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Abstract

Let G = (V, E) be a graph. For v ∈ V and r ≥ 1, we denote by
BG,r(v) the ball of radius r and centre v. A set C ⊆ V is said to be
an r-identifying code if the sets BG,r(v) ∩ C, v ∈ V , are all nonempty
and distinct. A graph G which admits an r-identifying code is called
r-twin-free, and in this case the smallest size of an r-identifying code
is denoted by γr(G).

We study the ensemble of all the different optimal r-identifying
codes C, i.e., such that |C| = γr(G). We show that, given any collection
A of k-subsets of V1 = {1, 2, . . . , n}, there is a positive integer m, a
graph G = (V, E) with V = V1 ∪ V2, where V2 = {n + 1, . . . , n + m},
and a set S ⊆ V2 such that C ⊆ V is an optimal r-identifying code
in G if, and only if, C = A ∪ S for some A ∈ A. This result gives
a direct connection with induced subgraphs of Johnson graphs, which
are graphs with vertex set a collection of k-subsets of V1, with edges
between any two vertices sharing k − 1 elements.

Key Words: Graph Theory, Twin-Free Graphs, Identifiable Graphs, Iden-
tifying Codes, Johnson Graphs, Johnson Induced Subgraphs.
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1 Introduction

We introduce basic definitions and notation for graphs (for which we refer
to, e.g., [1] and [4]) and for identifying codes (see [8] and the bibliography
at [9]).

We shall denote by G = (V,E) a simple, undirected graph with vertex
set V and edge set E, where an edge between x ∈ V and y ∈ V is indifferently
denoted by {x, y}, {y, x}, xy or yx. The order of a graph is its number of
vertices |V |. We shall denote a cycle of length n by Cn.

In a connected graph G, we can define the distance between any two
vertices x and y, denoted by dG(x, y), as the length of any shortest path
between x and y. This definition can be extended to disconnected graphs,
using the convention that dG(x, y) = +∞ if there is no path between x
and y.

For any vertex v ∈ V and integer r ≥ 1, the ball of radius r and centre v,
denoted by BG,r(v), is the set of vertices within distance r from v:

BG,r(v) = {x ∈ V : dG(v, x) ≤ r}.

Two vertices x and y such that BG,r(x) = BG,r(y) are called (G, r)-twins; if
G has no (G, r)-twins, that is, if

∀x, y ∈ V with x 6= y, BG,r(x) 6= BG,r(y),

then we say that G is r-twin-free or r-identifiable. When there is no ambi-
guity about the graph G, we may use simply Br(v).

Whenever two vertices x and y are within distance r from each other
in G, i.e., x ∈ Br(y) and y ∈ Br(x), we say that x and y r-cover each other.
When three vertices x, y, z are such that x ∈ Br(z) and y /∈ Br(z), we say
that z r-separates x and y in G (note that z = x is possible). A set is said
to r-separate x and y in G if it contains at least one vertex which does.

A code C is simply a subset of V , and its elements are called codewords.
For each vertex v ∈ V , the r-identifying set of v, with respect to C, is the
set of codewords r-covering v, and is denoted by IG,C,r(v):

IG,C,r(v) = BG,r(v) ∩ C.

We say that C is an r-identifying code [8] if all the sets IG,C,r(v), v ∈ V ,
are nonempty and distinct: in other words, every vertex is r-covered by at
least one codeword, and every pair of vertices is r-separated by at least one
codeword. Or: given the (nonempty) identifying set IG,C,r(v) of an unknown
vertex v ∈ V , we can uniquely recover v (we also say that we r-identify v).

It is quite easy to observe that a graph G admits an r-identifying code
if and only if G is r-twin-free; this is why r-twin-free graphs are also called
r-identifiable. Also, if a vertex x is isolated or is such that for two vertices
u and v, u 6= v, the symmetric difference Br(u)∆Br(v) is reduced to the
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singleton {x}, then necessarily x belongs to all the r-identifying codes, and
we say that x is r-forced.

When G is r-twin-free, we denote by γr(G) the smallest cardinality of
an r-identifying code in G. Any r-identifying code C such that |C| = γr(G)
is said to be optimal. The search for an optimal r-identifying code in given
graphs or families of graphs is an important part of the studies devoted to
identifying codes. In general, this problem is NP-hard [2].

One application of identifying codes is the following: we place ourselves
in the case r = 1 and assume that we have to protect a museum, or any
other type of premises, using smoke detectors. The museum can be viewed
as a graph, where the vertices represent the rooms, and the edges, the doors
between rooms. The detectors are located in some of the rooms and give
the alarm whenever there is smoke in their room or in one of the adjacent
rooms. If there is smoke in one room and if the detectors are located in
rooms corresponding to a 1-identifying code, then, only by knowing which
detectors gave the alarm, we can identify the room where there is a fire
starting, or any smoke emission.

In [6], following [12] and [13] where the notion of “completely different
codes” is discussed in the framework of infinite lattices, we are interested in
finding graphs which have a large number of different optimal r-identifying
codes. Considering again our example of the watching of a museum, this
means that we want not only to use the smallest possible number of detec-
tors, but also to have a large number of choices for their locations.

