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1 Introduction

Longitudinal data often consists of multiple parallel sequences that ought to be ana-
lyzed jointly. For example, life course data may contain sequences of employment,
family formation, and residence. Such data is often referred to as multichannel or
multidimensional sequence data. A multichannel approach often gives a simpler
representation of the data as opposed to combining states across life domains (the
extended alphabet approach); the latter approach rapidly grows the state space as
the number of channels and/or states grows. If some data is only partially observed,
the multichannel approach also allows for handling data as it is instead of having to
make difficult decisions on how to combine observed and unobserved states (Helske
and Helske 2018).

Joint analysis of complex multidimensional data poses several challenges.
Multichannel sequence analysis (Gauthier et al. 2010) has been the standard tool
for the analysis of multichannel sequence data (for empirical applications see, e.g.,
Eerola and Helske 2016; Müller et al. 2012; Spallek et al. 2014). This approach is
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simple and fast in computing dissimilarities between sequences, and cluster analysis
is often used for grouping similar sequences. Describing and visualizing results is,
however, often challenging.

We propose an approach for compressing the information within multichannel
sequences and for facilitating the interpretation of such data by finding (1) groups
of similar trajectories and (2) similar phases within trajectories belonging to the
same group. For the first task we use the standard multichannel sequence analysis
approach and for the second task we propose using hidden Markov models (HMMs).
With the help of HMMs the data can then be illustrated with a graph showing
typical phases within trajectories and the transitions between them and/or shown
as simplified (single-channel) trajectories consisting of these typical phases. We
illustrate this approach with an empirical application to complex longitudinal life
course data but such an approach, and HMMs in general, are useful in various
longitudinal problems across disciplines.

Hidden Markov models have been widely used in economics, bioinformatics, and
engineering (see, e.g., MacDonald and Zucchini 1997; Durbin et al. 1998; Rabiner
1989), often to study single long sequences such as time series. In social sciences,
such models are commonly referred to as latent Markov (chain) models (Wiggins
1955, 1973; Van de Pol and De Leeuw 1986); typically they have been used for
analysing panel data with a few measurement points. In the social science frame-
work, Vermunt et al. (1999) extended the HMM to include individual covariates and
Bartolucci et al. (2007) further developed it for multichannel observations. See also
Taushanov and Berchtold (2018) in this bundle.

Hidden Markov modelling have been applied in various longitudinal settings; for
accounting for measurement error and unobserved heterogeneity (e.g., Van de Pol
and Langeheine 1990; Poulsen 1990; Breen and Moisio 2004; Vermunt et al. 2008;
Pavlopoulos and Vermunt 2015), for finding latent sub-populations (e.g., Van de Pol
and Langeheine 1990; McDonough et al. 2010; Bassi 2014), and for detecting true
unobservable states (e.g., various periods of the bipolar disorder in Lopez 2008).

To the best of our knowledge, few papers apply HMMs to multichannel social
sequence data and they all consider binary observations. Bartolucci et al. (2007)
studied criminal trajectories of 11,400 offenders, applying HMMs to ten-channel
data with six time points. Ip et al. (2015) analysed and classified 18-item profiles
of food security among 248 Latino farm worker households in the USA for eight
time points. Rijmen et al. (2008) studied 12 parallel trajectories of emotions at 63
time points among 32 anorectic patients. Our analysis extends this framework into
multichannel data with much longer and multinomial sequences.

The rest of the paper is structured as follows. We start by giving an introduction
to HMMs (we assume that the reader is familiar with sequence analysis and refer
to the introduction chapter in this book for the less experienced). We then proceed
to framing our goals in the context of complex life course data. We continue by
describing the data and the empirical analysis and show the results. We conclude
with discussing the usefulness of the method, the challenges it poses, and mention
some future directions.
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2 Hidden Markov Model

In hidden Markov models, observations are related to a hidden process following a
Markov chain. Hidden states can only be detected through the observed sequence(s),
as they generate or “emit” observations on varying probabilities.

Let us assume we have multichannel sequence data with N individuals, T

timepoints, and C channels and a hidden Markov model with S hidden states.
Now zi = (zi1, zi2, . . . , ziT ) represents the hidden state sequence for individual
i = 1, . . . , N from time 1 to time t and yitc denotes the observation of individual i

at time t = 1, . . . , T in channel c = 1, . . . , C.
Figure 1 illustrates the structure of an HMM for two-channel data. The first order

Markov assumption states that the probability of transitioning to the hidden state at
time t only depends on the hidden state at the previous time point t−1. Here we also
assume the same latent structure applies to all channels, i.e., hidden state zit emits
observed states yitc in all channels c and observations yit1, . . . , yitC are assumed
conditionally independent given the hidden state zit .

