

Assessment of myocardial viability with [¹⁵O]water PET: A validation study in experimental myocardial infarction

Maria Grönman, MSc,^a Miikka Tarkia, PhD,^a Christoffer Stark, MD, PhD,^b Tommi Vähäsilta, MD, PhD,^{b,c} Tuomas Kiviniemi, MD, PhD,^c Mark Lubberink, PhD,^{d,e} Paavo Halonen, MD,^f Antti Kuivanen, MD,^f Virva Saunavaara, PhD,^{g,h} Tuula Tolvanen, MSc,^{g,h} Jarmo Teuho, PhD,^{a,g} Mika Teräs, PhD,^{g,h} Timo Savunen, MD, PhD,^b Mikko Pietilä, MD, PhD,^c Seppo Ylä-Herttuala, MD, PhD,^{f,i} Anne Roivainen, PhD,^{a,j} Juhani Knuuti, MD, PhD,^a and Antti Saraste, MD, PhD^{a,c,g,k}

- ^a Turku PET Centre, University of Turku, Turku, Finland
- ^b Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- ^c Heart Center, Turku University Hospital and University of Turku, Turku, Finland
- ^d Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- ^e Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
- ^f A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- ^g Turku PET Centre, Turku University Hospital, Turku, Finland
- ^h Department of Medical Physics, Turku University Hospital, Turku, Finland
- ⁱ Heart Center, Kuopio University Hospital, Kuopio, Finland
- ^j Turku Center for Disease Modeling, University of Turku, Turku, Finland
- ^k Institute of Clinical Medicine, University of Turku, Turku, Finland

Received Jan 30, 2019; accepted Jun 10, 2019 doi:10.1007/s12350-019-01818-5

Background. Assessment of myocardial viability is often needed in patients with chest pain and reduced ejection fraction. We evaluated the performance of reduced resting MBF, perfusable tissue fraction (PTF), and perfusable tissue index (PTI) in the assessment of myocardial viability in a pig model of myocardial infarction (MI).

Methods and results. Pigs underwent resting [15 O]water PET perfusion study 12 weeks after surgical (n = 16) or 2 weeks after catheter-based (n = 4) occlusion of the proximal left anterior descending coronary artery. MBF, PTF, and PTI were compared with volume fraction of MI in matched segments as assessed by triphenyl tetrazolium chloride staining of LV slices. MBF and PTF were lower in infarcted than non-infarcted segments. Segmental analysis of MBF showed similar area under the curve (AUC) of 0.85, 0.86, and 0.90 with relative MBF,

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s12350-019-01818-5) contains supplementary material, which is available to authorized users.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding The study was conducted within the Finnish Centre of Excellence in Cardiovascular and Metabolic Diseases supported by the Academy of Finland, University of Turku, Turku University Hospital and Åbo Akademi University, and further financially supported by the Finnish Foundation for Cardiovascular Research, the

Sigrid Jusélius Foundation, State Research Funding of Turku University Hospital, and Ida Montin Foundation.

Reprint requests: Antti Saraste, MD, PhD, Turku PET Centre, Turku University Hospital, Turku, Finland; *antti.saraste@utu.fi*

J Nucl Cardiol 1071-3581/\$34.00

Copyright © 2019 The Author(s)

PTF, and PTI for the detection of viable myocardium defined as infarct volume fraction of < 75%. Cut-off values of relative MBF of \geq 67% and PTF of \geq 66% resulted in accuracies of 90% and 81%, respectively.

Conclusions. Our results indicate that resting MBF, PTF, and PTI based on [¹⁵O]water PET perfusion imaging are useful for the assessment of myocardial viability.

Key Words: Radiowater • PET • myocardial perfusion imaging • viability • myocardial infarction

Abbreviation	S
AUC	Area under the curve
CAD	Coronary artery disease
LV	Left ventricle
MBF	Myocardial blood flow
MI	Myocardial infarction
PET	Positron emission tomography
PTF	Perfusable tissue fraction
PTI	Perfusable tissue index
ROI	Region of interest
TTC	Triphenyl tetrazolium chloride

INTRODUCTION

Myocardium of patients with coronary artery disease (CAD) and left-ventricle (LV) dysfunction often contains a mixture of ischemic, but viable and irreversibly injured, non-viable tissue.¹ Dysfunctional ischemic myocardium that is viable has the potential of regaining contractile function after revascularization.^{2,3} Thus, the assessment of myocardial viability is of importance in identifying patients with CAD and LV dysfunction that will most likely benefit from revascularization.^{2,3}

[¹⁵O]water is a metabolically and chemically inert, freely diffusible tracer for positron emission tomography (PET) myocardial perfusion imaging that has been established for the quantification of myocardial blood flow (MBF) using one-tissue compartmental model.⁴ Current scanner and software technologies enable automated generation of myocardial perfusion images and reproducible quantification of MBF at segmental level to evaluate its regional distribution within coronary territories.⁵ Reduced MBF by [¹⁵O]water PET during vasodilator stress accurately detects regions of myocardial ischemia in patients with chest pain and suspected obstructive CAD.⁶⁻⁹