In this paper, we study the structure of the ensemble of all the optimal
r-identifying codes of a graph. If G = (V,E) is an r-twin-free graph, then
this ensemble is trivially a collection of k-element subsets, or k-subsets, of V ,
for k = γr(G); we denote this ensemble by Φr(G). Conversely, assume that
A is a nonempty collection of some s different k-subsets A1, A2, . . . , As of
V1 = {1, 2, . . . , n}. The question is: is there a graph G with vertex set V1

such that A is equal to Φr(G)? When 3 ≤ k ≤ n− 3, the answer for almost

all collections A is NO; indeed, there are 2(n

k
) such collections but only 2(n

2
)

different graphs (but Theorem 7 below will give an interesting example of
a case when the answer is YES). However, we can ask the same question
for a graph G with n + m vertices, m ≥ 0. And now the answer is YES: in
Section 2, in Theorems 10 (for r = 1) and 12 (for all r ≥ 2), we prove the
following.

Theorem 1 Let 1 ≤ k ≤ n and r ≥ 1 be arbitrary. Given any nonempty
collection A of k-subsets of V1 = {1, 2, . . . , n}, there is a positive integer m,
a graph G = (V,E) with V = V1 ∪ V2, where V2 = {n + 1, . . . , n + m}, and
a set S ⊆ V2 such that C ⊆ V is an optimal r-identifying code in G if, and
only if, C = A ∪ S for some A ∈ A.

So the ensemble of the optimal r-identifying codes of the graph G can be
described by which k-set of vertices from V1 we put in the code, since the
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other codewords (those in S) are common to all optimal codes C; now these
k-sets are precisely the k-sets which belong to our target A, and therefore
the set Φr(G) is in some sense equivalent to A, in the same way as the
labellings of the hexagon H1 in Figure 1(a)(1) and (a)(2) are equivalent. If,
for any two k-subsets Ai and Aj in A we set

δ(Ai, Aj) = |Ai∆Aj |,

then, setting Ci = Ai ∪ S and Cj = Aj ∪ S, we can see that δ(Ci, Cj) =
δ(Ai, Aj), i.e., G is such that Φr(G) has exactly the same symmetric differ-
ence distribution as the arbitrary collection A we started from.

Of course, ideally, we would like to have a result of the type

“. . . there is an integer m and a graph G of order n + m such
that C is an optimal r-identifying code if, and only if, C = A for
some A ∈ A.”

so that Φr(G) and A would match exactly. However, the following argument
from [5] shows that we cannot in general do without the set S ⊆ V2, and that
having additional vertices is not enough if we do not use them as codewords.

Assume that n ≥ 2k ≥ 4 and r ≥ 1, that A consists of all the k-subsets
of V1 = {1, 2, . . . , n}, and that the optimal codes C are exactly all the k-
subsets of V1, for a graph G = (V = V1 ∪ V2, E) of order n + m, m ≥ 0.
For every vertex v ∈ V , the set Br(v) ∩ V1 can be represented by β(v), a
binary vector of length n where the i-th bit is one if i ∈ Br(v) ∩ V1 and
zero otherwise. For any two vertices u and v in V , the sum β(u) + β(v)
(carried modulo 2), which gives the positions where β(u) and β(v) differ,
must contain at least n − k + 1 ones: otherwise, β(u) and β(v) agree on at
least k positions, and any code C consisting of some k of these positions
does not r-separate u and v. This means that in the (n + m) × n binary
array D with row-vectors β(v), v ∈ V , the sum of any two rows has weight
at least n−k+1; in terms of coding theory, we say that D is a binary code of
length n, size n+m, and minimum distance at least n−k +1. Now there is
a result, known as the Plotkin bound (see, e.g., [10, 2§2] or [3, Th. 12.6.4]),
stating that such codes do not exist when n ≥ 2k.

Anyway, we have established a sufficiently strong link between the ensem-
bles of the optimal r-identifying codes of all graphs and the sets of k-subsets
of n-sets to connect our investigation to the following definition from [11] and
the results related to it. Before that, we recall that we say that two graphs
G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, and write G1

∼= G2, if there
is a bijection φ : V1 → V2 such that xy ∈ E1 if, and only if, φ(x)φ(y) ∈ E2

for all x, y ∈ V .

Definition 2 Given positive integers k and n with 1 ≤ k ≤ n, the Johnson
graph J(k, n) is the graph whose vertex set consists of all the k-subsets of
{1, 2, . . . , n}, with edges between two vertices sharing exactly k−1 elements.
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Figure 1: Examples of JIS with different labelling sets. Dotted lines are not
edges; they link vertices at distance δ = 4 or δ = 6, according to the cases.

A graph H is isomorphic to an induced subgraph of a Johnson graph
if, and only if, it is possible to assign, for some k and n, a k-subset Sv ⊆
{1, 2, . . . , n} to each vertex v of H in such a way that distinct vertices have
distinct corresponding k-sets, and vertices v and w are neighbours if, and
only if, Sv and Sw share exactly k− 1 elements. In this case, we say that H
is an induced subgraph of a Johnson graph, or that H is a JIS for short.

We denote by J the set of all induced subgraphs of all Johnson graphs.