The following probabilities characterize a discrete first-order hidden Markov
model for multichannel data:

• Initial probability vector π = {πs} of length S, where πs is the probability of
starting from the hidden state s:

πs = P(zi1 = s); s ∈ {1, . . . , S}.
• Transition probability matrix A = {asr } of size S×S, where asr is the probability

of moving from the hidden state s at time t − 1 to the hidden state r at time t :

asr = P(zit = r|zi(t−1) = s); s, r ∈ {1, . . . , S}.
• C emission probability matrices Bc = {bs(mc)} of size S × Mc, where bs(mc) is

the probability of the hidden state s emitting the observed state mc in channel c

and Mc is the number of observed states in channel c:

bs(mc) = P(yitc = mc|zit = s); s ∈ {1, . . . , S}, mc ∈ {1, . . . ,Mc}.

zi1 zi2 zi3 ... ziT

yi11 yi21 yi31 ... yiT1

yi12 yi22 yi32 ... yiT2

Fig. 1 Illustration of hidden and observed state sequences in a hidden Markov model for two-
channel data of individual i. The hidden state at time t is illustrated with zit inside a circle and
the observed state at time t in channel c with yitc inside a rectangle. Arrows indicate dependencies
between states
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Typically, the maximum likelihood estimates of these probabilities are calcu-
lated with the Baum–Welch algorithm, i.e., the expectation–maximization (EM)
algorithm for HMMs (Baum and Petrie 1966; Rabiner 1989). The most probable
path of hidden states for each subject given their observations and the model can
be computed using the Viterbi algorithm (Viterbi 1967; Rabiner 1989). Missing
observations are handled straightforwardly. When observation yitc is missing, it
does not contribute to the estimation of model parameters nor hidden states.
See Helske and Helske (2018) for a more extensive presentation on HMMs for
multichannel data.

3 Combining Sequence Analysis and Hidden Markov Models
for Complex Life Sequences

For analysing complex life sequence data, we aim to compress the information into
two types of components:

1. groups with similar life course patterns and
2. typical life stages within each group.

The first component corresponds to finding clusters or latent classes of individuals
who have experienced similar life events in similar order and timing. The other,
time-varying components should correspond to life stages during which individuals
are more likely to have similar experiences, e.g., observed states within the
sequences. These life stages could be either stable episodes between two transitions
(e.g., employed and married without children) or characterized by transitions in
some of the life domains (e.g., moving between unemployment and short-term jobs).
Individuals may, and typically do, go through several different life stages during
their life course.

SA followed by cluster analysis is a typical strategy for grouping life trajectories.
Hidden Markov models, in turn, may be used for finding time-varying latent
structures and transitions between them. At first, we use multichannel SA to
compute pairwise dissimilarities and then group individuals into clusters. Separate
HMMs are then fitted for each cluster. The number and nature of the hidden states
are determined independently for each group.

We estimate left-to-right HMMs where transitions to previous hidden states are
not allowed. We had several reasons to do this. First, left-to-right models are simpler
to estimate since some of the parameters are restricted to zero. Second, due to the
nature of the life trajectories, also the observed states tend to show a left-to-right
behaviour and many of the HMMs would end up being estimated close to left-to-
right models anyway. Third, we find that left-to-right models are often easier to
interpret in the context of life course: individuals go through different life stages
but even if they return to have a similar life stage compared to a previous one – say
re-marriage after a divorce – this second life stage comes with a different history
compared to the first time.
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4 Data

We illustrate the analysis of complex life sequence data using a subsample of the
German National Educational Panel Survey (NEPS) (Blossfeld et al. 2011). We
restricted the analysis to the life courses of an age cohort born in 1955–1959. Only
individuals who were born in Germany or moved there before the age of 14 are
included.

The data consisted of monthly life statuses of 1731 individuals in three life
domains (labour market participation, partnerships, and parenthood) from age 15 to
age 50. For each individual, there were three parallel sequences of length 434, which
made altogether 2,253,762 data points (of which 2,232,730 were observed and
21,032 were missing). Using the monthly time scale also allowed for the detection
of smaller fluctuations in life courses, e.g. recurrent transitions between short-term
unemployment and employment.