Differentiation between viable and non-viable myocardium by $[^{15}O]$ water PET is based on the concepts of reduced fraction of tissue that is capable of rapidly exchanging water¹⁰⁻¹⁴ as well as low and heterogeneous MBF^{11,15-17} in the injured myocardial regions. Thus, water-perfusable tissue fraction (PTF)

that is defined as the fraction of tissue capable of rapidly exchanging [¹⁵O]water within a given volume of region of interest (ROI) as well as perfusable tissue index (PTI) that is the fraction of [¹⁵O]water-perfusable tissue within the total anatomical tissue fraction (ATF) within the ROI containing both perfusable and non-perfusable tissue components, become reduced in the absence of viable myocardium.^{4,10-14,18} Both PTF and PTI have been shown to predict the recovery of contractile function after revascularization in patients with acute^{13,18} myocardial infarction or chronic (MI).^{10,12,14,17} Resting MBF by [¹⁵O]water PET is reduced in areas of recent or chronic MI,^{11,15-17} but its value in the assessment of viability is not well defined. Thus, we evaluated resting MBF, PTF, and PTI assessed by [¹⁵O]water PET for the detection of infarcted and viable myocardium defined by 1% 2,3,5-triphenyltetrazolium chloride (TTC) staining in a pig model of MI.

METHODS

Animals and Study Protocol

Three-month-old Finnish Landrace pigs were implanted a bottleneck stent in the proximal left anterior descending coronary artery (n = 4, weighing 28-39 kg) as described previously¹⁹ or underwent a 2-step occlusion of left anterior descending coronary artery with implantation of a proximal ameroid constrictor after distal ligation for the preconditioning of the heart (n = 16, weighing 88-130 kg).^{20,21} For this study, 20 pigs with a MI confirmed by TTC staining and PET myocardial perfusion imaging performed were retrospectively evaluated. Detailed protocol regarding anesthesia, stent implantation, and surgical operation is presented in the Supplemental methods. Myocardial perfusion was quantified using [¹⁵O]water PET as described below. Subsequently, the pigs were euthanized, and their hearts were excised for later analysis.

All animal experiments were approved by the national Animal Experiment Board in Finland and the Regional State Administrative Agency for Southern Finland and carried out in compliance with the EU legislation relating to the conduct of animal experimentation.

PET Image Acquisition and Reconstruction

Pigs underwent the imaging 2 weeks after the stenting or 3 months after the surgical operation. All the animals underwent a myocardial perfusion PET study with [15O]water at rest as previously described²¹ with a Discovery 690 hybrid PET/CT scanner (GE Medical Systems, Milwaukee, WI, USA). $[^{15}O]$ water (680 ± 160 MBq) was injected as an intravenous (i.v.) bolus over 15 seconds at an infusion rate of 10 ml/min via the ear vein. A dynamic scanning of 4 minutes 40 seconds (time frames 14×5 seconds, 3×10 seconds, 3×20 seconds and 4 \times 30 seconds) was performed. The acquired [¹⁵O]water PET data were corrected for attenuation, scatter, random counts, and dead time, and reconstructed with an iterative VUE Point algorithm using two iterations and 24 subsets. The whole transaxial field of view (70 cm) was reconstructed in 128 \times 128 matrix yielding pixel size of 5.47 mm \times 5.47 mm. The device produces 47 axial planes with a slice thickness of 3.27 mm.

TTC Staining

Immediately after the PET scanning, the animals were sacrificed by an i.v. injection of potassium chloride (B. Braun Medical Oy, Helsinki, Finland). The heart was excised, the LV was cut into four short axis slices from base to apex that were incubated for 15 minutes in 1% TTC (Sigma-Aldrich, Saint Louis, MO, USA), diluted in phosphate-buffered saline (pH 7.4) at 37 °C, and photographed from both sides. In two pigs, only the mid-cavity part of the TTC-stained LV was available.

The infarcted tissue was defined in the TTC photographs visually. The heart was divided into segments using a standard 17 segments division. The volume fraction of the infarct in each segment was categorized as follows: 0: no infarct; 1: infarct size < 25%; 2: 25%-49%; 3: 50%-74%, and $4: \ge 75\%$ of the size of the segment. Non-viable myocardium was defined as infarct fraction $\ge 75\%$ or $\ge 50\%$. The apical segment 17 was excluded from the analyses.

PET Image Analyses

PET images were analyzed with Carimas v2.9 software (Turku PET Centre, Turku, Finland, http://turkupetcentre.fi/ca rimas/) using Heart tool as described earlier.²¹ The long axis of LV was defined manually, myocardial contours were first delineated semi-automatically and, if necessary, modified manually, and finally volume of interest (VOI) covering the whole LV myocardium was applied.