Remark 3 A JIS H can be associated to several collections of sets, possibly
leading to different symmetric difference distributions, as shown in Figure 1.
In (a)(1) and (a)(2), the sizes of the symmetric differences between vertices
are two and four, whereas in (a)(3) they are two, four and six. In (b), the
three labellings are different but have the same symmetric difference distribu-
tion, since the graph H2 is complete and all the symmetric differences have
size two.

If we link two elements Ci and Cj in Φr(G) if, and only if, δ(Ci, Cj) = 2,
then we obtain a graph which we denote by Mr(G). For a given r, the set
of all the graphs Mr(G) is denoted by Mr, and we set M = ∪r≥1Mr. Now,
what Theorem 1 says is that every JIS belongs to M, and even more, every
JIS belongs to Mr for all r ≥ 1:

Corollary 4 Assume that H is any induced subgraph of the Johnson graph
J(k, n). Then, for all r ≥ 1, there is a graph G such that Mr(G) ∼= H, and
so Mr = J . �
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Figure 2: G is the star with five vertices, and H = M1(G) is the clique K5.

Note that we obtain similar results in the short note [7] in the slightly
different context of 1-dominating and 1-locating-dominating codes, which
we do not define here.

For examples of graphs which are JIS or not, we refer to [11], with a short
overview in Section 2.4, but to our knowledge no classification is known.

A result about the connectivity of M(G) can already be useful: con-
sider again our museum, represented by the graph G, and assume that for
maintenance reasons, we wish to change the locations of the detectors and
use another optimal 1-identifying code C ′ instead of C. If M1(G) is con-
nected, then this can be performed one detector at a time (i.e., we remove
one detector and insert it in a different location), in such a way that, at
each intermediate stage, the locations of the detectors always form an op-
timal 1-identifying code. In fact, using one spare detector, this can be
perfomed in such a way that the code remains 1-identifying at all times
(i.e., by always adding a detector before removing one). For instance, this
is impossible if G = C6, the cycle with vertex set {0, 1, 2, 3, 4, 5}, since in
this case Φ1(G) = {{0, 2, 4}, {1, 3, 5}}, and M1(G) consists of two isolated
vertices. In contrast, if G is a star on n vertices, then M1(G) is Kn, the
complete graph on n vertices (see Figure 2).

Before we proceed, we need one easy lemma which will be used implicitly
in several places (and has already been used in the example of the museum,
when we add one detector then remove another), one additional definition
as well as some notation.

Lemma 5 Let G = (V,E) be a graph. If C is r-identifying in G, so is any
D ⊇ C. �

Definition 6 The Cartesian product of two graphs G1 = (V1, E1) and G2 =
(V2, E2) having disjoint vertex sets is the graph with vertex set V1 × V2 and
edge set {{x = (x1, x2), y = (y1, y2)} : (x1 = y1 and {x2, y2} ∈ E2) or
({x1, y1} ∈ E1 and x2 = y2)}.

Finally, Kn1,n2
denotes the complete bipartite graph with vertex set V1 ∪ V2,

where V1 = {1, 2, . . . , n1} and V2 = {1, 2, . . . , n2}, and edge set {v1v2 : v1 ∈
V1, v2 ∈ V2}.
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2 The ensemble of optimal r-identifying codes

2.1 A graph with special structural properties

As discussed in the Introduction, it can be of interest to study the structure
of the set Φr(G) of the different optimal r-identifying codes in a graph G.

The following theorem was already mentioned in the Introduction, be-
cause it gives the example of a graph G of order n such that Φ1(G) is a
collection of n

2 -subsets of an n-set: G needs no additional m vertices and no
subcode S.

Moreover, it answers positively and simultaneously two natural questions
about Φr(G), at least in the case r = 1:

(i) is there a graph G = (V,E) such that a subset C of V is an optimal
r-identifying code if, and only if, V \ C is an optimal r-identifying code?

(ii) is there a graph G = (V,E) such that for every i ∈ {1, 2, . . . , bn/2c},
there are two optimal r-identifying codes C1 and C2 such that |C1∆C2| = 2i?

Theorem 7 Let n be an even integer, n ≥ 8. There exists a graph G =
(V,E) with n vertices such that V can be partitioned into n/2 sets of size
two, V1, V2, . . ., Vn/2, with the following property: C ⊆ V is an optimal
1-identifying code in G if, and only if, |C ∩ Vi| = 1 for all i = 1, 2, . . . , n/2.

Remark 8 In particular, the number of different optimal 1-identifying codes
in G is 2n/2 (cf. [6] for a study on the number of optimal identifying codes
in a graph, and a result better than 2n/2 for r = 1).

Proof of Theorem 7. The constructions in the particular cases n = 8,
n = 10 and n = 12 are given in Figure 3(b), (c) and (d), respectively, and
are easy to check, so we go to the general case, when n ≥ 14 is of the form
4s + 2 or 4s + 4, s ≥ 3. Take s vertices ai and s vertices bi, 1 ≤ i ≤ s, and
take t vertices xi and t vertices yi, 1 ≤ i ≤ t, where t = s + 1 or t = s + 2;
let

V (G) = {a1, . . . , as, b1, . . . , bs, x1, . . . , xt, y1, . . . , yt},

so that G is of order n = 2s + 2t. Now we link some of the vertices of V in
the following way, see Figure 3(a):

(i) for i ∈ {1, 2, . . . , s}, we take the four edges aixi, aiyi, xibi, yibi;
(ii) for every i ∈ {1, 2, . . . , s}, we take xs+1ai, ys+1ai, xs+1bi, ys+1bi;
(iii) if t = s + 2, we choose any two indices i1, i2, with 1 ≤ i1 < i2 ≤ s,

and take the edges ai1xs+2, ai1ys+2, bi1xs+2, bi1ys+2 and ai2xs+2, ai2ys+2,
bi2xs+2, bi2ys+2.