4.1 Sequences

The sequences in three life domains were constructed as follows:

Labour market participation with 4 states:

• Studying (in school, vocational training, or vocational preparation)
• Employed (full-time or part-time)
• Unemployed
• Out of the labour market (for other reason than studies, e.g., parental leave,

taking care of children or other family members, military or non-military service,
voluntary work, or other gap in the employment history)

Partnerships with 4 states:

• Single (never lived with a partner)
• Cohabiting
• Married/in a registered partnership
• Divorced/separated/widowed

Parenthood with 2 states:

• No children
• Has (had) children (biological, adopted, or foster children)

The coding for parenthood was very simple. A practical reason was that this
record was available for most individuals, whereas more detailed information was
often missing. On the other hand, we can argue that specifically the experience
of becoming a parent is relevant as one step in the developmental process into
adulthood.
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For the latter two life domains, the status of each month was usually determined
from the latest event. An exception was made for the rare partnerships that lasted
for less than a month; there separation was coded from the following month onward.
In a case of multiple records per month in the career domain, the final status was
given according to assumed importance: school and vocational training came before
employment, which in turn dominated over vocational preparation, unemployment,
and other non-employment statuses.

Altogether 306 individuals (17.7%) had some missing information in one or two
life domains. Thus, at each time point we had at least some information from each
individual.

5 Analysis

We have little prior knowledge on the structure of the model; hence, how many
clusters to choose and how many hidden states to include in each cluster? Since
the complexity of these types of life course trajectories varies a lot (e.g., some
individuals have no family-related transitions while others have many), we expected
the groups to have varying numbers of hidden states.

5.1 Sequence Analysis and Clustering

We started by applying multichannel sequence analysis and computed the dissimi-
larities between the sequences. These were then used in cluster analysis.

The dissimilarities between sequences were determined according to the general-
ized Hamming distance with user-defined substitution costs (see Table 1). We set the
highest cost to be the same in all life domains to give them equal weight. We gave no
cost for substituting missing states since we wanted to determine dissimilarity based
on the observed trajectories. Regarding the costs within different life domains, our
choices were mainly based on how far the states are regarded on the pathway to
adulthood and, in terms of labour market participation, also on how close the other
states can be regarded to employment which is often the favourable state. The metric
compares observed states time point by time point and gives a cost for mismatches.
It generally works well in a multichannel problem where timing is important (Studer
and Ritschard 2016) and resulted in meaningful clusters with high goodness-of-fit.

We used Ward’s clustering method for the Hamming dissimilarities and chose
six clustering solutions with 7–12 clusters for further examination. The choice was
based on goodness-of-fit statistics, the dendrogram, and the interpretability of the
clusters. Ward’s method was chosen because it typically produces usable and rela-
tively even-sized clusters compared to most of the other clustering methods (Aassve
et al. 2007; Helske et al. 2015). Also, the method is hierarchical (agglomerative),
so when two smaller clusters are merged, all other clusters remain the same. This
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Table 1 Substitution costs for Hamming distances in three life domains: labour market
participation, partnerships, and parenthood

Labour market participation

→ ST → EM → UN → OU → *

Studying (ST) → 0 3 2 1 0

Employed (EM)→ 3 0 2 2 0

Unempl. (UN) → 2 2 0 1 0

Out of LM (OU)→ 1 2 1 0 0

Missing (*)→ 0 0 0 0 0

Partnerships

→ S → C → M → D → *

Single (S)→ 0 2 2 3 0

Cohab. (C)→ 2 0 1 2 0

Married (M)→ 2 1 0 2 0

Div./sep. (D)→ 3 2 2 0 0

Missing (*)→ 0 0 0 0 0

Parenthood

→ NC → CH → *

No child (NC)→ 0 3 0

Has child (CH)→ 3 0 0

Missing (*)→ 0 0 0

means that among the 7 + 8 + 9 + 10 + 11 + 12 = 57 clusters in the six sets
of clustering results, only 7 + 2 + 2 + 2 + 2 + 2 = 17 were unique, resulting
in significant decrease in the number of models to be estimated compared to non-
hierarchical clustering.