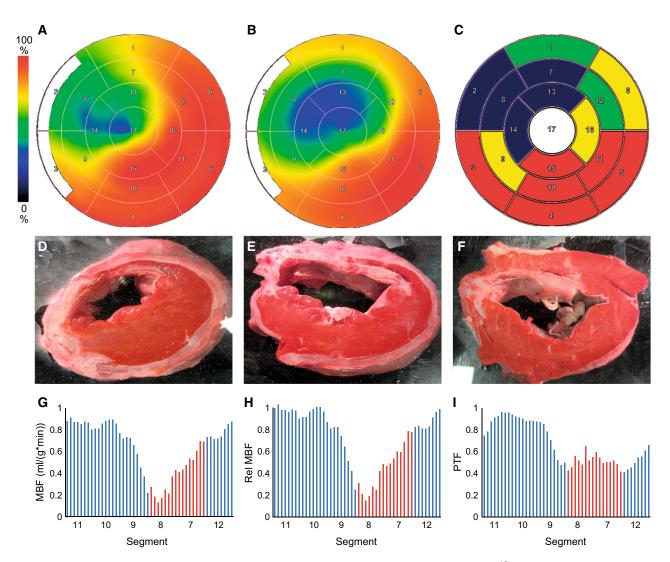
The PTF and absolute segmental LV MBF was quantified from [15 O]water images as ml/min/g using a single-compartment model described earlier.^{22,23} The PET measurements were displayed as polar maps. To obtain the relative MBF values, the polar maps of [15 O]water at rest were normalized to mean value of four posterolateral segments (segments 4, 5, 10, and 11). The infarcted area in every pig was in the anterior region subtended by left anterior coronary artery thus leaving the posterolateral region outside the ischemic area. If one of these segments was infarcted according to TTC, it was excluded from the mean value. In order to assess reproducibility of measurements, the same observer repeated analyses twice, and within-subject coefficients of variations were calculated by using root-mean-square approach. Coefficients of variations for repeated measurements of absolute MBF, relative MBF, and PTF measurements were 6% in the remote non-infarcted segments. In segments with infarct volume fraction \geq 75%, coefficients of variations were 19%, 18%, and 10%, respectively.

Since the thickness of the LV wall may be reduced in the infarcted myocardium, effect of ROI thickness on absolute MBF, relative MBF, and PTF was evaluated by manually increasing or reducing ROI thickness from default. In further analyses, ROI thickness was manually reduced to completely fit inside the myocardium in the CT images in order to account for possible reduced wall thickness in the infarcted myocardium.

In order to compare MBF and PTF in viable and nonviable myocardium, their circumferential profiles were analyzed in the midventricular level in 48 sectors in pigs that had transmural infarction. Values were compared in the transmurally infarcted area (average of three adjacent sectors) and remote areas (average of six sectors).

In order to obtain PTI measurements, pigs were further analyzed with aQuant software (MedTrace Pharma A/S, Denmark) as described earlier.²⁴ For technical reasons, only 11 pigs were included in PTI measurements.

Statistical Analyses


All data are expressed as mean \pm SD. SPSS Statistics software v. 25 (IBM, NY, USA) was used for statistical analyses. Receiver operating characteristic (ROC) analyses were performed, Youden index was used to obtain optimal cutoff values for [¹⁵O]water PET in comparison to TTC staining and the method of DeLong²⁵ was used to compare area under the curve (AUC) values. Ability of the PET parameters to distinguish the infarcted areas of different severity and viable areas from the non-infarcted areas was tested.

RESULTS

Myocardial Infarction and Hemodynamics

Twenty pigs had MI defined by TTC staining and were included in the study. An example of TTC staining of MI in myocardial tissue slices representing the apical, papillary muscle, and basal levels is shown in Figure 1.

Transmural infarct scar was detected in 14 pigs. Based on TTC staining, number of segments without MI was 152, whereas 54 segments showed MI volume fraction of < 25%, 37 25 - < 50%, 26 50 - < 75%, and 41 $\ge 75\%$. Thus, 41 segments with $\ge 75\%$ of infarction were defined as non-viable and 269 segments with <75% of infarction were defined as viable.

Figure 1. Representative polar maps of resting myocardial blood flow (MBF) by [¹⁵O]water PET (**A**) and perfusable tissue fraction (PTF) by [¹⁵O]water PET (**B**). Polar maps were normalized to their own maximum. (**C**) shows grading of segmental volume fraction of myocardial infarction (red = 0%, yellow = 1%-24%, green = 25%-49%, and blue = > 75%) based on TTC staining of myocardial slices at the apical (**D**), papillary muscle (**E**), and basal (**F**) levels. Viable myocardium is stained red and non-viable infarcted white by TTC. MBF and PTF are reduced in segments with myocardial infarction. (**G**), (**H**), and (**I**) show examples of circumferential profiles of MBF, relative MBF, and PTF, respectively. Sectors with transmural infarction are marked with red color.

