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Abstract

A single-pixel camera is an interesting alternative to modern digital cameras featuring millions

of pixels. A single-pixel camera is a method that produces images by exploring the object features

with a series of spatially resolved patterns of light field while measuring the correlated intensity

on a single detector. Nowadays single-pixel cameras are used on those applications where multi-

pixel detectors are not available because the wavelength is not in visible range or light intensity is

extremely low.

The spatial light modulator is an essential part of any single-pixel camera systems. They are,

unfortunately, very expensive. We describe a low-cost version of single pixel camera that can be

used in undergraduate physics laboratories. We show that with this camera setup students can

easily demonstrate basic characteristics of computational ghost imaging and traditional raster and

basis scan. Finally we explain how to perform compressive sampling of images where number of

measurements is well below the actual pixel number. Compressive sampling is rapidly expanding

method to perform image or signal reconstructions in many field of research.
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I. INTRODUCTION

Modern digital cameras have image sensors featuring millions of pixels, and the number of

pixels is the most important character for the camera performance. However, it is possible

to construct a camera that has only one pixel. The idea behind this method is actually

quite simple. Let us consider the normal case where we have a point source of light, which

illuminates the object. Reflected light from the object is then focused on the pixel matrix

of the camera. By measuring the signal from each pixel we can construct the image of

the original object. But we can invert the geometrical situation in the manner of dual

photography.1 Let us put the light source in the place of the camera and collect the total

light intensity into one pixel positioned in the place of the original light source. Obviously

the single-pixel signal depends on the features of the object but also the structure of the light

source. It is also evident that with only one measurement we cannot construct the image but

many different light structures are needed. In other words, a single-pixel camera produces

images by exploring the object with a series of spatially resolved light field patterns made

by a spatial light modulator and measuring the correlating light intensity on the detector

without any spatial resolution.

What are the most important features of single-pixel cameras?2 Silicon-based multi-pixel

sensors elements can be used only in the waveband of visible light and near infrared but

not in long-wavelength infrared or deep ultaviolet where pixelated sensors are either highly

expensive or they do not exist at all. In some applications a single-pixel camera can be

cheaper than its multi-pixel counterpart, or it can be significantly more sensitive when using

a single photon detector. Also other important features as better detection efficiency or

faster temporal response could be realized with single pixel cameras. But on the other

hand, single-pixel cameras need more numerical processing power, which can be a limiting

factor. During the last decade single-pixel cameras have demonstrated applications in many

fields, for example in multispectral imaging,3 real-time 2D and 3D video,4,5, time-of- flight

measurements6 microscopy,7 holography8 and X-ray tomography9.

In the following we first describe a low-cost version of the single-pixel camera system

suitable for a student exercise laboratory. Next we demonstrate various scanning methods

based on the concept of ghost imaging, raster scan, basis scan and finally compressive

sampling.
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II. CAMERA CONSTRUCTION

As described in the previous chapter, the spatial light modulator (SLM) is the main

component of the single-pixel camera. There are two types of SLMs: digital micromirror

devices (DMD) and liquid-crystal devices (LCD). DMDs are used in digital light projectors

to display films and presentation slides, and most of them are based on Texas Instrument’s

components. The DMD consists of an array of electrostatically actuated micromirrors, each

of having the side length of about 10µm, and they can be individually tilted ±10◦. There

are some cheap developer kits of TI DMDs but the control electronics and software are

rather complex and they need lot of expertise in construction. Transmissive and especially

reflective LCDs are excellent research tools in control of amplitude and phase of light fields

but they are, unfortunately, too expensive for student exercise laboratories.

We have designed a simple low-cost version of SLM (see Fig. 1). The patterns of struc-

tured light are displayed on the computer screen by a simple software. We used 50 x 50

pixel matrix (the actual size 13 x 13 mm2 on the screen, the pixel size 0.265 mm), and in

most our experiments each pixel is either black or white corresponding to the values 0 and

1. The object is a mask which is a pattern printed on the transparent sheet and positioned

almost in contact to the screen (distance less than 1 mm) in front of the pixel matrix. As

a detector we used a large-area photodiode (OSD100-E by Centronic). As the diameter of

the active area of this photodiode is about 11 mm, almost all light can be captured without

any collecting optics if the distance from the screen is within few millimeters. In all our

measurements the distance of the detector from the mask was 2 mm. It is also possible to

use a smaller photodiode with a large-diameter positive lens of short focal length.