5.2 Hidden Markov Models for Clusters

At the next step, we estimated five HMMs with 4–8 or 5–9 hidden states separately
for each of the 17 unique clusters—fewer hidden states for clusters with simpler
observed trajectories, more for the more complex ones. Since the goal was to
find general life stages between adolescence and middle age in a given group,
having too few or too many hidden states was not plausible nor interpretable. When
increasing the number of hidden states, at some point they lost their distinctive
nature (consecutive states had very similar emission probabilities) and/or they were
rarely “visited” in the most probable paths of hidden states.

A well-known problem with the HMM estimation is that most of the optimization
methods are sensitive to initial estimates of the parameters. In order to reduce the
risk of being trapped in a poor local optimum, we estimated the models numerous
times with random starting values. We continued re-estimation until we had found
the same optimum for at least 100 times (which turned out to be much more than
necessary).

For each cluster, we compared the HMMs with a different number of hidden
states to find the best model. Bayesian information criterion (BIC) and other
information criteria are common choices for comparison of HMMs with different
numbers of hidden states. Another common option for model selection is cross-
validation.
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We chose to use BIC as it generally selects parsimonious models. Unfortunately,
here BIC kept suggesting models with more and more states. We did, however,
use BIC as one source of information for choosing the number of hidden states by
looking for turning points in BIC after which additional hidden states offered little
improvement. In addition to BIC, the choice of the number of hidden states was
based on the interpretability of the model and the prevalence of the hidden states in
the individual trajectories.

5.3 Software

Analyses were conducted with the R software (R Core Team 2015) by using
the packages TraMineR (Gabadinho et al. 2011) for sequence analysis, cluster
(Maechler et al. 2015) for cluster analysis, and seqHMM (Helske and Helske 2018)
for hidden Markov modelling. For the estimation of HMMs we used the automatic
re-estimation routine for the EM algorithm provided in the model estimation
function.

6 Results

The number of hidden states per cluster varied between six and eight. The model
of eight clusters resulted in the smallest BIC (even the highest likelihood) and was
chosen as the best model. We present a few different ways to describe the results:
a table showing the most typical transitions in each cluster, a figure illustrating the
structure of the HMMs, and a figure of the most probable hidden states, i.e., the
trajectories of general life stages for each individual.

Table 2 describes each cluster in terms of some important transitions and states:
typical labour market participation (showing the timing of completing education and
the type of employment after that), partnership histories (age at first partnership, the
type and number of partnerships), and parenthood (the timing of the first child).
It also shows the number of individuals in each cluster and the proportion of the
sample, as well as the hidden states described with the most important transitions.

Figure 2 illustrates the HMM structure for each of the eight clusters. It shows
the HMMs as directed graphs where the pies represent hidden states and the slices
show the emission probabilities of observed states within each hidden state (to draw
attention to the most prevalent observations, we only show probabilities that are
greater than 0.05). The arrows indicate transition probabilities between the hidden
states—the thicker the arrow, the higher the probability.

Figure 3 illustrates the most probable hidden state paths. We have assigned
similar colours to similar hidden states across clusters.

As an example of how to interpret these figures, let us look at the smallest of the
clusters titled Single parents (cluster H). All individuals start from the first hidden
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state (State 1, indicated with light blue in the hidden state paths), a life stage where
they are childless singles and mostly studying. For almost all, the next transition is to
State 2 (dark blue), moving to employment. A few make a straight transition to State
3 (light pink), a life stage of becoming parents and being out of the workforce. State
4 (darker purple) describes a life stage during which individuals are singles, have
children, and are employed. This is the most prevalent life stage for the members
of this cluster and many stay there until the end of the follow-up. A few move out
of employment, mostly to unemployment (State 5, light purple). During the last
life stage, experienced by almost half of the members, individuals form their first
partnerships (State 6, yellow).

In general, the clusters were well separated from each other by the timing and
occurrence of labour market participation and family states. The two largest clusters
composing of half of the respondents were characterized by (mostly) short education
and family. The biggest difference was in the timing of partnership and parenthood
transitions which occurred either earlier in life (cluster A) or later (cluster B). The
third largest cluster (cluster C) mostly consisted of individuals, more often men, who
had long education and later family transitions. Another cluster with early family
transitions (cluster D) consisted of mostly women and was characterized with a
long career break for mostly taking care of children.