The average heart rate of pigs at rest was 91 ± 18 bpm, systolic blood pressure 135 ± 24 mmHg, and rate pressure product $12\ 000 \pm 3\ 300$ mmHg bpm.

MBF and PTF in Myocardial Infarction

Figure 1 shows examples of polar maps of regional MBF and PTF measured by [¹⁵O]water together with TTC-stained slices of the LV, and examples of circumferential profiles of MBF and PTF (Figure 1). Compared with the remote myocardium, transmural infarction showed lower

absolute MBF (0.45 \pm 0.34 vs. 1.23 \pm 0.47, P < 0.001), relative MBF (0.37 \pm 0.23 vs. 0.99 \pm 0.014, P < 0.001), and PTF (0.55 \pm 0.12 vs. 84 \pm 0.11, P < 0.001).

Segmental absolute MBF, relative MBF, and PTF by [¹⁵O]water PET in relation to segmental volume fraction of infarction are presented in Table 1. Overall, segmental absolute and relative MBF as well as segmental PTF by [¹⁵O]water PET gradually lowered in the presence of increasing infarction volume fraction in the segment. Compared with non-infarcted segments, absolute and relative MBF were lower in segments with any

Infarct volume fraction (%)	Number of segments	MBF [ml/(g·min)]	Relative MBF	PTF
0	152	1.11 (± 0.38)	0.99 (± 0.19)	0.81 (± 0.13)
1-24	54	0.95 (± 0.33)*	0.87 (± 0.21)*	0.76 (± 0.17)
25-49	37	0.88 (± 0.28)*	0.83 (± 0.20)*	0.77 (± 0.16)
50-74	26	0.79 (± 0.23)*	0.83 (± 0.22)*	0.68 (± 0.23)*
≥ 75	41	0.55 (± 0.27)*,**	0.56 (± 0.31)*,**	0.51 (± 0.19)*,**

Table 1. Segmental resting absolute myocardial blood flow (MBF), relative MBF, and perfusable tissue fraction (PTF) by [¹⁵O]water PET in relation to segmental infarct volume fraction

*P < 0.05 vs. no infarction, **P < 0.05 vs. infarct volume 0%, 1-24%, 25-49% or 50-74%

infarction, whereas PTF was lower only when infarct volume fraction was \geq 50%. In segments defined as non-viable based on infarct volume fraction \geq 75%, absolute and relative MBF as well as PTF were lower than in any segments with infarct fraction < 75%.

The effect of ROI thickness on segmental absolute MBF, relative MBF, and PTF by [¹⁵O]water PET is presented in Figure 2. ROI thickness had no effect on absolute or relative MBF. An increase in ROI thickness, however, resulted in a decrease in PTF values. There was an average difference of $12\% \pm 6\%$ (P < 0.001) between small and large ROI thickness in segments with infarct fraction of < 75% and $13\% \pm 10\%$ (P = 0.29) in segments with infarct fraction of $\ge 75\%$.

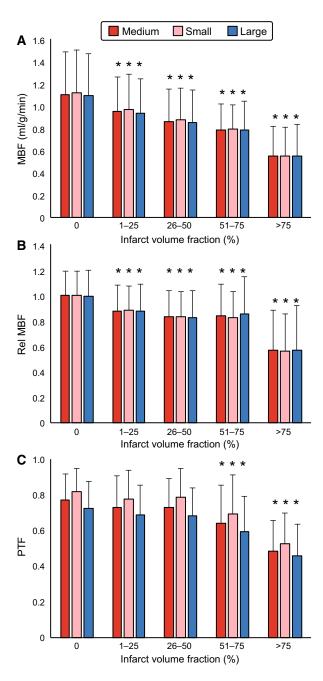
Performance of Segmental MBF and PTF in the Detection of Infarction

Figure 3 shows the results of ROC analysis of segmental relative MBF and PTF by [¹⁵O]water PET in the detection of MI in the corresponding segment.