Now in each pair {ai, bi}, 1 ≤ i ≤ s, and in each pair {xj , yj}, 1 ≤ j ≤ t
with t = s + 1 or t = s + 2, the two vertices have the same neighbours, and
so at least one vertex in each pair must belong to any 1-identifying code,
and at least n/2 codewords are needed.

7



a1

x1

(c) n =10

a1

x1

ys

bs

iato all ’s and bi ’s

xs +1

i

ys

x1

(d) n =12

a1

y3

y2

b2

b3

b2

’s and 

b2
2y

+2

(a) the general case

bi ’sto two

s

+2s

a

x

y
+1

x3

y3

x1

(b) n =8

a1

Figure 3: The constructions in the proof of Theorem 7.

Conversely, assume that C is any set of vertices containing exactly one
element from each of the aforementioned pairs. We claim that C is 1-
identifying.

First, every vertex is 1-covered by C: every ai and every bi is taken care
of either by xs+1 or by ys+1, and every xi and yi is taken care of by at least
one vertex of type a or b.

Next, a vertex ai or bi is 1-covered by at least two codewords of type
x, y (either xi or yi, and either xs+1 or ys+1, plus maybe either xs+2 or ys+2

when they exist), whereas a vertex xj or yj is 1-covered by at most one
codeword of type x, y (itself), so C 1-separates the vertices of type a, b from
the vertices of type x, y.

If we know that the vertex we are looking for is of type a, b, we can find
its index in {1, 2, . . . , s} simply by observing the index of the codeword (xi or
yi) which is in its 1-identifying set, then, for this index i, we can determine
whether the vertex is ai or bi, because exactly one of them is in the code.

Finally, if we know that the vertex we are looking for is of type x, y,
we first find its index: it is i, 1 ≤ i ≤ s, if only one codeword of type a, b,
namely either ai or bi, 1-covers it, it is s + 1 if s codewords of type a, b
1-cover it, it is s + 2 if two codewords of type a, b 1-cover it (remember that
2 < s); then, for this index, we can tell whether the vertex is x or y. �

Considering any of the 2n/2 optimal 1-identifying codes as a sequence of n/2
01’s and 10’s, we can, using the rule 01 → 0 and 10 → 1 (or vice versa),
transform it into a binary vector of length n/2, which proves the following.
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Corollary 9 The graph G of the previous theorem is such that M1(G) is
isomorphic to the binary hypercube of dimension n/2, n ≥ 8, n even. �

2.2 Proving the link between Φ1(G) and JIS

As announced in the Introduction, we prove the link between Φr(G) and a
collection of k-subsets of an n-set, first in the case r = 1.

Theorem 10 Let 1 ≤ k ≤ n be an arbitrary integer, and assume that A
is any nonempty collection of k-subsets of V1 = {1, 2, . . . , n}. Then there
is a positive integer m, a graph G = (V,E) with V = V1 ∪ V2, where V2 =
{n + 1, . . . , n + m}, and a set S ⊆ V2 such that C ⊆ V is an optimal
1-identifying code in G if, and only if, C = A ∪ S for some A ∈ A.

The main idea behind Theorem 10 (and Theorem 12 as well, for r > 1) is
first to put in G pairs of vertices, b(A) and c(A), for every (k − 1)-subset
A of V1 and every k-subset A not in A; then we choose to link them, or
not to link them, to the vertices in V1 (either directly in the case r = 1, or
by a path for r > 1), in such a way that the need to separate b(A) from
c(A) will lead to a selection of exactly k codewords in V1, corresponding to
a subset A ∈ A. The aim of the rest of the graph (the elements of type e
and f in Theorem 10, of type e, f, g, e′, f ′, g′ in Theorem 12) is to provide
a (sufficiently large) collection of ”signatures” for the whole graph: these
signatures will then participate in the construction of the final identifying
sets. We now give the complete, detailed proof of Theorem 10.

Proof. We begin the construction of G = (V,E) by taking n vertices, a1,
a2, . . ., an (which play the role of the vertices labelled by 1, 2, . . . , n in the
statement of the theorem); see Figure 4.

Corresponding to every (k−1)-subset A of V1, we form two new vertices
b(A) and c(A), which are linked together; then all the vertices ai, i ∈ A,
are linked to b(A) and c(A), whereas all the vertices ai, i /∈ A, are linked to
b(A) only (when k = 1, we have only one pair, (b(∅), c(∅))). Now we can see
that when we need to 1-separate the vertices b(A) and c(A), if we suppose
that the only vertices that can do it are the vertices of type a, then clearly
the (k − 1)-set {ai : i ∈ A} fails, but any k-subset would succeed. So, if
the vertices of type a have to 1-separate every pair (b(A), c(A)), then we
have to take at least k of these n vertices as codewords, and any choice of k
vertices will do.