The photodiode signal is amplified to the level suitable for the analog-digital converter

(Picolog 1216 12-bit datalogger by Pico technology, sampling rate 50 kHz). Typically mod-

ulation in the photodiode signal is very low and thus high amplification is needed. In the

computational ghost imaging and basis scan (these are explained in the following chapter)

on average half of the pixels are illuminated, therefore the actual important part of the

signal is on the top of a large background and amplified output signal can be too large for

the dynamical range of the analog-digital converter. This background can be eliminated

(or reduced to an adequate level) in the output by adjusting (potentiometer P1) the offset

voltage in the second amplification stage. This adjustment can help to eliminate also the
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FIG. 1. Experimental setup: random pixel patterns are shown on the computer screen. The light

intensity of the pattern trough the mask is measured by a large area photodiode. Photodiode

current is amplified with two operational amplifier stages. The potentiometer P1 sets the voltage

offset on the output signal.

the effect of ambient light.

Even when the pixel matrix is not changing the signal from the photodiode is a train

of short pulses because of the refreshing cycle of the display. With our monitor the pulse

frequency was 240 Hz and the pulse width 2.5 ms. For each pattern we captured 30 ms of

the signal (totally 7-8 pulses) and simply searched the maximum value, which corresponds

well to the light intensity. By searching the amplitude of each pulse and averaging them we

can produce slightly better results.

A similar type of lensless single-pixel imaging system is demonstrated as a compact scan-

ner which has no moving parts.10. In that setup the paper document is tightly sandwiched

in a LCD and solar cell detector, and the total thickness of the scanner is less than 3 mm.

This scanner is, unfortunately, very slow because the rise and fall time of the solar cell are

rather long and the LCD controller does not provide any hardware synchronization, thus a

complete scanning takes several hours.
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III. SCANNING METHODOLOGIES

A. Computational ghost imaging

Ghost imaging (GI) is an old, perhaps the first, variant of single-pixel cameras in the

modern form, and especially a certain version of GI is closely related on the current topic.

In the original classical ghost imaging method a (pseudo)thermal light beam is divided into

two identical part, the reference and object arm, by a beam splitter.11,12 In the reference

arm the light field Ii(x, y) is captured by a CCD camera (or another device having spatial

resolution). At the object arm a bucket detector (actually a single-pixel detector) measures

the total intensity si, which is transmitted through the object with the transmission function

M(x, y):

si =

∫
dxdyIi(x, y)M(x, y). (1)

In order to reconstruct the transmission function of the object, the total intensities are

cross-correlated with the intensities measured in the reference and averaged over several

realizations. If the light field is spatially incoherent, we obtain

MGI(x, y) = ⟨si∆Ii(x, y)⟩N =
1

N

N∑
i=1

si∆Ii(x, y), (2)

where ∆Ii(x, y) = Ii(x, y)−⟨Ii(x, y)⟩N . By subtracting the average ⟨Ii(x, y)⟩N we can avoid

a noise offset term, which would otherwise reduce the visibility of the ghost image. We can

see that the ghost image measurement is a vector projection of the transmission function

over N different random functions.

In this image construction scheme the physical thermal source can be replaced with a

light source, which is deterministically controlled by a spatial light modulator. Since the

pattern configuration of SLM is now known it is not any more necessary to divide the light

beam into the object and reference arm. If the light field is incoherent the result (2) is still

valid. This image construction method is called computational ghost imaging (CGI)13.

In our camera system we constructed random pixel patterns by generating pseudo-random

numbers in the range [0, 1]. If the random number ≤ 0.5 the pixel was black, otherwise white,

thus the probability was equal for these two choices. The object (see Fig. 1) was a simple

ring (the outer diameter 7.0 mm, width 0.8 mm ) with a central dot (the diameter 1.2 mm).

The ring and the dot were fully transparent and other parts as opaque as it was possible
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FIG. 2. Computational ghost imaging reconstructions made by a single pixel camera using random

pixel patterns with N = 500, 1000, 2000 and 10000 realizations.

with the laser printer. Single pixel camera reconstructed images with various numbers of

realizations are shown in Fig. 2. We can see that with 500 realizations a noisy shadow of

the original image is visible but low noise images need 10000 realizations or even more.