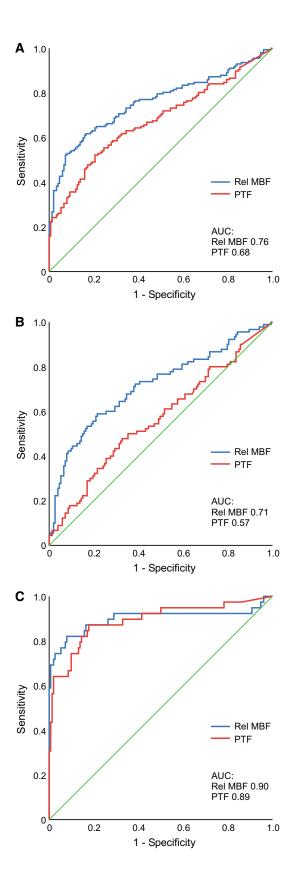
We first evaluated the performance of segmental relative MBF and PTF in the detection of any MI (segments with any infarction vs. no infarction). Relative MBF of $\leq 85\%$ and PTF of $\leq 70\%$ were the optimal cut-off values for the detection of any MI demonstrating modest sensitivity, but high specificity and positive predictive value. Relative MBF was more accurate than PTF in detecting any MI (AUC 0.76 vs. 0.68, P = 0.04). We further evaluated the performance of segmental relative MBF and PTF in the detection of either subendocardial infarction (segments with infarct volume fraction 1%-49% vs. no infarction) or non-viable tissue (infarct volume fraction $\geq 75\%$ vs. no infarction). Based on the ROC analysis, relative MBF performed better in the detection of subendocardial infarction than PTF (AUC 0.71 vs. 0.57, P = 0.004). There was no difference, however, between relative MBF and PTF in the detection of non-viable tissue defined as $\geq 75\%$ infarct volume fraction (AUC 0.90 vs. 0.89, P = 0.89).

Using the cut-off values derived from the ROC curve analysis, average size of the transmural MI of the LV was 29% \pm 15% of the LV as measured by [¹⁵O]water PET with relative MBF and 29% \pm 22% as measured by [¹⁵O]water PET with PTF (*P* = 0.99).

Performance of Segmental MBF and PTF in the Assessment of Myocardial Viability


For the assessment of viability, the segments with infarct volume fraction of < 50% were defined as viable and segments with infarct volume fraction of > 50% as non-viable. ROC analysis showed AUC of 0.81 with relative MBF and 0.81 with PTF for the detection of viability (P = 0.97) (Figure 4). Relative MBF $\geq 79\%$ and PTF \geq 66% were the optimal cut-off values for the detection of viable myocardium showing similar sensispecificities, and diagnostic tivities, accuracies (Table 2). Previously, $PTF \ge 70\%$ has been shown as the optimal cut-off value for the detection of viability.²⁶ Although close to the cut-off value determined in this study, it resulted in lower diagnostic accuracy in our material (Table 2).

Because the recovery of function in the presence of infarct volume fraction of 50%-75% may be obscure, we also evaluated the performance of relative MBF and PTF in the detection of viability defining segments with infarct volume fraction of \geq 75% as non-viable. The analysis showed AUC of 0.85 with relative MBF and 0.86 with PTF (P = 0.77) (Figure 4). Relative MBF \geq 67% and PTF \geq 66% were the optimal cut-off values for the detection viable myocardium resulting in accuracy of 90% and 81%, respectively (Table 2).


Comparison of Segmental MBF, PTF, and PTI in the Assessment of Myocardial Viability

Segmental MBF and PTF were compared with PTI for the detection of viability in 11 pigs. The ROC analysis showed AUC of 0.81 with PTI for the detection

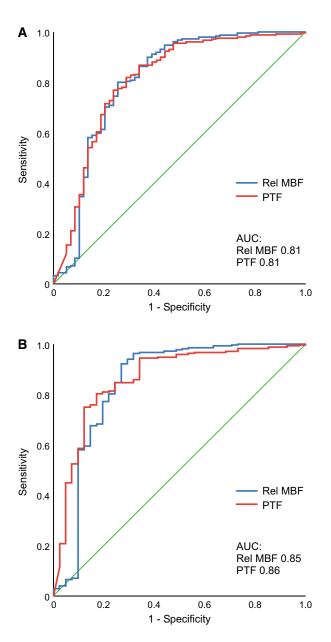

Grönman et al Assessment of myocardial viability with [¹⁵O]water PET

Figure 2. Segmental values of absolute myocardial blood flow (MBF, **A**), relative MBF (**B**), and perfusable tissue fraction (PTF, **C**) by [¹⁵O]water PET measured using three different ROI thickness: medium = ROI width defined automatically by the software program, small = ROI width manually reduced to completely fit inside the myocardium, large = ROI width manually increased from the medium ROI. *P < 0.05 vs. segments with infarct volume fraction 0.

◄ Figure 3. Receiver operating characteristics (ROC) curve analysis of segmental relative myocardial blood flow (Rel MBF) and perfusable tissue fraction (PTF) by [15 O]water PET in the detection of any myocardial infarction in the corresponding segment (**A**), subendocardial infarction (infarct volume fraction 1%-49%, **B**), or non-viable tissue (infarct volume fraction ≥ 75%, **C**).

Figure 4. Receiver operating characteristics (ROC) curve analysis of relative myocardial blood flow (Rel MBF) and perfusable tissue fraction (PTF) by $[1^{15}O]$ water in the detection of myocardial viability with infarct volume fraction of < 50% (**A**) and with infarct volume fraction of < 75% (**B**).

of viability defined as segments with infarct volume fraction of < 50% (Figure 5). There was no difference between PTI and relative MBF (P = 0.41) or PTF (P = 0.79). When viability was defined as segments with infarct volume fraction of < 75%, ROC analysis showed AUC of 0.90 with PTI. There was no difference between PTI and relative MBF (P = 0.67) or PTF (P = 0.50). The optimal cut-off value of PTI was $\ge 82\%$ for the detection of viability, which yielded slightly better sensitivity, specificity, and diagnostic accuracy than those of relative MBF or PTF (Supplemental Table).