Next, corresponding to every k-subset B of V1 which is not in A, we take
two new vertices b(B) and c(B), which are linked together; again, exactly as
previously, all the vertices ai, i ∈ B, are linked to b(B) and c(B), whereas
all the vertices ai, i /∈ B, are linked to b(B) only. Again, for a given B, the
k-set {ai : i ∈ B} would fail to 1-separate b(B) and c(B), but any other
k-set would do. Therefore, if the vertices of type a have to 1-separate every

9



a
i

a
j

f
2

e
K−1

b(B) c(B)
f
2K−1

f
2K

K+21

...

f

...

K

different e−signatures
of size 2 or 3

...

b(A) c(A)

i not ini,j B

same e−signature same e−signature

part corresponding to one set A
part corresponding to one set B

in A

e e
1

f

e
2

... ...

a a
1 n

... cycle

f
K−1

Figure 4: A global representation of the graph G in the proof of Theorem 10.
A number of vertices and edges are not represented.

pair (b(A), c(A)) and (b(B), c(B)), then we have to take at least k of the n
vertices of type a as codewords, and we can do it with exactly k of them if,
and only if, we have chosen the elements of one of the k-sets in A.

Now we choose the smallest integer K such that
(

K

2

)

+

(

K

3

)

− 2K ≥ n +

(

n

k − 1

)

+

(

n

k

)

− |A|, (1)

and add K new vertices, e1, . . . , eK , together with the edges e1e2, e2e3,
. . ., eK−1eK , eKe1, so that the ei’s form the cycle CK . We let s = 2K and
complete the vertex set V of G by taking s new vertices f1, . . ., fs, with the
edges fifi+K , 1 ≤ i ≤ K. In the sequel, for any vertex v ∈ V , we say that
the e-signature of v is the set of those vertices ei which 1-cover v.

We now choose the edges between the ei’s and the fj ’s: they are eifi

and eifi+K , 1 ≤ i ≤ K, and ei+1fi+K , 1 ≤ i ≤ K − 1, and e1f2K .
Clearly, in the subgraph induced by the ei’s and fj ’s (in the graph con-

structed so far), the optimal 1-identifying code has size K and can only
be the set of all the vertices of type e: indeed, the symmetric difference of
B1(fi) and B1(fi+K), for 1 ≤ i ≤ K − 1, is the singleton {ei+1} and the
symmetric difference of B1(fK) and B1(f2K) is {e1}, which means that all
the vertices of type e are 1-forced; on the other hand, they suffice to con-
stitute a 1-identifying code, since they 1-cover all the ei’s and fj ’s, the ei’s
have K different e-signatures of size three, the vertices fi, 1 ≤ i ≤ K, have
K different e-signatures of size one, and the vertices fi, K + 1 ≤ i ≤ 2K,
have K different e-signatures of size two.

Finally, each vertex of type a is assigned a different e-signature of size
two or three which has not been used by the vertices of type e and f , by
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linking each of them to two or three ei’s in a suitable way. Similarly, for
every subset A of size k − 1, we assign both the vertices b(A) and c(A) the
same e-signature of size two or three, in such a way that these e-signatures
are different for different sets A and different from the e-signatures given
to the ai’s, the ei’s and the fi’s; for every subset B /∈ A of size k, we act
similarly for b(B) and c(B): they receive a common signature of size two or
three, different for each B and different from all the signatures previously
given. All this can be done because we need K e-signatures of size three for
the ei’s, K e-signatures of size two for the vertices fi, K + 1 ≤ i ≤ 2K, n
e-signatures of size two or three for the ai’s,

(

n
k−1

)

e-signatures of size two
or three for the pairs (b(A), c(A)) corresponding to all the (k − 1)-sets of
V1, and

(n
k

)

− |A| e-signatures of size two or three for the pairs (b(B), c(B))
corresponding to the k-sets not belonging to A, and because K satisfies
inequality (1).

The construction of G is now complete; see Figure 4. What are the
optimal 1-identifying codes in G? In order to 1-separate the fj ’s, we need
all the ei’s as codewords, and in order to 1-separate all the pairs (b(A),
c(A)) and (b(B), c(B)), we need at least k codewords among the ai’s. So
γ1(G) ≥ K+k. Moreover, in any 1-identifying code of size K+k, the indices
i of the k ai’s in the code form a subset which belongs to A.

Conversely, assume that C is any code consisting of all the ei’s and the
k elements ai, i ∈ A0 for some A0 ∈ A. Then C is 1-identifying; indeed,

(i) all the vertices are 1-covered by C,
(ii) all the vertices fi, 1 ≤ i ≤ K, have unique e-signatures of size one,
(iii) all the ai’s, ei’s and all the vertices fi, K+1 ≤ i ≤ 2K, have different

e-signatures of size two or three, as do all the pairs (b(A), c(A)) and (b(B),
c(B));

(iv) finally, we have already observed that the very construction of the
graph makes every pair of vertices (b(A), c(A)) and (b(B), c(B)) 1-separated
by C. �

2.3 Proving the link between Φr(G) and JIS when r ≥ 1

We now turn to the case r ≥ 1, for the proof of which the following definition
will be useful.

Definition 11 A vertex x in an r-twin-free graph G is said to be r-optimal
if it belongs to the intersection of all optimal r-identifying codes in G.

