]. They
found out that when run in a virtual machine, 95.3% of the malware continued to exhibit
the same behaviour as in a normal operating system. However, when run with a debugger
attached, 58.5% continued to function as before. Nearly half of the tested malware had some
capability to identify debuggers and upon detection reduce or stop malicious behaviour.
After these experiments, the malware has probably become even more sophisticated.

4.2 Existing taxonomies

In the next subsection, we will present a proposed taxonomy of detection vectors. Our
taxonomy is based upon two existing taxonomies, the first one presented by Chen et al. in
[2] and the second by Gajrani et al. in [9], with some extensions to accommodate detection
vectors available to botnets. This subsection briefly outlines the two earlier taxonomies,
presenting the differences between the two. We then proceed to tie the two taxonomies
together.
Chen et al. present four abstract classifications, each with two subcategories. These cate-
gories are fairly general. They also describe the access level the attacker needs to have in
order to leverage these detection vectors, how accurate the methods are, how complex they
are to employ and how easily these detection vectors can be evaded. The categories identified
by Chen et al. are presented below. Concrete examples for most of these categories can be
found in [16].



– Hardware. System anomalies that are hardware-detectable, like hardware breakpoints.
• Device. Virtual environments tend to display devices that either differ from original

models or are completely VM dependent.
• Driver. Many virtual machines and debuggers tend to create drivers that are char-

acteristic to those environments.
– Environment. This category covers notable differences in the actual execution context.
• Memory. Instrumentable environments tend to have memory traces that identify

those environments. Open pipes or channels, OS flags, altered memory layout, etc.
• System. There are often execution environment specific idiosyncrasies which are

results of bugs, implementation details and other factors. Examples include CPU
instruction bugs in VMs and call-stack modifications by debuggers.

– Application. This category deals with the surrounding software ecosystem and its
inherent fingerprints.
• Installation. The tools used to instrument malicious software have well-known com-

ponents installed in well-known locations. While this information is relatively easy
to mask, it is also a very potent detection vector.

• Execution. This category deals with running processes and is similar to installation.
Processes are easy to detect but also easy to hide.

– Behavioral. Measurements on how the system performs operations and responds to
requests.
• Timing. Introspection environments tend to display some latency in instructions

and network messages. The latencies are hard to hide and provide a fairly reliable
detection vector.

The taxonomy presented by Gajrani et al. is of much finer granularity: the paper outlines a
total of 12 different categories. Some of these are phone and Android dependent as the paper
discusses sandboxing and detection of sandboxes for Android applications. These categories
are included for completeness. Categories identified by Gajrani et al. are:

– Background Process. Processes specific to an emulator/VM.
– Performance. CPU instruction latency, graphics performance, etc.
– Behavior. SMS operation, in- and out-bound phone calls.
– Software Components. Google Play services etc.
– API. Binder APIs like isTetheringSupported().
– Initial System Design. Contact list, battery status, network status, etc.
– Hypervisor. QEMU scheduling, instruction pointer updates (QEMU only updates

upon non-linear execution points), cache behavior, etc.
– File. Emulator specific files, or device-specific files.
– Network. Android emulators tend to sit behind a default gateway and DNS.
– Sensors. Emulators tend to not simulate sensors (or only simulate a small subset).
– Device Build. Collection of build values can be used to fingerprint and identify the

execution platform. For example, Build.BOARD = unknown could be a sign of an
emulator.

– Phone ID. Smart phones have unique IMEI (International Mobile Equipment Iden-
tity) and IMSI (International Mobile Subscriber Identity) numbers, phone numbers, etc.
These are typically set to default values on emulation platforms.

5 Our detection vector taxonomy

The taxonomy presented by Chen et al. is more abstract and broad whereas Gajrani et
al. present a more concrete taxonomy, where each category is tied to fairly specific sys-
tem aspects. We believe that the taxonomy by Chen et al. is more usable for the general
case. However, for the current threat landscape, it would benefit from increased granular-
ity. A more fine-grained approach would also allow us to better separate different categories
between LIHPs and HIHPs. We therefore suggest a modified and expanded 2-tier taxonomy:

– Temporal. As timing is a fairly prevalent detection vector, it has its own category.
• Network. Ways of detecting latencies in the network environment.
• Local. Detection of latency in the actual system, on API and instruction level.

– Operational. This category covers vectors related to how the machine operates and
which operations are possibly allowed/disallowed.



• Propagation. In most honeypots, further malicious propagation is denied.
• Communication. Does the device communicate as usual and what kind of commu-

nication is allowed?
• Operation. This covers other operations such as port scanning which may be limited

in certain environments.
• Idiosyncrasies. As described by Gajrani, some execution environments display clear

operational differences, such as the lazy program counter in QEMU.
– Hardware. This matches the categories presented by Chen et al.
• Device.
• Driver.