Two clusters were characterized by no or very late parenthood. They differed
in the timing of the partnerships; the larger cluster (cluster E) had earlier first
partnerships while in the smaller cluster (cluster F) partnerships were delayed or
omitted altogether. The two smallest clusters consisted of parents living divorced or
separated (cluster H) or single parents (cluster G).

7 Discussion

When analysing complex sequence data with multiple channels, describing and
visualizing the data can be a challenge. By combining sequence analysis and hidden
Markov models the information in data can be compressed into hidden states (life
stages) and clusters (general patterns in life courses). Hidden states were able to
capture general life stages that included not only rather stable episodes such as
being employed and married with children (e.g., State 7 for cluster A) but also life
stages characterized by change, e.g., moving between unemployment and short-term
employment (State 3 for cluster F).

We presented two different ways of HMM-based visualizations that give com-
plementary information but could also be shown alone—it is up to the researcher
to decide which one is more informative in each case. The HMM graphs show
the structure of the hidden states and the transitions between them; also parameter
estimates could be easily included in the graph. The most probable paths of hidden
states show individual-level information on the approximate prevalence and timing
of different life stages.
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Despite its usefulness as a data reduction technique, this approach comes with
some challenges. A major one is the estimation of several HMMs when the number
of hidden states and clusters is unknown. For these challenges, we used a few
approaches. In terms of the number of clusters, we used a hierarchical clustering
method which reduced the number of models to be estimated compared to non-
hierarchical clustering. We then estimated a single model numerous times with
randomized starting values to find the one with the highest likelihood, using parallel
computation for improved efficiency.

Another issue is that we take the SA clusters as fixed. In reality, there is, of
course, a lot of uncertainty which we do not take into account. Also, we do not
discuss other trajectory grouping techniques besides SA. To our knowledge, there
are not many methods suitable for multichannel sequence data; we experimented
with latent class analysis (Collins and Wugalter 1992) which did not lead to
satisfactory results. On the other hand, regarding the parameter uncertainty, in
theory it is possible to compute asymptotic standard errors from the Hessian matrix
obtained from the numerical optimization algorithms, but in practice the underlying
asymptions are typically not met (Zucchini and MacDonald 2009).

The mixture hidden Markov model (MHMM) offers a solution to the problem of
uncertainty of clustering. In the MHMM, instead of fixing individuals to the clusters
defined during the SA step, we could use all data to estimate a mixture of HMMs
where each individual belongs to each cluster with some probability (preferably with
a large probability for one cluster and a small probability to all others). In a complex
setting, SA can be used to determine the range of potential clustering structures. It
can also be of aid when setting initial values for the estimation process, which is
often essential when using very large models.

Although in theory the MHMM approach allows even more flexibility to the
modelling and potential for more interesting ways of inference, there are some
practical computational problems in the MHMM methodology. The parameter
estimation of HMMs is often very sensitive to initial values, and the computational
costs increase rapidly when the number of hidden states grows. These problems
are even more prominent in complex MHMMs, especially when the structure of
the model (in terms of the number of hidden states and/or clusters) is not known.
For this study, we were not able to find stable solutions for MHMMs despite large
computational resources available—the multichannel structure, long sequences,
and the relatively large number of individuals in our data was too challenging a
combination for parameter estimation. Nevertheless, the MHMM can be useful
in other settings. It has been successfully used for simpler problems, e.g., for
accounting for measurement error and unobserved heterogeneity.

An extention not covered in this paper is the inclusion of external covariates.
Personal characteristics and other relevant factors, time-constant as well as time-
varying, could be used to predict transition probabilities between life stages. In
MHMMs, time-constant covariates may also be used to predict cluster member-
ships. See, e.g., Vermunt et al. (2008) for a general presentation of such models.
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We are currently studying algorithmic variations which can reduce the com-
putational complexity of the MHMM estimation. Further research is also needed
regarding model selection and the goodness-of-fit of left-to-right HMMs and
MHMMs. Further theoretical and empirical studies are needed for detecting the
reasons for the failure of BIC and for discovering selection criteria that are better
suited for finding parsimonious HMMs.

Another topic for future research is the potential of hidden Markov models and
Markovian models in general as mechanisms of generating social sequence data.

The aim of our study was to describe complex life sequence data and for that goal,
the SA-HMM approach gave satisfactory results in a reasonable time. We were able
to find meaningful and well-separating clusters and to visualize their complex life
course information by using HMM graphs and the most probable paths of life stages
for each individual.
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