Obviously, if x is r-forced, then it is r-optimal, but the converse may be
false. The set of r-optimal vertices in some sense forms the identifying core
of the graph.

Theorem 12 Let 1 ≤ k ≤ n and r ≥ 1 be arbitrary, and assume that A
is any nonempty collection of k-subsets of V1 = {1, 2, . . . , n}. Then there
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Figure 5: A global representation of the graph G in the proof of Theorem 12.
A number of vertices and edges are not represented.

is a positive integer m, a graph G = (V,E) with V = V1 ∪ V2, where V2 =
{n + 1, . . . , n + m}, and a set S ⊆ V2 such that C ⊆ V is an optimal
r-identifying code in G if, and only if, C = A ∪ S for some A ∈ A.

Proof. We have already proved the case r = 1, so we can assume that r ≥ 2
(this assumption is needed in Step 5).

We begin by choosing n vertices a1, a2, . . . , an (which play the role of the
vertices labelled by 1, 2, . . . , n in the statement of the theorem); see Figure 5.
Denote by B the set consisting of the (k−1)-subsets of V1 and the k-subsets
of V1 which do not belong to A.

Next, for each B ∈ B, we do the following. First, we take the elements
of the set

V (B) = {ai,j(B) : 1 ≤ i ≤ n, 1 ≤ j ≤ r − 1} ∪ {b(B), c(B)}

as new vertices, and for all i = 1, 2, . . . , n, we take the edges

aiai,1(B), ai,1(B)ai,2(B), . . . , ai,r−2(B)ai,r−1(B).

Moreover, if i ∈ B, we connect ai,r−1(B) by an edge to both b(B) and c(B);
otherwise, we only link ai,r−1(B) to b(B). Finally, we link b(B) and c(B).

We now construct two cycles with vertex sets E = {e1, e2, . . . , es} and
F = {f1, f2, . . . , fs}, where s ≥ 2r + 2, s ≥ |B|, and we view the indices
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modulo s. For each i = 1, 2, . . . , s, we add a vertex ei(0) and link it to ei,
and a vertex fi(0) linked to fi. Next, for all i = 1, 2, . . . , s, we connect ei

and fi with p paths, each path containing 2r + 1 new vertices:

gi(j, 1)gi(j, 2) . . . gi(j, 2r + 1) (2)

for j = 1, 2, . . . , p: so, for all i and j,

eigi(j, 1), gi(j, 1)gi(j, 2), . . . , gi(j, 2r)gi(j, 2r + 1), gi(j, 2r + 1)fi

are all edges. The size of p will be specified shortly.
Next we construct a new, essentially similar structure as in the previous

paragraph; namely we construct two more cycles with vertex sets E ′ =
{e′1, e

′
2, . . . , e

′
t} and F ′ = {f ′

1, f
′
2, . . . , f

′
t} where t ≥ 2r + 2, t ≥ n, and the

indices are viewed modulo t. Then, for each i = 1, 2, . . . , t, we add a vertex
e′i(0) and link it to e′i, add a vertex f ′

i(0) linked to f ′
i , and connect e′i and f ′

i

with p paths (with the same p as above)

g′i(j, 1)g′i(j, 2) . . . g′i(j, 2r + 1) (3)

for j = 1, 2, . . . , p, so that, for all i and j,

e′ig
′
i(j, 1), g′i(j, 1)g′i(j, 2), . . . , g′i(j, 2r)g′i(j, 2r + 1), g′i(j, 2r + 1)f ′

i

are all edges.
We choose p so that p > 2s + 2t. So far, we have three connected

components in the current graph G: the first one will carry out the selection
of the subsets A ∈ A in the same way as in the case r = 1; the other two
will be connected to it in such a way that they ”take care” of all the rest
—and do not interfere with the selection process of the first part.

Finally, for every B ∈ B, we connect both b(B) and c(B) by an edge
to two consecutive vertices ei and ei+1 of E in such a way that different
indices i are assigned to different subsets B; this is clearly possible since we
chose s = |E| ≥ |B|; similarly, for every i we link ai to e′i and e′i+1, using
the fact that t ≥ n. This completes the construction of our graph G; see
Figure 5.

Step 1. We first show that if C is any r-identifying code in G, then
C must contain at least k of the vertices a1, a2, . . . , an, and if it contains
exactly k of them, they must form one of the sets {ai : i ∈ A} for some
A ∈ A.

To do this, consider one pair (b(B), c(B)) from V (B), B ∈ B. The
vertices b(B) and c(B) can only be r-separated by an element of C which
has distance r to one of them and distance r + 1 to the other.

Clearly, every vertex in V (B) is within distance r − 1 from b(B) and
therefore within distance r from c(B). So, we must exit the subgraph in-
duced by V (B). However, there are only two ways. The first possibility is
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to go through ei or ei+1 (for the appropriate index i): but, if we can reach
a vertex v in at most r steps, walking along the edges of G, by starting
from b(B), say, and going via ei or ei+1, then the same is true also if we
start from c(B), and therefore v is of no use. The second possibility is to
exit via some ai. In the sequel, we say that the vertices ai are on level 0,
the vertices ai,j(B) are on level j, and the vertices b(B) and c(B) are on

level r; c.f. Figure 5. Then each edge brings us at most one level up or
down, and by the time we reach any ai having started from b(B) or c(B),
we have already taken at least r steps. Consequently, the vertices ai are the
only ones that can r-separate b(B) and c(B); moreover, the vertex ai can
do this if, and only if, the edge ai,r−1(B)c(B) is missing, i.e., i /∈ B.