– Environment Details about the operation environment serve as detection vectors.
These are the most simple to access and leverage.
• Data. What data resides on the machine; files, installed programs, etc.
• Execution. What else is executing on the machine. Identifiable monitor processes,

certain auxiliary services, etc.
• Identity. Values associated with device/operating system identity, mostly present

on mobile platforms.
• Memory. Identifiable memory traces such as operating system flags, open pipes,

altered memory layout, etc.

Table 1 divides the research in the field of anti-honeypot techniques into categories we
proposed in the previous section. Some categories have a marking ”HIHP-only”. This means
that these techniques are not necessarily available for LIHPs as they tend to simulate smaller,
incomplete systems.
While the collection of papers is by not exhaustive, we believe it conveys a picture about
the current research field and subjects. While the details of attack vectors are usually quite
implementation specific [25], they also have common characteristics that make categorization
worthwhile.

Category Subcategory Papers Honeypot

Temporal
Network [8, 19] LIHP & HIHP

Local [15] Mostly HIHP

Operational

Propagation [3, 27] HIHP-only

Communication [17, 27] Mostly HIHP

Operation [6, 12, 16, 27] LIHP & HIHP

Idiosyncrasies [16, 24, 13] LIHP & HIHP

Hardware
Device [12, 15] HIHP-only

Driver [9] HIHP-only

Environment

Data [6, 7, 12, 15, 16] HIHP-only

Execution [6, 12, 15, 16, 19] LIHP & HIHP

Identity [9, 13] LIHP & HIHP

Memory [6, 7, 15, 16, 13] HIHP-only

Table 1. Distribution of anti-honeypot related research within our taxonomy.

6 Conclusions and future work

In this paper, we have surveyed anti-honeypot and anti-introspection methods malware uses
against low-, medium- and high-interaction honeypots. We also discussed different ways to



categorize these approaches and also presented our own improved taxonomy that better
corresponds to the present situation. According to current research, botnets are the most
notable threat in the wild. Botnets are versatile, controllable, and offer various business
opportunities for the enterprising black hat hacker. Honeypots are an invaluable tool for
detecting and monitoring botnets, but botnets are also the most honeypot-resistant mali-
cious entities [3, 26]. New ways to categorize detection vectors and new kinds of honeypot
solutions are therefore needed.

Modern malware can leverage multiple detection vectors to determine whether or not it
is operating in a monitored system or under direct introspection. These methods rely on
finger-printing different aspects of the operation environment and interfaces. The most effec-
tive strategy against such finger-printing are novel monitoring solutions, rendering existing
finger-prints void. However, this is prohibitively expensive and better solutions are needed.
In [2] Chen et al. suggested that normal operating systems could try to imitate surveilling
machines, rendering surveillance detection less effective. Also, more robust tools are required.
In [1] Bahram et al. devise a method for totally circumventing introspection based on virtual
machines by modifying kernel data structures used by the guest operating system.

As future work, we aim to develop a honeypot system which provides several dual interfaces
[18]. The other group of interfaces consists of the old interface and the other contains new,
diversified interfaces. The aim is that legitimate software and users interact with the new
diversified interfaces. The old, unmodified interfaces work as fakes. Any interaction with
the fake interfaces immediately rises alarm in the system. To gather meaningful data, the
fake interface should engage the malware in a meaningful way. This setup has the typical
requirements of a high-interaction honeypot. The (assumed) malicious entity needs to be
provided with an illusion of proper request-response chains and the introspection system
must remain undetected.

Other interesting avenue of research could be some form of self-aware, adaptive introspec-
tion environment. This system needs to be able to detect that is has been detected. After
detection it would initiate a replication phase, launching multiple clones of the previous
setup with a few modifications, much in a genetic fashion. These test would be iterated
until a candidate system which evades the detection emerges.

Finally, the increased use of virtualization today may have rendered many of the old anti-
honeypot and anti-introspection methods useless, but malware authors keep coming up with
new ways to detect introspection. In light of this development, we need to consider good
ways to keep monitoring malware without being noticed. One topic of research we consider
interesting is advanced deception in the context of HIHPs. Some steps have already been
taken into this direction. Methods that can be used in HIHPs to communicate with malware
and keep deceiving it as long as possible are addressed in [23], [5] and [11]. A game theoretic
approach to the same problem is taken in [21] and [10]. These kinds of advanced approaches
greatly help us in convincing malware it is indeed operating in an ordinary system.
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