DISCUSSION

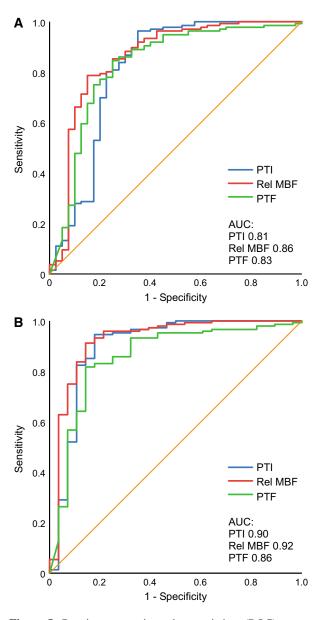
We evaluated the performance of resting MBF, PTF, and PTI by [¹⁵O]water PET in the detection of MI and viability in comparison with histology in a pig model. The main findings of the present study are that both MBF and PTF are reduced in myocardial regions with chronic infarction, and relative MBF, PTF, and PTI all perform well in the detection of non-viable myocardium. In comparison to PTF, MBF appeared nondependent on ROI thickness and it is reduced already in the presence of small infarct volume fraction. Our results in this model indicate that resting MBF as well as PTF and PTI by [¹⁵O]water PET are both useful indicators of impaired myocardial viability. Their optimal cut-off values, accuracy, and performance in predicting functional outcomes after revascularization, however, need to be tested in clinical studies.

Both PTF and PTI have been shown to predict recovery of contractile function after revascularization in patients with MI with threshold values of at least 0.7 of the remote region. $^{10,12-14,17,18}$ Our results are comparable to previous studies indicating that segmental PTF < 0.66 and PTI < 0.82 accurately detected non-viable myocardial segments defined as infarct volume fraction of \geq 75% in the corresponding segment. The original model measures MBF in water-exchanging myocardium and is independent of ROI thickness.^{4,22,23} Our study showed similar results on MBF. As expected, an increase in ROI thickness, however, reduced PTF and therefore, careful standardization of ROI definition is required. Alternatively, PTI may be used that is calculated as the ratio of PTF and ATF which contains both perfusable and non-perfusable tissue components.^{4,18} Determining ATF, however, requires blood-pool imaging with [150]CO or a software-based calculation of parametric PTI images from single [¹⁵O]water scan.^{24,26}

Resting MBF by [¹⁵O]water PET is reduced in the presence of an MI scar both in experimental models^{15,16,27} and in patients.^{10,17,28} In experimental models, relatively good agreement between [¹⁵O]water PET and microspheres has been found at the center of infarct scar

	Sensitivity	Specificity	Positive predictive value	Negative predictive value	Accuracy
No infarction vs. any infar	ction				
Rel MBF (cut-off \leq 85%)	61%	84%	80%	67%	72%
PTF (cut-off \leq 70%)	54%	79%	76%	61%	66%
Viable tissue (infarct volun	ne fraction < 50	O%)			
Rel MBF (cut-off \geq 79%)	81%	69%	92%	46%	79%
PTF (cut-off \geq 66%)	82%	71%	92%	48%	80%
PTF (cut-off \geq 70%)	74%	76%	93%	41%	74%
Viable tissue (infarct volun	ne fraction < 7	5%)			
Rel MBF (cut-off \geq 67%)	92%	73%	96%	59%	90%
PTF (cut-off \geq 66%)	80%	83%	97%	39%	81%
PTF (cut-off \geq 70%)	72%	88%	97%	32%	74%

Table 2. Performance of segmental relative myocardial blood flow (Rel MBF) and perfusable tissue fraction (PTF) by [¹⁵O]water in the assessment of myocardial infarction and viability


area.^{15,16} In our study, MBF in the center of transmural infarction was 0.45 ± 0.34 ml/g/min that is in agreement with previous studies reporting MBF of 0.35 ± 0.34 ml/ g/min,¹⁶ 0.38 ± 0.17 ml/g/min,¹⁵ or 0.45 ± 0.11 ml/g/ min.¹⁷ In order to account for variability in global resting MBF in pigs with MI scar, we also determined relative MBF normalized for flow in the remote myocardium in detection of non-viable segments. Overestimation of MBF by [¹⁵O]water PET has been found in low-flow regions when larger ROI size including a mixture of infarcted and viable areas is used.^{16,28} This may be explained by measuring perfusion in the PTF that is inversely related to the extent of infarcted tissue in the ROI.¹¹ We found that MBF values were not influenced by thickness of the ROI, but we found higher segmental MBF values (on average 0.55 ml/g/min) than values at the center of infarction even in those segments that were defined as non-viable (i.e., infarct fraction \geq 75%).