No (k − 1)-set D of vertices of type a can r-separate all the pairs
(b(B), c(B)), because there is a set B ∈ B such that the elements of B
are precisely the indices of the vertices of type a in D.

Therefore at least k of the n elements a1, a2, . . . , an have to be in C.
Assume now that we have in C exactly k elements of type a, and the set

of indices of these codewords is A ⊆ V1. If A = B for some k-set B ∈ B,
then again, the set {ai : i ∈ A} cannot r-separate b(B) and c(B). Therefore
A /∈ B, that is, A ∈ A, and clearly the k codewords ai, i ∈ A, can r-separate
all the pairs (b(B), c(B)), whether B ∈ B has size k or k − 1. This ends the
first step of the proof.

Step 2. We show that for every A ∈ A, the code

C(A) = {ai : i ∈ A} ∪ E ∪ F ∪ E′ ∪ F ′

∪{gi(j, r + 1) : i = 1, 2, . . . , s and j = 1, 2, . . . , p} (4)

∪{g′i(j, r + 1) : i = 1, 2, . . . , t and j = 1, 2, . . . , p},

i.e., the code consisting of the vertices ai, i ∈ A, all the vertices of the cycles
E,F,E′, F ′, and the middle vertices of all the paths between E and F , and
E′ and F ′, is an r-identifying code in G. Clearly, the size of C(A) equals
k + (p + 2)(s + t).

For any subset T ⊆ C(A), we say that the T -signature of a vertex v
is the set T ∩ BG,r(v), so that two vertices with different T -signatures are
r-separated by T , hence by C(A). By the structure of G, we can tell the
following:

• Assume that v ∈ {a1, a2, . . . , an} or that v ∈ V (B) for some B ∈ B,
i.e., v is on level j ∈ {0, 1, 2, . . . , r}; then the E-signature of v has
size 2j (and the order of E is s ≥ 2r + 2 ≥ 2j). By symmetry, the E ′-
signature of v has size 2r− 2j (and t ≥ 2r). The F - and F ′-signatures
of v are empty.

Using this —and in particular the fact that all the signatures above have
even size— we now see that C(A) can uniquely r-identify all the vertices in

E ∪ F ∪ {ei(0), fi(0) : 1 ≤ i ≤ s},
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as well as all the (2r + 1)sp vertices on the paths described in (2) (and in
particular that all these vertices are r-covered by C(A)); indeed, this is a
direct consequence of the following eight observations:

• A vertex v is one of the vertices of type g if, and only if, there is an i
and a j such that gi(j, r + 1) ∈ IG,C(A),r(v); moreover, i and j are
unique and identify on which path v is.

• For all i and j, the vertex gi(j, r + 1) has empty E- and F -signatures.

• For all i and j, and for h ∈ {1, 2, . . . , r}, the F -signature of v = gi(j, h)
is empty and its E-signature has size 2r + 1 − 2h.

• By symmetry, for all i and j, and for h ∈ {r + 2, r + 3, . . . , 2r + 1},
the E-signature of v = gi(j, h) is empty and its F -signature has size
2h − 2r − 3.

• The E-signature of v = ei(0) has size 2r − 1 and middle point ei.

• The E-signature of v = ei has size 2r + 1 and middle point ei.

• The F -signature of v = fi(0) has size 2r − 1 and middle point fi.

• The F -signature of v = fi has size 2r + 1 and middle point fi.

In exactly the same way, we can see that all the vertices in

E′ ∪ F ′ ∪ {e′i(0), f ′
i(0) : 1 ≤ i ≤ t},

as well as all the (2r + 1)tp vertices on the paths described in (3), are r-
covered and r-identified using C(A).

The vertices a1, a2, . . . , an are also r-identified by C(A) (and r-covered):
they are the only vertices whose E ′-signature has size 2r and clearly the two
middle points of this signature give the index of the vertex.

Finally, if v ∈ V (B) for some B ∈ B, then the two middle vertices of the
E-signature of v identify the set B (and v is r-covered by C(A)). Then if the
E-signature has size 2r, we know that v is b(B) or c(B) and we have already
seen that they are r-separated by some vertex ai ∈ C(A), because A ∈ A.
And if, finally, the E-signature has size 2j for some j ∈ {1, 2, . . . , r − 1},
then we know that v is on level j, i.e., v = ai,j(B) for some i, and it suffices
to determine i. However, this can be done by looking at which are the two
middle points of the E-signature of v. Therefore, C(A) is r-identifying in G,
which concludes Step 2.

Step 3. We next show that all the vertices in E ∪ F ∪ E ′ ∪ F ′ are r-
optimal in G, i.e., assuming that C is any optimal r-identifying code in G,
we show that (E ∪ F ∪ E′ ∪ F ′) ⊂ C.

By Step 1, at least k vertices of type a must be in C. Furthermore, as
the middle points of each of the ps paths described by (2) and the pt paths
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described by (3) must be r-covered by some codeword, we see that at least
one vertex in each of these paths must also be a codeword.