B. Raster and basis scan

By CGI it is possible to reconstruct the image but high number of realizations must be

created if a high signal-to-noise ratio is needed. The most simple way to capture the image

is use raster scanning : the object is illuminated pixel-by-pixel. This method is commonly

used in applications where multi-pixel detectors are not available. Modern scanning system

consist of a pair of galvanometer mirrors that are used to steer either illumination or detec-

tion onto a single-pixel detector. In our camera system we need 2500 different pixel patterns,

each having only one white pixel (and all the rest black). The result of the raster scan is

shown in Fig. 3 (top left). The original image is quite well reconstructed but it is clearly

smoothed obviously since the pixels of the screen radiate some light also in other directions

than just forward depending on the angular intensity distribution. Even when the object

is close the screen some pixels outside the transparent areas might be slightly seen by the

detector. There are also some periodical patterns due to interference of the screen pixels

and the pixel structure of the laser printed shape, even the totally black areas. Because

of this interference more complex non-binary picture masks are not properly reconstructed
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since with laser printers gray levels are actually produced by raster patterns.

Let us consider the 2-D array of N pixels as an N × 1 column vector with elements xn,

n = 1, 2, . . . , N , i.e., we treat an image by vectorizing it into a long one-dimensional vector.

Any vector in RN can be represent in the terms of a basis of (orto)normal N × 1 vectors

{ψi}Ni=1. Forming the coefficient vector s and the N × N basis matrix Ψ = [ψ1|ψ2| . . . |ψN ]

by stacking the vectors {ψi} as columns, we can write the image in the form

x =
N∑
i=1

siψi (3)

or x = Ψs. Weighting coefficients are determined by the inner product si = (x, ψi) = ψTx

(T denotes transposition). Our single pixel camera just performs, at least approximately,

this “computation”. As an example, in the raster scan method each vector ψi has only one

non-zero element. This is a special case of the basis. Also Eqs. (1) and (2) of CGI can be

written in a similar fashion.

There are other, sometimes more useful, sets of basis functions. Often we want to find

a basis where the coefficient vector s is sparse (it has only K ≪ N non-zero coefficients)

or compressible (there are just few large coefficients and many small ones). Natural images

tend to be compressible in the discrete cosine transform (DCT),14 which is the core of the

JPEG compression algorithm.15 There are several slightly different versions of DCT but we

use the so-called DCT-II:

Xk =
N∑

n=1

xn cos

[
π

N

(
(n− 1) +

1

2

)
(k − 1)

]
, k = 1, . . . , N. (4)

The basis vectors for Ψ are easily calculated from the transform (4) by setting x1 =

(1, 0, . . . , 0), x2 = (0, 1, . . . , 0) and so on. We scaled the component value range of [−1, 1] of

the basis vectors to the gray-scale of the pixels (not just black and white). The result of the

image construction with these 2500 basis vectors, based on the equation (3), is shown in Fig.

3 (top right). The quality of the image is almost the same as in the raster scan method, as

expected, but the pixel interference is somewhat more prominent. The coefficients si, mag-

nitude sorted from the largest value to the smallest, as a function of the vector component

index are shown in Fig. 4. We can see that there are relatively few large coefficients and

they all decay approximately under the power law, typical for compressible signals, thus the

image is compressible but not very efficiently: 500-1000 basis vectors are needed.
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FIG. 3. Image reconstructions made by the raster scan (top left), discrete cosine transform (DCT)

basis scan (top right) and compressive sampling (CS) method (bottom left and right).
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FIG. 4. The magnitude sorted weight coefficients |si| as a function of the vector component index.

C. Compressive sampling

When using DCT or other similar type of bases it is possible to construct a compressed

form of the image. But there is an inherent disadvantage: we must always perform N

measurements and afterwards select those K basis vectors which are important, even if the

desired K is very small. Compressive sampling (CS) method bypasses the sampling process
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and directly acquires a compressed reconstruction using onlyM < N measurements between

the image x and test vectors {ϕm}Mm=1.
16–18 As a result we get inner products ym = (x, ϕm).

Measurements ym can be arranged into a M × 1 vector y and the test vectors ϕm as rows

into a M ×N matrix Φ. By substituting x = Ψs from Eq. (3) we get

y = Φx = ΦΨs = Θs, (5)

where Θ is M ×N matrix. We assume that Φ does not depend in any way on the image x,

thus the measurement process is totally nonadaptive. The transformation from x to y is a

dimensionality reduction in which some information is lost. From a mathematical point of

view the main problem is to find a matrix Φ such that information in any sparse or com-

pressible image (or in a signal in general) is not corrupted by this reduction. Amazingly this

is possible: it can be shown that with high probability random matrices are good choices.19

Intuitively this procedure can be understood in the following manner: each random matrix

collects a small amount of information over all frequencies (or other features depending on

the compressive basis Ψ) if there is no ”interference” between Φ and Ψ. This property can

be formulated as a rigid mathematical condition called restricted isometry property.16