For practical reasons, we focused on the value of MBF, PTF, and PTI in predicting MI and viability on segmental level. Sensitivities of relative MBF, PTF, and PTI were relatively low in detecting any MI. We found, however, that relative MBF below threshold of 67%, PTF below 66%, and PTI below 82% were associated with the absence of viability defined as infarct fraction of \geq 75% in the corresponding segment. MBF, PTF, and PTI showed comparable accuracies in detecting viability based on the ROC analysis (AUC of 0.85, 0.86, and 0.90, respectively). MBF had particularly high sensitivity (90%) for detecting viable segments, with somewhat lower specificity probably reflecting areas of normal MBF in the presence of subendocardial infarction. Comparison with other imaging modalities indicates

higher or similar accuracy with relative MBF (79%-90%) in our study than with [18 F]FDG PET (79%), dobutamine echocardiography (79%), [99m Tc]sestamibi SPECT (75%), [201 Th] SPECT (71%), and magnetic resonance imaging (MRI) techniques (61%-78%) with the endpoint of improvement of regional function.³ MBF, PTF, and PTI, however, are readily available in resting [15 O]water PET perfusion studies and thus, may have the potential to serve as initial markers of viability guiding further assessment with other modalities.

STUDY LIMITATIONS

There are some limitations that should be acknowledged. In clinical practice, assessment of both myocardial ischemia and viability is of importance and is performed in combination. However, in the setting of MI scar and well-developed collaterals¹⁹ in the pig model, we performed [¹⁵O]water PET only at rest. Reproducibility of MBF and PTF measurements was lower in the infarcted than non-infarcted segments that may be related to small absolute values in the infarcted segments. Although the average resting flow values in pigs were comparable to those measured in man, they are dependent on hemodynamic conditions that varied in anesthetized animals and therefore, the cut-off values as well as respective accuracies need to be determined in patients with MI. Due to concerns related to species differences and effects of anesthesia, we evaluated cutoff values for relative MBF rather than absolute MBF for the detection of infarction and viability. The clinical endpoint in viability studies is recovery of contractile function after revascularization and this needs to be assessed in future clinical studies. However, our

Figure 5. Receiver operating characteristics (ROC) curve analysis of relative myocardial blood flow (Rel MBF), perfusable tissue fraction (PTF), and perfusable tissue index (PTI) by [¹⁵O]water in the detection of myocardial viability with infarct volume fraction of < 50% (**A**) and with infarct volume fraction of < 75% (**B**).

experimental study provides evidence that evaluation of viability by [¹⁵O]water PET is feasible.

NEW KNOWLEDGE GAINED

Our results indicate that both resting MBF and PTF based on [¹⁵O]water PET imaging detect segments with MI scar and can serve as markers of myocardial viability that are readily available.

CONCLUSIONS

Our results in this experimental model of MI indicate that resting MBF, PTF, and PTI based on [¹⁵O]water PET perfusion imaging are useful for the assessment of myocardial viability.

Acknowledgements

Open access funding provided by University of Turku (UTU) including Turku University Central Hospital. The authors wish to thank the staff of the Turku PET Centre for performing PET imaging.

Disclosures

Tuomas Kiviniemi has received consulting fees from Boehringer-Ingelheim and MSD; and payment for lectures from Bayer, Boehringer Ingelheim, BMS-Pfizer, MSD and Astra Zeneca; and Payment for development of educational presentations from MSD. Mark Lubberink is co-owner and part-time employee of MedTrace Pharma A/S; and has received payment for lectures from GE Healthcare. Juhani Knuuti has received consulting fees from Astra Zeneca and GE Healthcare; and payment for lectures from Merck and GE Healthcare. Antti Saraste has received consulting fees from Astra Zeneca and Amgen; and payment for lectures from Astra Zeneca, Bayer, Abbott and Novartis. Maria Grönman, Miikka Tarkia, Christoffer Stark, Tommi Vähäsilta, Paavo Halonen, Antti Kuivanen, Virva Saunavaara, Tuula Tolvanen, Jarmo Teuho, Mika Teräs, Timo Savunen, Mikko Pietilä, Seppo Ylä-Herttuala and Anne Roivainen have no conflicts of interest to declare.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativ ecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Elsasser A, Schlepper M, Klovekorn W-P, Cai W-J, Zimmermann R, Muller K-D, et al. Hibernating myocardium: An incomplete adaptation to ischemia. Circulation 1997;96:2920-31.
- Bax JJ, Delgado V. Myocardial viability as integral part of the diagnostic and therapeutic approach to ischemic heart failure. J Nucl Cardiol 2015;22:229-45.
- Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola S. Hibernating myocardium: Diagnosis and patient outcomes. Curr Probl Cardiol 2007;32:375-410.
- Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for

quantification in relation to the partial-volume effect. Circulation 1988;78:104-15.