Assume now that ei /∈ C for some fixed i and consider the paths gi(j, 1)
gi(j, 2) . . . gi(j, 2r + 1) for j = 1, 2, . . . , p. The only vertices that can r-
separate gi(j, r) and gi(j, r+1) are ei and gi(j, 2r+1); but our assumption is
that ei /∈ C, and therefore gi(j, 2r+1) ∈ C for all j. Furthermore, as gi(j, r)
is not yet r-covered by any codeword, each of these p paths must contain at
least two codewords. Consequently, |C| ≥ k +ps+pt+p > k+(p+2)(s+ t)
(because p has been chosen such that p > 2s + 2t). By Step 2, C cannot be
optimal. Hence ei is r-optimal. In exactly the same way, we can see that all
the vertices of F , E′ and F ′ are r-optimal, which ends Step 3.

Step 4. We now conclude that the size of the optimal r-identifying
codes in G is k + (p + 2)(s + t). Indeed, assume that C is an optimal r-
identifying code in G. We saw in Step 1 that C must contain at least k
vertices of type a, and in Step 3 that C must contain all the 2s+2t vertices
in E ∪ F ∪ E′ ∪ F ′. As was already noticed in Step 3, the middle points of
each of the sp paths described in (2) and of the tp paths described in (3)
must be r-covered by C, and therefore at least one vertex in each of these
p(s + t) paths is a codeword. Hence |C| ≥ k + (p + 2)(s+ t). Our claim now
follows, because we saw in Step 2 that an r-identifying code with this size
exists in G.

Step 5. To conclude the proof of Theorem 12, it suffices to show that
every optimal r-identifying code in G is one of the codes C(A) described
in (4). Assume that C is any optimal r-identifying code in G. As it is
optimal, it cannot contain more than k codewords of type a by Step 4, and by
Step 1, it must contain at least k of these, and they must form one of the sets
{ai : i ∈ A} for some A ∈ A. By Step 3, (E∪F∪E ′∪F ′) ⊂ C, and by Step 4,
exactly one vertex in each of the p(s+ t) paths described by (2) and (3) is a
codeword. Consider any of them, say, the path gi(j, 1)gi(j, 2) . . . gi(j, 2r+1).
The code C must be able to r-separate between ei(0) and gi(j, 1). Because
r ≥ 2, the vertex ei(0) cannot do it, and neither can any vertex in E; the only
possibility is that gi(j, 1) is r-covered by at least one codeword belonging to
this particular path. In the same way, C must r-separate between gi(j, 2r+1)
and fi(0), which implies that gi(j, 2r + 1) is also r-covered by at least one
codeword belonging to this path. The only way to do this with one vertex
is to take the middle vertex of the path, gi(j, r + 1), in the code C. As
this is true for all our paths, we must have C = C(A) for some A ∈ A,
which ends Step 5 and the proof of Theorem 12: in Step 4 we showed that
γr(G) = k + (p + 2)(s + t), and in Step 2 that the code C(A) given by (4)
is r-identifying if A ∈ A, and optimal; conversely, Step 5 just showed that
every optimal r-identifying code in G is of the form (4) for some A ∈ A. �

Remark 13 In the proofs of Theorems 10 and 12, we have not tried to
minimize the number of vertices in the construction of the graph G. For
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instance, the proof of Theorem 12 could be modified so that p = 3 would be
sufficient (instead of p > 2s + 2t), thus saving a large number of vertices in
the construction. On the other hand, the proof would be more difficult.

2.4 Known results on Johnson induced subgraphs

Some families of graphs are known to be JIS, some are known which are not
JIS, but no characterization is available. Below, we summarize some of the
results from [11].

Theorem 14 (a) [Prop. 4] All complete graphs and all cycles are JIS;
(b) [Prop. 5] All trees are JIS;
(c) [Prop. 6] A graph is a JIS if, and only if, all its connected components

are JIS;
(d) [Prop. 7] The Cartesian product of two JIS is a JIS;
(e) [Prop. 12] Any graph obtained by removing one edge from the com-

plete graph Kn, n ≥ 5, is not a JIS;
(f) [Prop. 8] The complete bipartite graph K2,3 is not a JIS. �

The graph K2,3 can be seen as two cycles of length four sharing three vertices;
if we define the graph θn as the graph consisting of two cycles of length n
sharing n − 1 vertices, we have the following result from [11].

Theorem 15 The graphs θ4 and θ5 are not JIS; all the graphs θn, n ≥ 6,
are JIS. �

The q-ary n-dimensional hypercube is another graph which is JIS, for all q ≥
2 and n ≥ 1; indeed, the q-ary words of length n in Zn

q can be transformed
into binary sequences of length qn, containing exactly n ones, applying the
mapping φ : Zq → Zq

2 , with φ(0) = e1 and φ(i) = ei+1 for i ∈ {1, 2, . . . , q −
1}, where ei has exactly one “1” in position i, so that Zn

q can be seen
as a collection of n-subsets of {1, 2, . . . , qn}. Theorem 7 and its corollary
had already shown, in a simpler way than Theorem 10, how to construct a
graph G such that M1(G) ∼= Zn

2 , for all n ≥ 4.
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