We have N -dimensional vector x and we take only M < N measurements, the vector

y. Since M < N , the problem is ill-conditioned. If, however, x is sparse and there are K

non-zero coefficients in s, this problem can be solved if M ≥ K.20,21 The problem can be

formulated as a minimization of the following functional of s

∥Θs− y∥2 + λ∥s∥p, (6)

where the regularization parameter λ controls the trade-off between the data misfit Θs− y

and the penalization in the term of p -norm of the parameters. The parameter λ is closely

related to the noise level of the data y. If p = 2 (∥s∥2 =
√∑

i s
2
i ) we have the well-known

method of least squares, which as a linear problem can be easily solved. Unfortunately, the

penalty term of this type is generic and does not utilize any a priori information about the

desired solution s, and it can hardly find any sparse solution. The case of p = 0 (counts the

number of non-zero components in s) would measure directly the sparsity of the solution

but this problem is numerically unstable and very difficult to solve.

The choice p = 1 (∥s∥1 =
∑

i |si|) can, surprisingly, exactly recover K-sparse signals and

well approximate compressible ones whenM ≥ K log(N/K).20,21 This optimization problem
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often called ”basis pursuit” can be solved using standard convex programming algorithms.

We will not go to the details of these algorithms since they are quite complex and we did

not try to code it by ourselves. Instead, we used freely available toolbox L1Packv2 designed

for Mathematica.22 There are other similar free packages (Sparse-Lab, l1-magic) for Matlab.

See Appendix for the details of L1Packv2.

We made experiments with the same original image as earlier. The matrix Ψ consists

of the same DCT basis vectors as used in the basis scan method. The test functions ϕm

are those random matrices used in CGI method. Results of compressive sampling with

M = 500 and M = 1000 are shown in Fig. 3 (bottom left and right). Clearly 500 samples is

not enough for proper reconstruction of the image but with 1000 samples we achieve almost

the same quality as in the raster and basis scan. If we compare the CS image with the CGI

image (N = 1000) we find significant increasing in the signal-to-noise ratio (SNR).23 We

obtain SNRCGI = 1.5 and SNRCS = 14.9. It should be noted that in the measurement

phase we collect exactly the same information in CGI and CS methods but the last one

needs much more computational efforts.

Compressive sampling has several advances. First, CS method can be called universal

since the same random matrix Φ can be used with many different bases Ψ. In CS method

each measurement collects the same amount of information and the lost of few measurements

does not corrupt the reconstruction, in contrast to the basis scan where collected data is

strictly hierarchical. This feature of CS enables also progressive data collection: we obtain

better reconstruction as we get more measurements.

IV. CONCLUSION

Single pixel cameras are nice examples on the change of the viewpoint, even literally. We

describe a simple single-pixel camera setup where the expensive spatial light modulator is

replaced by pixel patterns on the computer monitor screen. Although there are limitations

in the optical setup all essential features can be demonstrated. Students can prepare own

objects with a laser printer and explore the concept of ghost imaging and make experiments

with various sparsitfying or compressing bases in image construction. It is possible that

students also design own bases and check their performance. Since the data collection is

rather slow, because of low refreshing rate of the screen, image reconstruction takes time but
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this can be converted to an advantage: reconstruction can be followed in “real” time. The

compressive sampling is an advanced topic but if there is any access to tools like Mathematica

or Matlab, students learn more on this denoising method whose use is expanding rapidly in

many fields of physics.

Appendix A: Use of Mathematic l1-norm minimizer package L1Packv2

In our software the measurement vector y was written into a file as a single column. This

data can be read into Mathematica by the command

y = Import[”YFileName.txt”, ”List”]

The Θ matrix was written into a file as a comma separated columns. This data can be read

into Mathematica by the command

Theta = Import[”ThetaFileName.csv”]

The main minimizing algorithm in L1Packv2 is FindMinimizer. The user should set a stop

condition for this algorithm. There are two most suitable for our purpose: MinimumDis-

crepancy → d and MaximumNonZero → M . With the first one the calculation will be

stopped when ∥Thetas− y∥2 has reached the value d. Normally d is the square of the noise

level of the signal. With the second condition the algorithm will stop when there are M

non-zero component in the minimizer s. In our examples we used this condition and the

corresponding command in Mathematica is

s = FindMinimizer[Theta,y,MaximumNonZero → 500 or 1000]

The result vector s can be written into the file by the command

Export[”SFileName.txt”,s]
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