- Harms HJ, Nesterov SV, Han C, Danad I, Leonora R, Raijmakers P, et al. Comparison of clinical non-commercial tools for automated quantification of myocardial blood flow using oxygen-15labelled water PET/CT. Eur Heart J 2014;15:431-41.
- Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers P, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [¹⁵O]H₂O PET imaging. J Am Coll Cardiol 2014;64:1464-75.
- Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017;2:1100.
- Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging 2017;33:1021-31.
- Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging 2011;4:678-84.
- Iida H, Ruotsalainen U, Mäki M, Haaparanta M, Bergman J, Voipio-Pulkki L-M, et al. F-18 fluorodeoxyglucose uptake and water-perfusable tissue fraction in assessment of myocardial viability. Ann Nucl Med 2012;26:644-55.
- Iida H, Tamura Y, Kitamura K, Bloomfiel PM, Eberl S, Ono Y. Histochemical correlates of (15)O-water-perfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med 2000;41:1737-45.
- 12. Itoh H, Namura M, Seki H, Asai T, Tsuchiya T, Uenishi H, et al. Perfusable tissue index obtained by positron emission tomography as a marker of myocardial viability in patients with ischemic ventricular dysfunction. Circ J 2002;66:341-4.
- Timmer SAJ, Teunissen PFA, Danad I, Robbers LFHJ, Raijmakers PGHM, Nijveldt R, et al. In vivo assessment of myocardial viability after acute myocardial infarction: A head-to-head comparison of the perfusable tissue index by PET and delayed contrast-enhanced CMR. J Nucl Cardiol 2017;24:657-67.
- 14. Bondarenko O, Knaapen P, Beek AM, Boellaard R, Lammertsma AA, van Rossum AC, et al. Prediction of functional recovery after revascularization in patients with chronic ischemic myocardial dysfunction: Perfusable tissue index by positron emission tomography and contrast-enhanced MRI comparison study. Nucl Med Commun 2011;32:1169-73.
- Herrero P, Staudenherz A, Walsh JF, Gropler RJ, Bergmann SR. Heterogeneity of myocardial perfusion provides the physiological basis of perfusable tissue index. J Nucl Med 1995;36:320-7.
- 16. Bol A, Melin JA, Vanoverschelde JL, Baudhuin T, Vogelaers D, De Pauw M, et al. Direct comparison of [¹³N]ammonia and [¹⁵O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 1993;87:512-25.

- de Silva R, Yamamoto Y, Rhodes CG, Iida H, Nihoyannopoulos P, Davies GJ, et al. Preoperative prediction of the outcome of coronary revascularization using positron emission tomography. Circulation 1992;86:1738-42.
- Yamamoto Y, de Silva R, Rhodes CG, Araujo LI, Iida H, Rechavia E, et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992;86:167-78.
- Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, et al. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol Heart Circ Physiol 2013;305:H1297-308.
- Teramoto N, Koshino K, Yokoyama I, Miyagawa S, Zeniya T, Hirano Y, et al. Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. J Nucl Med 2011;52:761-8.
- 21. Tarkia M, Stark C, Haavisto M, Kentala R, Vähäsilta T, Savunen T, et al. Cardiac remodeling in a new pig model of chronic heart failure: Assessment of left ventricular functional, metabolic, and structural changes using PET, CT, and echocardiography. J Nucl Cardiol 2015;22:655-65.
- Iida H, Rhodes CG, de Silva R, Yamamoto Y, Araujo LI, Maseri A, et al. Myocardial tissue fraction–correction for partial volume effects and measure of tissue viability. J Nucl Med 1991;32:2169-75.
- 23. Iida H, Rhodes CG, de Silva R, Araujo LI, Bloomfield PM, Lammertsma AA, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992;33:1669-77.
- Harms HJ, de Haan S, Knaapen P, Allaart CP, Lamertsma AA, Lubberink M. Parametric images of myocardial viability using a single 15O-H2O PET/CT scan. J Nucl Med 2011;52:745-9.
- DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988;44:837-45.
- 26. De Haan S, Harms HJ, Lubberink M, Allaart CP, Danad I, Chen WJY, et al. Parametric imaging of myocardial viability using 150-labelled water and PET/CT: Comparison with late gadolinium-enhanced CMR. Eur J Nucl Med Mol Imaging 2012;39:1240-5.
- Iida H, Takahashi A, Tamura Y, Ono Y, Lammertsma AA. Myocardial blood flow: Comparison of oxygen-15-water bolus injection, slow infusion and oxygen-15-carbon dioxide slow inhalation. J Nucl Med 1995;36:78-85.
- Gerber BL, Melin JA, Bol A, Labar D, Cogneau M, Michel C, et al. Nitrogen-13-ammonia and oxygen-15-water estimates of absolute myocardial perfusion in left ventricular ischemic dysfunction. J Nucl Med 1998;39:1655-62.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.